1932

Abstract

I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071114-040110
2015-07-22
2025-01-10
The full text of this item is not currently available.

Literature Cited

  1. Biemann K. 1.  1955. Ein Neues, racemisches N-Dichloroacetamido-γ-pyridylserinol. Monatsh. Chem. 86:895–903 [Google Scholar]
  2. Biemann K, Büchi G, Walker BH. 2.  1957. The structure and synthesis of muscopyridine. J. Am. Chem. Soc. 79:5559–64 [Google Scholar]
  3. Sanger F, Thompson A. 3.  1953. The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochem. J. 53:353–66 [Google Scholar]
  4. Biemann K, Bretschneider H. 4.  1958. Darstellung von 5-aminoalkyl-substituierten Derivaten des 3-Amino-1,2,4-triazols sowie des 5-(4-Pyridyl)-3-amino-1,2,4-triazols. Monatsh. Chem. 89:603–10 [Google Scholar]
  5. Friedel RA, Shultz JL, Sharkey AG. 5.  1956. Mass spectra of alcohols. Anal. Chem. 28:926–34 [Google Scholar]
  6. Gilpin JA, McLafferty FW. 6.  1957. Mass spectrometric analysis of aldehydes. Anal. Chem. 29:990–94 [Google Scholar]
  7. Sharkey AG, Schultz JL, Friedel RA. 7.  1956. Mass spectra of ketones. Anal. Chem. 28:934–40 [Google Scholar]
  8. Asselineau J, Ryhage R, Stenhagen E. 8.  1957. Mass spectrometric studies of long chain methyl esters. Determination of the molecular weight and structure of mycocerosic acid. Acta Chem. Scand. 11:196–98 [Google Scholar]
  9. Collin J. 9.  1952. Mass spectra of aliphatic amines. Bull. Soc. Sci. Liege 21:446–56 [Google Scholar]
  10. Reinhardt C. 10.  2006. Shifting and Rearranging: Physical Methods and the Transformation of Modern Chemistry Sagamore Beach, MA: Sci. History Publ. [Google Scholar]
  11. Biemann K, Gapp F, Seibl J. 11.  1959. Application of mass spectrometry to structure problems. I. Amino acid sequence in peptides. J. Am. Chem. Soc. 81:2274 [Google Scholar]
  12. Biemann K, Vetter W. 12.  1960. Separation of peptide derivatives by gas chromatography combined with the mass spectrometric determination of the amino acid sequence. Biochem. Biophys. Res. Commun. 3:578–84 [Google Scholar]
  13. Nau H, Biemann K. 13.  1976. Amino acid sequencing by gas chromatography-mass spectrometry using trifluoro-dideuteroalkylated peptide derivatives. Part C. The primary structure of the carboxypeptidase inhibitor from potatoes. Anal. Biochem. 73:175–86 [Google Scholar]
  14. Nau H, Foerster HJ, Kelley JA, Biemann K. 14.  1975. Polypeptide sequencing by a gas chromatograph mass spectrometer computer system. II. Characterization of complex mixtures of oligopeptides as trimethylsilylated polyamino alcohols. Biomed. Mass Spectrom. 2:326–39 [Google Scholar]
  15. Watson JT, Biemann K. 15.  1965. Direct recording of high resolution mass spectra of gas chromatographic effluents. Anal. Chem. 37:844–51 [Google Scholar]
  16. Hites RA, Biemann K. 16.  1968. Mass spectrometer-computer system particularly suited for gas chromatography of complex mixtures. Anal. Chem. 40:1217–21 [Google Scholar]
  17. Hudson G, Biemann K. 17.  1976. Mass spectrometric sequencing of proteins. The structure of subunit I of monellin. Biochem. Biophys. Res. Commun. 71:212–20 [Google Scholar]
  18. Carr SA, Hauschka PV, Biemann K. 18.  1981. Gas chromatographic mass spectrometric sequence determination of osteocalcin, a gamma-carboxyglutamic acid-containing protein from chicken bone. J. Biol. Chem. 256:9944–50 [Google Scholar]
  19. Biemann K. 19.  1961. Application of mass spectrometry to structure problems. IV. The carbon skeleton of sarpagine. J. Am. Chem. Soc. 83:4801–5 [Google Scholar]
  20. Djerassi C. 20.  1992. Steroids made it possible. Org. Mass Spectrom. 27:1341–47 [Google Scholar]
