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Abstract

The goal of protecting the health of future generations is a blueprint for
future biosensor design. Systems-level decision support requires that biosen-
sors provide meaningful service to society. In this review, we summarize
recent developments in cyber physical systems and biosensors connected
with decision support. We identify key processes and practices that may
guide the establishment of connections between user needs and biosensor
engineering using an informatics approach. We call for data science and deci-
sion science to be formally connected with sensor science for understanding
system complexity and realizing the ambition of biosensors-as-a-service.
This review calls for a focus on quality of service early in the design pro-
cess as a means to improve the meaningful value of a given biosensor. We
close by noting that technology development, including biosensors and de-
cision support systems, is a cautionary tale. The economics of scale govern
the success, or failure, of any biosensor system.
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1. MOTIVATION

Guided by the United Nations (UN) Sustainable Development Goals (SDGs) (1), many global
efforts are converging toward a unifying goal of ensuring a healthy planet that supports future
generations. Although the specific aim of each effort varies (see the sidebar titled One Health,
EcoHealth, Planetary Health, and International Health Share a Similar Vision), the value systems
share common features. Namely, most efforts focus on improving health and promote the need
for convergence from many different talent pools. Social systems at all scales are the driver for
a connected world. There is much reason to be optimistic that some of the problems we face
may benefit from technology-as-a-service. However, for every potential benefit of a techno-fix
(particularly at the global scale), there seems to be at least one major pitfall that may deter well-
intentioned design. OECD (Organization for Economic Co-operation and Development) nations,
often the developers of advanced technologies, comprise only about 20% of the world’s population.
Economics govern the fate of technology adoption (discussed in Sections 5-7), and unless it is
useful to 80% of the global population, the economies of scale may not be applicable.

This review focuses on one specific technology, the analytical biosensor, and the challenges
and efforts to develop sensors-as-a-service. Biosensors, and other sensor technologies such as
chemosensors, are unique in that data may be produced for any appropriate user who has access,
agnostic of the context. When coupled with appropriate decision support systems, biosensors and
other analytical tools are uniquely positioned to provide a service to society, allowing users to re-
trieve information that may not be obviously visible. However, analytical sensors are not immune
to the aforementioned technology development challenges, and the question of access (economic
and otherwise) may be one of the most pressing at the global scale. In this review, we summarize
key advancements in biosensor research, spanning from first principles to ongoing efforts posed
to connect sensor data with societal needs. Spanning the chasm between sensor data and societal
need is not trivial, and we highlight recent progress that has been made in this journey. We review
frameworks and specific tools that may be pillars needed to bridge the gap. In the next section,
the evolution of an emerging design concept in biosensing is considered as a starting point.

ONE HEALTH, ECOHEALTH, PLANETARY HEALTH, AND INTERNATIONAL
HEALTH SHARE A SIMILAR VISION

The UN SDGs are a blueprint for peace and prosperity for people and the planet into the next generations. The
mission of One Health (2), an effort initially led by veterinary medicine societies, is to attain optimal health for
people, animals, and the environment. EcoHealth (3), an effort led by the Canadian Health Agency, is similar to One

Health but values the health of aggregate systems over individuals within the system. Planetary Health (4), a concept

rooted in Norway, is focused more on human health and human social systems than the other two viewpoints, but it

still considers animal and ecological health as pillars of the ideology. Two reviews (5, 6) compare the differing views of

health and discuss similarities and nuanced differences in these value systems. The International Health Regulations
(IHRs) are spearheaded by the World Health Organization (WHO), with more than 195 signatory countries, to
build the capability to detect, assess, report, and respond to public health events. The literature describing design

concepts rooted in circular economics (7) is intertwined with global health. Taken together, these global efforts are

important drivers that contextualize the need for technologies, including biosensors.
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2. THE EVOLUTION OF RTA(D)?

Biosensor research and development is extremely diverse and depends on contributions from
many academic disciplines and commercial sectors (8). At its core, biosensing is driven by the
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The recognition-transduction-acquisition (RTA) engine is fueled by advancements in numerous disciplines
and actuated by data analytics through decision support (D). Understanding biomolecular phenomena is
critical for maintaining momentum. The evolution of decision support as a fourth design component may
open new doors.

