1932

Abstract

Genetic and genomic studies have enhanced our understanding of complex neurodegenerative diseases that exert a devastating impact on individuals and society. One such disease, age-related macular degeneration (AMD), is a major cause of progressive and debilitating visual impairment. Since the pioneering discovery in 2005 of () as a major AMD susceptibility gene, extensive investigations have confirmed 19 additional genetic risk loci, and more are anticipated. In addition to common variants identified by now-conventional genome-wide association studies, targeted genomic sequencing and exome-chip analyses are uncovering rare variant alleles of high impact. Here, we provide a critical review of the ongoing genetic studies and of common and rare risk variants at a total of 20 susceptibility loci, which together explain 40–60% of the disease heritability but provide limited power for diagnostic testing of disease risk. Identification of these susceptibility loci has begun to untangle the complex biological pathways underlying AMD pathophysiology, pointing to new testable paradigms for treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-090413-025610
2014-08-31
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/genom/15/1/annurev-genom-090413-025610.html?itemId=/content/journals/10.1146/annurev-genom-090413-025610&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 1000 Genomes Proj. Consort 2012. An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65 [Google Scholar]
  2. Ambati J, Fowler BJ. 2.  2012. Mechanisms of age-related macular degeneration. Neuron 75:26–39 [Google Scholar]
  3. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT. 3.  et al. 2010. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog. Retin. Eye Res. 29:95–112 [Google Scholar]
  4. Awh CC, Lane AM, Hawken S, Zanke B, Kim IK. 4.  2013. CFH and ARMS2 genetic polymorphisms predict response to antioxidants and zinc in patients with age-related macular degeneration. Ophthalmology 120:2317–23 [Google Scholar]
  5. Buitendijk GH, Rochtchina E, Myers C, van Duijn CM, Lee KE. 5.  et al. 2013. Prediction of age-related macular degeneration in the general population: the Three Continent AMD Consortium. Ophthalmology 120:2644–55 [Google Scholar]
  6. Canter JA, Olson LM, Spencer K, Schnetz-Boutaud N, Anderson B. 6.  et al. 2008. Mitochondrial DNA polymorphism A4917G is independently associated with age-related macular degeneration. PLoS ONE 3:e2091 [Google Scholar]
  7. Chen W, Stambolian D, Edwards AO, Branham KE, Othman M. 7.  et al. 2010. Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc. Natl. Acad. Sci. USA 107:7401–6 [Google Scholar]
  8. Chew EY, Clemons TE, Agron E, Sperduto RD, Sangiovanni JP. 8.  et al. 2013. Long-term effects of vitamins C and E, beta-carotene, and zinc on age-related macular degeneration: AREDS report no. 35. Ophthalmology 120:1604–11 [Google Scholar]
  9. Chong NH, Keonin J, Luthert PJ, Frennesson CI, Weingeist DM. 9.  et al. 2005. Decreased thickness and integrity of the macular elastic layer of Bruch's membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am. J. Pathol. 166:241–51 [Google Scholar]
  10. Collins FS. 10.  2011. Faces of the genome. Science 331:546 [Google Scholar]
  11. Conley YP, Jakobsdottir J, Mah T, Weeks DE, Klein R. 11.  et al. 2006. CFH, ELOVL4, PLEKHA1 and LOC387715 genes and susceptibility to age-related maculopathy: AREDS and CHS cohorts and meta-analyses. Hum. Mol. Genet. 15:3206–18 [Google Scholar]
  12. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA. 12.  et al. 2002. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc. Natl. Acad. Sci. USA 99:14682–87 [Google Scholar]
  13. Curcio CA, Johnson M. 13.  2013. Structure, function, and pathology of Bruch's membrane. Retina 1, Part 2 Basic Science and Translation to Therapy SJ Ryan, AP Schachat, CP Wilkinson DR Hinton, S Sadda, P Wiedemann 466–81 London: Elsevier, 5th ed.. [Google Scholar]