  21. Biemann K. 21.  1962. Mass Spectrometry: Organic Chemical Applications New York: McGraw Hill Book Co., Inc.This was republished in 1998 by the American Society for Mass Spectrometry: Classic Works in Mass Spectrometry. Vol. 1. New York: McGraw-Hill. [Google Scholar]
  22. Beynon J. 22.  1959. High-resolution mass spectrometry of organic materials. Proc. Adv. Mass Spectrom. Conf. Cambridge, UK. 1958:328–54 [Google Scholar]
  23. Bommer P, McMurray W, Biemann K. 23.  1964. Techniques in the high-resolution mass spectrometry of complex, polyfunctional organic molecules. Annu. Conf. Mass Spectrom. Allied Top. 12:428–32 [Google Scholar]
  24. Gohlke RS. 24.  1959. Time-of-flight mass spectrometry and gas-liquid partition chromatography. Anal. Chem. 31:535–41 [Google Scholar]
  25. Ryhage R. 25.  1964. Use of a mass spectrometer as a detector and analyzer of effluents emerging from high-temperature gas liquid chromatography columns. Anal. Chem. 36:759–64 [Google Scholar]
  26. Biemann K, Spiteller-Friedmann M, Spiteller G. 26.  1963. Application of mass spectrometry to structure problems. X. Alkaloids of the bark of Aspidosperma quebracho blanco. J. Am. Chem. Soc. 85:631–38 [Google Scholar]
  27. Neuss N, Gorman M, Hargrove W, Cone NJ, Biemann K. 27.  et al. 1964. Vinca alkaloids. XXI. Structures of the oncolytic alkaloids vinblastine and vincristine. J. Am. Chem. Soc. 86:1440–42 [Google Scholar]
  28. Edman P. 28.  1956. On the mechanism of the phenyl isothiocyanate degradation of peptides. Acta Chem. Scand. 10:5761–68 [Google Scholar]
  29. Edman P, Begg G. 29.  1967. A protein sequenator. Eur. J. Biochem. 1:80–91 [Google Scholar]
  30. Khorana HG, Gerber GE, Herlihy WC, Gray CP, Anderegg RJ. 30.  et al. 1979. Amino acid sequence of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 76:5046–50 [Google Scholar]
  31. Maxam AM, Gilbert W. 31.  1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74:560–64 [Google Scholar]
  32. Putney SD, Royal NJ, De Vegvar HN, Herlihy WC, Biemann K, Schimmel P. 32.  1981. Primary structure of a large aminoacyl-tRNA synthetase. Science 213:1497–501 [Google Scholar]
  33. Barber M, Bordoli RS, Sedgwick RD, Tyler AN. 33.  1981. Fast atom bombardment of solids (FAB): a new ion source for mass spectrometry. J. Chem. Soc. Chem. Commun. 1981:325–27 [Google Scholar]
  34. James P, Quadroni M, Carafoli E, Gonnet J. 34.  1993. Protein identification by mass profile fingerprinting. Biochem. Biophys. Res. Commun. 195:58–64 [Google Scholar]
  35. Hoben P, Royal N, Cheung A, Biemann K, Söll D. 35.  1982. Escherichia coli glutaminyl-tRNA synthetase. II. Characterization of the glnS gene product. J. Biol. Chem. 257:11644–50 [Google Scholar]
  36. Webster TA, Gibson BW, Keng T, Biemann K, Schimmel P. 36.  1983. Primary structures of both subunits of Escherichia coli glycyl-tRNA synthetase. J. Biol. Chem. 258:10637–41 [Google Scholar]
  37. Fasiolo F, Gibson BW, Walter P, Chatton B, Biemann K, Boulanger Y. 37.  1985. Cytoplasmic methionyl-tRNA synthetase from Bakers' yeast. A monomer with a post-translationally modified N terminus. J. Biol. Chem. 260:15571–76 [Google Scholar]
  38. Freedman R, Gibson BW, Donovan D, Biemann K, Eisenbeis S. 38.  et al. 1985. Primary structure of histidine-tRNA synthetase and characterization of hisS transcripts. J. Biol. Chem. 260:10063–68 [Google Scholar]
  39. Breton R, Sanfacon H, Papayannopoulos I, Biemann K, Lapointe J. 39.  1986. Glutamyl-tRNA synthetase of Escherichia coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases. J. Biol. Chem. 261:10610–17 [Google Scholar]