RTA (recognition-transduction-acquisition) engine and is fueled by advancements from numer-
ous research fields. Data analytics (e.g., signal smoothing, data transformation) is pivotal to sensor
development in the acquisition (A) component. The emergence of decision support (D) as a fourth
component is driven by advancements in data analytics. To visualize this (Figure 1), recent reviews
on the state of biosensor research (9-13) were mined to create a Sankey diagram that demonstrates
the emerging RTA(D) design concept.

Figure 1 illustrates an emerging area of sensor science that is focused on decision support.
Conceptually, it is important to add a fourth pillar to the classic RTA framework, rather than
lump together decision support and acquisition. The rationale for a fourth design pillar lies in the
mathematics. Classic sensor signal processing (e.g., unstructured high-dimension data) is typically
limited to the classification of data (e.g., scoring, clustering). Modern techniques such as feature
extraction often utilize machine learning (ML) for drawing connections between sensor data and
textual (linguistic) data. The difference is subtle, but here we call for this fourth pillar in an attempt
to provide focus on outcome (i.e., the user need) and to connect foundational knowledge from
decision science with sensor science.

The following subsections briefly highlight a few key contributions, organized using the
RTA(D) pillars as guideposts. These and similar efforts, as well as the associated protocols and
methodologies, are the foundation of sensing. Without discoveries at the atomistic and human spa-
tial scales, innovation and discovery of new tools are not feasible. Evolution toward systems-level
support to serve the connected world is rooted in decision science.

2.1. Key Contributions in the Area of Biorecognition

Key contributions in biorecognition span nucleotide chemistry to protein systems and
DNAzymes. We highlight a few examples in this section.

CRISPR-Cas is now being used in biosensor development. Tang et al. (14) reviewed the ap-
plication CRISPR-Cas for analytical and diagnostic assay development, including biomolecular
processes and integration with existing sensor acquisition systems. Wan et al. (15) developed a
CRISPR/Cas-based electrochemical biosensor for pathogen screening (avian influenza A). This is
an example of convergence using established sensor platforms (carbon screen-printed electrodes)
combined with biological engineering (the CRISPR-Cas platform) for ultralow limit of detection.
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Since the discovery of SELEX (systematic evolution of ligands by exponential enrichment)
by Tuerk & Gold (16) and coining of the nucleic product as aptamer by Ellington & Szostak
(17), aptamer research has continued to grow. Sparked by the invention of slow off-rate modi-
fied aptamers (SOMAmers) (18) by SomaLogic, modification of the five nucleotide code using
phosphoramidite-like reagents as homologs expanded the capabilities of aptamers. Modified ap-
tamers are now used in many areas (e.g., therapeutics, proteomics, pathology, pharmaceuticals).
However, modified aptamers as biosensors are still rare (19).

Modified aptamers may be designed using rational (computational) design frameworks for
producing novel attributes: chemical synthesis, high affinity for one or more targets, enhanced
environmental durability, and others. Molecular origami and nanoelectronics are two fields that
directly benefit from modified aptamer research. Efforts to develop modified aptamers include
AEGIS (artificially expanded genetic information systems) (20) and others, as detailed in the
review by McKenzie et al. (21).

In addition to gene-based biorecognition approaches, key advancements in the area of protein
engineering have occurred in the last five years. One particularly exciting area of research focuses
on a naturally occurring chemically induced dimerization (CID) approach that couples molecu-
lar sensing to actuation (22). The CID system in Arabidopsis (PYR1-PP2C) was used to develop
an initial library of more than 20 sense-respond nanoactuators. The portability was compared to
other biosensor systems [enzyme-linked immunoassay (ELISA), luciferase systems, luminescence,
and transcriptional circuits]. Each of the protein sensor/actuator pairs demonstrated limits of de-
tection on the order of picomolar to nanomolar scale for cannabinoid detection. Expanded use of
the CID system for other ligand-binding systems, as well as exploring other signal transduction
systems, may be extended to explore other targets.