  14. Curcio CA, Johnson M, Huang JD, Rudolf M. 14.  2009. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog. Retin. Eye Res. 28:393–422 [Google Scholar]
  15. Curcio CA, Johnson M, Rudolf M, Huang JD. 15.  2011. The oil spill in ageing Bruch membrane. Br. J. Ophthalmol. 95:1638–45 [Google Scholar]
  16. Curcio CA, Messinger JD, Sloan KR, McGwin G Jr, Medeiros NE, Spaide RF. 16.  2013. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model. Retina 33:265–76 [Google Scholar]
  17. Curcio CA, Millican CL, Bailey T, Kruth HS. 17.  2001. Accumulation of cholesterol with age in human Bruch's membrane. Investig. Ophthalmol. Vis. Sci. 42:265–74 [Google Scholar]
  18. Curcio CA, Owsley C, Jackson GR. 18.  2000. Spare the rods, save the cones in aging and age-related maculopathy. Investig. Ophthalmol. Vis. Sci. 41:2015–18 [Google Scholar]
  19. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. 19.  1990. Human photoreceptor topography. J. Comp. Neurol. 292:497–523 [Google Scholar]
  20. Day S, Acquah K, Lee PP, Mruthyunjaya P, Sloan FA. 20.  2011. Medicare costs for neovascular age-related macular degeneration, 1994–2007. Am. J. Ophthalmol. 152:1014–20 [Google Scholar]
  21. Delori FC, Goger DG, Dorey CK. 21.  2001. Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Investig. Ophthalmol. Vis. Sci. 42:1855–66 [Google Scholar]
  22. Do R, Kathiresan S, Abecasis GR. 22.  2012. Exome sequencing and complex disease: practical aspects of rare variant association studies. Hum. Mol. Genet. 21:R1–9 [Google Scholar]
  23. Edwards AO, Lee SJ, Fridley BL, Tosakulwong N. 23.  2008. Density of common complex ocular traits in the aging eye: analysis of secondary traits in genome-wide association studies. PLoS ONE 3:e2510 [Google Scholar]
  24. Edwards AO, Ritter R III, Abel KJ, Manning A, Panhuysen C, Farrer LA. 24.  2005. Complement factor H polymorphism and age-related macular degeneration. Science 308:421–24 [Google Scholar]
  25. Eldred GE, Miller GV, Stark WS, Feeney-Burns L. 25.  1982. Lipofuscin: resolution of discrepant fluorescence data. Science 216:757–59 [Google Scholar]
  26. Fariss RN, Apte SS, Olsen BR, Iwata K, Milam AH. 26.  1997. Tissue inhibitor of metalloproteinases-3 is a component of Bruch's membrane of the eye. Am. J. Pathol. 150:323–28 [Google Scholar]
  27. Feeney-Burns L, Ellersieck MR. 27.  1985. Age-related changes in the ultrastructure of Bruch's membrane. Am. J. Ophthalmol. 100:686–97 [Google Scholar]
  28. Feero WG, Guttmacher AE, Collins FS. 28.  2010. Genomic medicine—an updated primer. N. Engl. J. Med. 362:2001–11 [Google Scholar]
  29. Ferris FL III, Davis MD, Clemons TE, Lee LY, Chew EY. 29.  et al. 2005. A simplified severity scale for age-related macular degeneration: AREDS report no. 18. Arch. Ophthalmol. 123:1570–74 [Google Scholar]
  30. Ferris FL III, Wilkinson CP, Bird A, Chakravarthy U, Chew E. 30.  et al. 2013. Clinical classification of age-related macular degeneration. Ophthalmology 120:844–51 [Google Scholar]
  31. Fisher SA, Abecasis GR, Yashar BM, Zareparsi S, Swaroop A. 31.  et al. 2005. Meta-analysis of genome scans of age-related macular degeneration. Hum. Mol. Genet. 14:2257–64 [Google Scholar]
  32. Friedman DS, O'Colmain BJ, Munoz B, Tomany SC, McCarty C. 32.  et al. 2004. Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. 122:564–72 [Google Scholar]
  33. Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y. 33.  et al. 2013. Seven new loci associated with age-related macular degeneration. Nat. Genet. 45:433–39 [Google Scholar]
  34. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ. 34.  et al. 2006. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat. Genet. 38:458–62 [Google Scholar]
  35. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ. 35.  et al. 2005. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl. Acad. Sci. USA 102:7227–32 [Google Scholar]
  36. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF. 36.  2001. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Prog. Retin. Eye Res. 20:705–32 [Google Scholar]