  40. McLafferty FW, Todd PJ, McGilvery DC, Baldwin MA. 40.  1980. High-resolution tandem mass spectrometry (MS/MS) of increased sensitivity and mass range. J. Am. Chem. Soc. 102:3360–63 [Google Scholar]
  41. Hass JR, Green BN, Bateman RH, Bott BA. 41.  1984. The design and performance of a tandem double-focusing mass spectrometer. Annu. Conf. Mass Spectrom. Allied Top. 32:380–81 [Google Scholar]
  42. Kammei Y, Itagaki Y, Kubota E, Kunihiro H, Ishihara M. 42.  1985. The design of a new type double focusing mass spectrometer for high mass analysis. Annu. Conf. Mass Spectrom. Allied Top. 33:855–56 [Google Scholar]
  43. Biemann K, Gibson BW, Mathews WR, Pamg H. 43.  1985. The determination of protein structure with the aid of mass spectrometry. Anal. Chem. Symp. Ser. 24:239–64 [Google Scholar]
  44. Mathews WR, Johnson RS, Cornwell KL, Johnson TC, Buchanan BB, Biemann K. 44.  1987. Mass spectrometrically derived amino acid sequence of thioredoxin from Chlorobium, an evolutionarily prominent photosynthetic bacterium. J. Biol. Chem. 262:7537–45 [Google Scholar]
  45. Papov VV, Gravina SA, Mieyal JJ, Biemann K. 45.  1994. The primary structure and properties of thioltransferase (glutaredoxin) from human red blood cells. Protein Sci. 3:428–34 [Google Scholar]
  46. Biemann K. 46.  2007. Laying the groundwork for proteomics: mass spectrometry from 1958 to 1988. Int. J. Mass Spectrom. 259:1–7 [Google Scholar]
  47. Karas M, Hillenkamp F. 47.  1988. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60:2299–301 [Google Scholar]
  48. Beavis RC, Chait BT. 48.  1989. Factors affecting the ultraviolet laser desorption of proteins. Rapid Commun. Mass Spectrom. 3:233–37 [Google Scholar]
  49. Beavis RC, Chait BT. 49.  1989. Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Commun. Mass Spectrom. 3:432–35 [Google Scholar]
  50. Juhasz P, Biemann K. 50.  1994. Mass spectrometric molecular-weight determination of highly acidic compounds of biological significance via their complexes with basic polypeptides. Proc. Natl. Acad. Sci. USA 91:4333–37 [Google Scholar]
  51. Juhasz P, Biemann K. 51.  1995. Utility of non-covalent complexes in the matrix-assisted laser desorption ionization mass spectrometry of heparin-derived oligosaccharides. Carbohydr. Res. 270:131–47 [Google Scholar]
  52. Ernst S, Rhomberg AJ, Biemann K, Sasisekharan R. 52.  1998. Direct evidence for a predominantly exolytic processive mechanism for depolymerization of heparin-like glycosaminoglycans by heparinase I. Proc. Natl. Acad. Sci. USA 95:4182–87 [Google Scholar]
  53. Rhomberg AJ, Ernst S, Sasisekharan R, Biemann K. 53.  1998. Mass spectrometric and capillary electrophoretic investigation of the enzymic degradation of heparin-like glycosaminoglycans. Proc. Natl. Acad. Sci. USA 95:4176–81 [Google Scholar]
  54. Rhomberg AJ, Shriver Z, Biemann K, Sasisekharan R. 54.  1998. Mass spectrometric evidence for the enzymic mechanism of the depolymerization of heparin-like glycosaminoglycans by heparinase II. Proc. Natl. Acad. Sci. USA 95:12232–37 [Google Scholar]
  55. Shriver Z, Raman R, Venkataraman G, Drummond K, Turnbull J. 55.  et al. 2000. Sequencing of 3-O sulfate containing heparin decasaccharides with a partial antithrombin III binding site. Proc. Natl. Acad. Sci. USA 97:10359–64 [Google Scholar]
  56. Shriver Z, Sundaram M, Venkataraman G, Linhardt R, Biemann K. 56.  et al. 2000. Cleavage of the antithrombin III binding site in heparin by heparinases and its implication in the generation of low molecular weight heparin. Proc. Natl. Acad. Sci. USA 97:10365–70 [Google Scholar]