  37. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM. 37.  et al. 2005. Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–21 [Google Scholar]
  38. Hammond CJ, Webster AR, Snieder H, Bird AC, Gilbert CE, Spector TD. 38.  2002. Genetic influence on early age-related maculopathy: a twin study. Ophthalmology 109:730–36 [Google Scholar]
  39. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. 39.  2003. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch. Neurol. 60:1119–22 [Google Scholar]
  40. Helgason H, Sulem P, Duvvari MR, Luo H, Thorleifsson G. 40.  et al. 2013. A rare nonsynonymous sequence variant in C3 is associated with high risk of age-related macular degeneration. Nat. Genet. 45:1371–74 [Google Scholar]
  41. Hoeijmakers JH. 41.  2009. DNA damage, aging, and cancer. N. Engl. J. Med. 361:1475–85 [Google Scholar]
  42. Holliday EG, Smith AV, Cornes BK, Buitendijk GH, Jensen RA. 42.  et al. 2013. Insights into the genetic architecture of early stage age-related macular degeneration: a genome-wide association study meta-analysis. PLoS ONE 8:e53830 [Google Scholar]
  43. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R. 43.  et al. 2012. SEER cancer statistics review, 1975–2009 (vintage 2009 populations) Surveill. Epidemiol. End Results Program, updated Aug. 20, Natl. Cancer Inst., Bethesda, MD. http://seer.cancer.gov/csr/1975_2009_pops09
  44. Johnson LV, Ozaki S, Staples MK, Erickson PA, Anderson DH. 44.  2000. A potential role for immune complex pathogenesis in drusen formation. Exp. Eye Res. 70:441–49 [Google Scholar]
  45. Jones MM, Manwaring N, Wang JJ, Rochtchina E, Mitchell P, Sue CM. 45.  2007. Mitochondrial DNA haplogroups and age-related maculopathy. Arch. Ophthalmol. 125:1235–40 [Google Scholar]
  46. Kalf RR, Mihaescu R, Kundu S, de Knijff P, Green RC, Janssens AC. 46.  2013. Variations in predicted risks in personal genome testing for common complex diseases. Genet. Med. 16:85–91 [Google Scholar]
  47. Kamei M, Hollyfield JG. 47.  1999. TIMP-3 in Bruch's membrane: changes during aging and in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 40:2367–75 [Google Scholar]
  48. Kanda A, Chen W, Othman M, Branham KE, Brooks M. 48.  et al. 2007. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc. Natl. Acad. Sci. USA 104:16227–32 [Google Scholar]
  49. Kawasaki R, Yasuda M, Song SJ, Chen SJ, Jonas JB. 49.  et al. 2010. The prevalence of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology 117:921–27 [Google Scholar]
  50. Klein BE, Klein R, Lee KE, Moore EL, Danforth L. 50.  2001. Risk of incident age-related eye diseases in people with an affected sibling: the Beaver Dam Eye Study. Am. J. Epidemiol. 154:207–11 [Google Scholar]
  51. Klein ML, Mauldin WM, Stoumbos VD. 51.  1994. Heredity and age-related macular degeneration: observations in monozygotic twins. Arch. Ophthalmol. 112:932–37 [Google Scholar]
  52. Klein R, Cruickshanks KJ, Nash SD, Krantz EM, Nieto FJ. 52.  et al. 2010. The prevalence of age-related macular degeneration and associated risk factors. Arch. Ophthalmol. 128:750–58 [Google Scholar]
  53. Klein R, Klein BE, Jensen SC, Mares-Perlman JA, Cruickshanks KJ, Palta M. 53.  1999. Age-related maculopathy in a multiracial United States population: the National Health and Nutrition Examination Survey III. Ophthalmology 106:1056–65 [Google Scholar]
  54. Klein R, Klein BE, Knudtson MD, Wong TY, Cotch MF. 54.  et al. 2006. Prevalence of age-related macular degeneration in 4 racial/ethnic groups in the Multi-Ethnic Study of Atherosclerosis. Ophthalmology 113:373–80 [Google Scholar]
  55. Klein R, Li X, Kuo JZ, Klein BE, Cotch MF. 55.  et al. 2013. Associations of candidate genes to age-related macular degeneration among racial/ethnic groups in the Multi-Ethnic Study of Atherosclerosis. Am. J. Ophthalmol. 156:1010–20 [Google Scholar]
  56. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS. 56.  et al. 2005. Complement factor H polymorphism in age-related macular degeneration. Science 308:385–89 [Google Scholar]
  57. Kondo N, Bessho H, Honda S, Negi A. 57.  2011. Complement factor H Y402H variant and risk of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology 118:339–44 [Google Scholar]
  58. Lander ES. 58.  2011. Initial impact of the sequencing of the human genome. Nature 470:187–97 [Google Scholar]
  59. LaVail MM. 59.  1983. Outer segment disc shedding and phagocytosis in the outer retina. Trans. Ophthalmol. Soc. UK 103:397–404 [Google Scholar]
  60. Lesnefsky EJ, Hoppel CL. 60.  2006. Oxidative phosphorylation and aging. Ageing Res. Rev. 5:402–33 [Google Scholar]
  61. Li M, Atmaca-Sonmez P, Othman M, Branham KE, Khanna R. 61.  et al. 2006. CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat. Genet. 38:1049–54 [Google Scholar]
  62. Luo DG, Xue T, Yau KW. 62.  2008. How vision begins: an odyssey. Proc. Natl. Acad. Sci. USA 105:9855–62 [Google Scholar]
  63. Ma W, Zhao L, Wong WT. 63.  2012. Microglia in the outer retina and their relevance to pathogenesis of age-related macular degeneration. Adv. Exp. Med. Biol. 723:37–42 [Google Scholar]
  64. Marneros AG. 64.  2013. NLRP3 inflammasome blockade inhibits VEGF-A-induced age-related macular degeneration. Cell Rep. 4:945–58 [Google Scholar]
  65. McKibbin M, Ali M, Bansal S, Baxter PD, West K. 65.  et al. 2012. CFH, VEGF and HTRA1 promoter genotype may influence the response to intravitreal ranibizumab therapy for neovascular age-related macular degeneration. Br. J. Ophthalmol. 96:208–12 [Google Scholar]
  66. McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA. 66.  2009. Relationship between RPE and choriocapillaris in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 50:4982–91 [Google Scholar]
  67. Meleth AD, Wong WT, Chew EY. 67.  2011. Treatment for atrophic macular degeneration. Curr. Opin. Ophthalmol. 22:190–93 [Google Scholar]
  68. Meyers SM, Greene T, Gutman FA. 68.  1995. A twin study of age-related macular degeneration. Am. J. Ophthalmol. 120:757–66 [Google Scholar]
  69. Miller JW. 69.  2013. Age-related macular degeneration revisited—piecing the puzzle: the LXIX Edward Jackson memorial lecture. Am. J. Ophthalmol. 155:1–35.e13 [Google Scholar]
  70. Moreira EF, Larrayoz IM, Lee JW, Rodriguez IR. 70.  2009. 7-Ketocholesterol is present in lipid deposits in the primate retina: potential implication in the induction of VEGF and CNV formation. Investig. Ophthalmol. Vis. Sci. 50:523–32 [Google Scholar]
  71. Mullins RF, Russell SR, Anderson DH, Hageman GS. 71.  2000. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 14:835–46 [Google Scholar]
  72. 72. Natl. Eye Inst 2014. Age-related macular degeneration (AMD). Natl. Eye Inst., Bethesda, MD. http://www.nei.nih.gov/eyedata/amd.asp [Google Scholar]
  73. Neale BM, Fagerness J, Reynolds R, Sobrin L, Parker M. 73.  et al. 2010. Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc. Natl. Acad. Sci. USA 107:7395–400 [Google Scholar]
  74. Priya RR, Chew EY, Swaroop A. 74.  2012. Genetic studies of age-related macular degeneration: lessons, challenges, and opportunities for disease management. Ophthalmology 119:2526–36 [Google Scholar]
  75. Raychaudhuri S, Iartchouk O, Chin K, Tan PL, Tai AK. 75.  et al. 2011. A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nat. Genet. 43:1232–36 [Google Scholar]
  76. Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R. 76.  et al. 2004. Global data on visual impairment in the year 2002. Bull. World Health Organ. 82:844–51 [Google Scholar]
  77. Ridge KD, Abdulaev NG, Sousa M, Palczewski K. 77.  2003. Phototransduction: crystal clear. Trends Biochem. Sci. 28:479–87 [Google Scholar]
  78. Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P. 78.  et al. 2005. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum. Mol. Genet. 14:3227–36 [Google Scholar]
  79. Rodriguez IR, Larrayoz IM. 79.  2010. Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration. J. Lipid Res. 51:2847–62 [Google Scholar]
  80. Rohrer B, Coughlin B, Kunchithapautham K, Long Q, Tomlinson S. 80.  et al. 2011. The alternative pathway is required, but not alone sufficient, for retinal pathology in mouse laser-induced choroidal neovascularization. Mol. Immunol. 48:e1–8 [Google Scholar]