  57. Biemann K, McCloskey JA. 57.  1962. Application of mass spectrometry to structure problems. VI. Nucleosides. J. Am. Chem. Soc. 84:2005 [Google Scholar]
  58. Biemann K, McCloskey JA. 58.  1962. Mass spectra of organic molecules. II. Amino acids. J. Am. Chem. Soc. 84:3192–93 [Google Scholar]
  59. Biemann K, Schnoes HK, McCloskey JA. 59.  1963. Application of mass spectrometry to structure problems. Carbohydrates and their derivatives. Chem. Ind. (London) 1963:448–49 [Google Scholar]
  60. Hayes JM, Biemann K. 60.  1968. High resolution mass spectrometric investigations of the organic constituents of the Murray and Holbrook chondrites. Geochim. Cosmochim. Acta 32:239–67 [Google Scholar]
  61. Murphy RC, Preti G, Nafissi-Varchei MM, Biemann K. 61.  1970. Search for organic material in lunar fines by mass spectrometry. Proc. Apollo 11 Lunar Sci. Conf. 2:1891–900 [Google Scholar]
  62. Preti G, Murphy RC, Biemann K. 62.  1971. The search for organic compounds in various Apollo 12 samples by mass spectrometry. Proc. Second Lunar Sci. Conf. 2:1879–89 [Google Scholar]
  63. Burlingame AL, Hauser JS, Simoneit BR, Smith DH, Biemann K. 63.  et al. 1971. Preliminary organic analysis of the Apollo 12 cores. Proc. Second Lunar Sci. Conf. 2:1891–99 [Google Scholar]
  64. Anderson DM, Biemann K, Orgel LE, Oro J, Owen T. 64.  et al. 1972. Mass spectrometric analysis of organic compounds, water, and volatile constituents in the atmosphere and surface of Mars. The Viking Mars Lander. Icarus 16:111–38 [Google Scholar]
  65. Biemann K. 65.  1974. Test results on the Viking gas chromatograph-mass spectrometer experiment. Origins Life 5:417–30 [Google Scholar]
  66. Rushneck DR, Diaz AV, Howard DW, Rampacek J, Olson KW. 66.  et al. 1978. Viking gas chromatograph-mass spectrometer. Rev. Sci. Instr. 49:817–34 [Google Scholar]
  67. Biemann K, Oro J, Toulmin P III, Orgel LE, Nier AO. 67.  et al. 1977. The search for organic substances and inorganic volatile compounds in the surface of Mars. J. Geophys. Res. 82:4641–58 [Google Scholar]
  68. Owen T, Biemann K, Rushneck DR, Biller JE, Howarth DW, LaFleur AL. 68.  1977. The composition of the atmosphere at the surface of Mars. J. Geophys. Res. 82:4635–39 [Google Scholar]
  69. Navarro-Gonzalez R, Navarro KF, de la Rosa J, Iniguez E, Molina P. 69.  et al. 2006. The limitations on organic detection in Mars-like soils by the thermal volatilization–gas chromatography–MS and their implications for the Viking results. Proc. Natl. Acad. Sci. USA 103:16089–94 [Google Scholar]
  70. Biemann K. 70.  2007. On the ability of the Viking gas chromatograph–mass spectrometer to detect organic matter. Proc. Natl. Acad. Sci. USA 104:10310–13 [Google Scholar]
  71. Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM. 71.  et al. 2009. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 325:64–67 [Google Scholar]
  72. Navarro-Gonzalez R, Vargas E, de la Rosa J, Raga AC, McKay CP. 72.  2010. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. Planets 115:E12010 [Google Scholar]
  73. Biemann K, Bada J. 73.  2011. Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro-Gonzalez et al. J. Geophys. Res. Planets 116:E12001 [Google Scholar]
  74. Aebersold R, Mann M. 74.  2003. Mass spectrometry-based proteomics. Nature 422:198–207 [Google Scholar]
  75. Biemann K. 75.  1994. The Massachusetts Institute of Technology mass spectrometry school. J. Am. Soc. Mass Spectrom. 5:332–38 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071114-040110
Loading
/content/journals/10.1146/annurev-anchem-071114-040110
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error