  81. Rosenfeld PJ, Shapiro H, Tuomi L, Webster M, Elledge J. 81.  et al. 2011. Characteristics of patients losing vision after 2 years of monthly dosing in the phase III ranibizumab clinical trials. Ophthalmology 118:523–30 [Google Scholar]
  82. Rudnicka AR, Jarrar Z, Wormald R, Cook DG, Fletcher A, Owen CG. 82.  2012. Age and gender variations in age-related macular degeneration prevalence in populations of European ancestry: a meta-analysis. Ophthalmology 119:571–80 [Google Scholar]
  83. Rudolf M, Clark ME, Chimento MF, Li CM, Medeiros NE, Curcio CA. 83.  2008. Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy. Investig. Ophthalmol. Vis. Sci. 49:1200–9 [Google Scholar]
  84. SanGiovanni JP, Arking DE, Iyengar SK, Elashoff M, Clemons TE. 84.  et al. 2009. Mitochondrial DNA variants of respiratory complex I that uniquely characterize haplogroup T2 are associated with increased risk of age-related macular degeneration. PLoS ONE 4:e5508 [Google Scholar]
  85. Sarks SH, Arnold JJ, Killingsworth MC, Sarks JP. 85.  1999. Early drusen formation in the normal and aging eye and their relation to age related maculopathy: a clinicopathological study. Br. J. Ophthalmol. 83:358–68 [Google Scholar]
  86. Schleicher M, Weikel K, Garber C, Taylor A. 86.  2013. Diminishing risk for age-related macular degeneration with nutrition: a current view. Nutrients 5:2405–56 [Google Scholar]
  87. Seddon JM, Ajani UA, Mitchell BD. 87.  1997. Familial aggregation of age-related maculopathy. Am. J. Ophthalmol. 123:199–206 [Google Scholar]
  88. Seddon JM, Cote J, Page WF, Aggen SH, Neale MC. 88.  2005. The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch. Ophthalmol. 123:321–27 [Google Scholar]
  89. Seddon JM, Reynolds R, Yu Y, Rosner B. 89.  2013. Validation of a prediction algorithm for progression to advanced macular degeneration subtypes. JAMA Ophthalmol. 131:448–55 [Google Scholar]
  90. Seddon JM, Yu Y, Miller EC, Reynolds R, Tan PL. 90.  et al. 2013. Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat. Genet. 45:1366–70 [Google Scholar]
  91. Sene A, Khan AA, Cox D, Nakamura RE, Santeford A. 91.  et al. 2013. Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Metab. 17:549–61 [Google Scholar]
  92. Smith W, Assink J, Klein R, Mitchell P, Klaver CC. 92.  et al. 2001. Risk factors for age-related macular degeneration: pooled findings from three continents. Ophthalmology 108:697–704 [Google Scholar]
  93. So HC, Li M, Sham PC. 93.  2011. Uncovering the total heritability explained by all true susceptibility variants in a genome-wide association study. Genet. Epidemiol. 35:447–56 [Google Scholar]
  94. Sobrin L, Reynolds R, Yu Y, Fagerness J, Leveziel N. 94.  et al. 2011. ARMS2/HTRA1 locus can confer differential susceptibility to the advanced subtypes of age-related macular degeneration. Am. J. Ophthalmol. 151:345–52.e3 [Google Scholar]
  95. Sohal RS, Weindruch R. 95.  1996. Oxidative stress, caloric restriction, and aging. Science 273:59–63 [Google Scholar]
  96. Sparrow JR, Boulton M. 96.  2005. RPE lipofuscin and its role in retinal pathobiology. Exp. Eye Res. 80:595–606 [Google Scholar]
  97. Sparrow JR, Fishkin N, Zhou J, Cai B, Jang YP. 97.  et al. 2003. A2E, a byproduct of the visual cycle. Vis. Res. 43:2983–90 [Google Scholar]
  98. Spraul CW, Grossniklaus HE. 98.  1997. Characteristics of drusen and Bruch's membrane in postmortem eyes with age-related macular degeneration. Arch. Ophthalmol. 115:267–73 [Google Scholar]
  99. Spraul CW, Lang GE, Grossniklaus HE. 99.  1996. Morphometric analysis of the choroid, Bruch's membrane, and retinal pigment epithelium in eyes with age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 37:2724–35 [Google Scholar]
  100. Stadtman ER. 100.  1992. Protein oxidation and aging. Science 257:1220–24 [Google Scholar]
  101. Strauss O. 101.  2005. The retinal pigment epithelium in visual function. Physiol. Rev. 85:845–81 [Google Scholar]
  102. Strunnikova NV, Maminishkis A, Barb JJ, Wang F, Zhi C. 102.  et al. 2010. Transcriptome analysis and molecular signature of human retinal pigment epithelium. Hum. Mol. Genet. 19:2468–86 [Google Scholar]
  103. Swaroop A, Branham KE, Chen W, Abecasis G. 103.  2007. Genetic susceptibility to age-related macular degeneration: a paradigm for dissecting complex disease traits. Hum. Mol. Genet. 16:R174–82 [Google Scholar]
  104. Swaroop A, Chew EY, Rickman CB, Abecasis GR. 104.  2009. Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu. Rev. Genomics Hum. Genet. 10:19–43 [Google Scholar]
  105. Swaroop A, Sieving PA. 105.  2013. The golden era of ocular disease gene discovery: race to the finish. Clin. Genet. 84:99–101 [Google Scholar]
  106. Tarallo V, Hirano Y, Gelfand BD, Dridi S, Kerur N. 106.  et al. 2012. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149:847–59 [Google Scholar]
  107. Thakkinstian A, Han P, McEvoy M, Smith W, Hoh J. 107.  et al. 2006. Systematic review and meta-analysis of the association between complement factor H Y402H polymorphisms and age-related macular degeneration. Hum. Mol. Genet. 15:2784–90 [Google Scholar]
  108. Thornton J, Edwards R, Mitchell P, Harrison RA, Buchan I, Kelly SP. 108.  2005. Smoking and age-related macular degeneration: a review of association. Eye 19:935–44 [Google Scholar]
  109. Tikellis G, Robman LD, Dimitrov P, Nicolas C, McCarty CA, Guymer RH. 109.  2007. Characteristics of progression of early age-related macular degeneration: the cardiovascular health and age-related maculopathy study. Eye 21:169–76 [Google Scholar]
  110. Tilleul J, Richard F, Puche N, Zerbib J, Leveziel N. 110.  et al. 2013. Genetic association study of mitochondrial polymorphisms in neovascular age-related macular degeneration. Mol. Vis. 19:1132–40 [Google Scholar]
  111. Tserentsoodol N, Gordiyenko NV, Pascual I, Lee JW, Fliesler SJ, Rodriguez IR. 111.  2006. Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. Mol. Vis. 12:1319–33 [Google Scholar]
  112. Tserentsoodol N, Sztein J, Campos M, Gordiyenko NV, Fariss RN. 112.  et al. 2006. Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. Mol. Vis. 12:1306–18 [Google Scholar]
  113. van de Ven JP, Nilsson SC, Tan PL, Buitendijk GH, Ristau T. 113.  et al. 2013. A functional variant in the CFI gene confers a high risk of age-related macular degeneration. Nat. Genet. 45:813–17 [Google Scholar]
  114. Wangsa-Wirawan ND, Linsenmeier RA. 114.  2003. Retinal oxygen: fundamental and clinical aspects. Arch. Ophthalmol. 121:547–57 [Google Scholar]
  115. Winkler BS, Boulton ME, Gottsch JD, Sternberg P. 115.  1999. Oxidative damage and age-related macular degeneration. Mol. Vis. 5:32 [Google Scholar]
  116. Wong-Riley MT. 116.  2010. Energy metabolism of the visual system. Eye Brain 2:99–116 [Google Scholar]
  117. Wright S. 117.  1934. An analysis of variability in number of digits in an inbred strain of guinea pigs. Genetics 19:506–36 [Google Scholar]
  118. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA. 118.  et al. 2007. Complement C3 variant and the risk of age-related macular degeneration. N. Engl. J. Med. 357:553–61 [Google Scholar]
  119. Young RW. 119.  1969. The organization of vertebrate photoreceptor cells. UCLA Forum Med. Sci. 8:177–210 [Google Scholar]
  120. Zareparsi S, Branham KE, Li M, Shah S, Klein RJ. 120.  et al. 2005. Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am. J. Hum. Genet. 77:149–53 [Google Scholar]
  121. Zhan X, Larson DE, Wang C, Koboldt DC, Sergeev YV. 121.  et al. 2013. Identification of a rare coding variant in complement 3 associated with age-related macular degeneration. Nat. Genet. 45:1375–79 [Google Scholar]
  122. Zweifel SA, Imamura Y, Spaide TC, Fujiwara T, Spaide RF. 122.  2010. Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology 117:1775–81 [Google Scholar]
/content/journals/10.1146/annurev-genom-090413-025610
Loading
/content/journals/10.1146/annurev-genom-090413-025610
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error