In the area of bioimaging, real-time tracking of the primary plant growth hormone auxin (in-
dole acetic acid) has been elusive. Herud-Sikimié¢ and coworkers (23) developed a protein-based
Forster resonance energy transfer (FRET) biosensor that facilitates visualization of auxin dy-
namics in planta. Importantly, this nano-biosensor has four key properties: (#) reversibility while
retaining quantitative signal, (b)) wide operating range, (¢) ability to target subcellular compart-
ments without the use of gene expression or protein degradation, and (d) no use of cross-reacting
metabolites. In plant biology, researchers may finally have the ability to unlock mysteries associated
with the dynamic behavior of the spatiotemporal complexity of this growth hormone.

Somewhere between nucleic acids and proteins lie recognition materials such as DNAzymes
(which follow the discoveries of Altman and Cech that RNA can function as an enzyme) (24).
McConnell et al. (25) review this biorecognition material (rational design principles, sensing
strategies). The seminal work on the discovery of Z-DNA (26-28) may also contribute future
ideas in biorecognition for sensing. In addition, protein mimetic systems such as molecular im-
printed polymers (MIPs) have made great strides since the discovery by Polyavov and expansion
by Mosbach and Gunter (see 29). Current efforts focused on nano-MIPs are greatly expanding
the existing toolkit of recognition materials (30).

2.2. Key Contributions in the Area of Signal Transduction

Transduction in biosensors is a broad field that is constantly growing, worthy of numerous
comprehensive reviews. Here, select contributions related to mobile biosensing are highlighted.
Mobile biosensing across the food, environmental, agricultural, medical, and public health do-
mains is a key mechanism if the majority of the world is the intended user [see the detailed review
by McLamore et al. (9)].

It is worth noting that the six most cited manuscripts (and 8 out of the top 10 most cited)
found when searching the key term biosensor in Web of Science are discoveries (31) or reviews
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(32) related to nanoplasmonic techniques. This speaks to the importance of techniques such as
localized surface plasmon resonance (LSPR), surface-enhanced Raman spectroscopy (SERS), and
derivations thereof. Given the popularity of this research area, several review articles in the past
five years highlight the advancements and opportunities in plasmonic sensing (31, 33, 34). One
key advantage of some plasmonic sensors over other transduction approaches is the portability.

Classic papers on impedance spectroscopy (35) and amperometry (36) still resonate with many
ongoing efforts in translation of these ideas for the development of electrochemical sensors.
The patent literature contains many examples of devices that may be traced back to these early
works (37, 38). In addition to classic electrochemical devices (e.g., ion-selective electrodes),
potentiometry has been used extensively for biosensing (39). Photoelectrochemical devices such
as light-addressable potentiometric sensors (LAPS) have been used for detection of enzymatic
products as well as biomarker detection (40). Dielectric films of MIPs for potentiometric biosens-
ing have recently been applied for detection of mycotoxins (41) and cancer biomarkers (42).
Hybrid approaches such as LAPS and MIP-coated electrodes have been shown to significantly
improve limit of detection and specificity in complex matrices, perhaps opening new doors for
potentiometric biosensing.

Some of the most exciting advancements in electrochemical sensing in the last five years are
summarized below. Damala et al. (43) developed a compensation approach similar to other self-
referencing techniques (44), whereby drift is minimized (on the order of 0.1 mV/min) and stable
recordings for up to five days are achievable in river water. This discovery could be pivotal for
potentiometric sensors that are plagued by drift issues (such as multivalent ion sensors) and may
open doors for the application of onerous ion-selective electrodes given that the approach does not
require any specialty equipment. In another key study by the Bakker group, Kraikaew et al. (45)
enhanced the constant potential capacitive technique for ion sensing by developing an autonomous
switching system. This approach allows measurement in a single solution, avoiding the necessity
of a standard reference solution in classic methods. The technique was applied in pooled serum for
analyzing sodium levels and demonstrated excellent recovery. A spin off from this same concept
led to the development of a self-powered potentiometric sensor with memory (46). Where in
classic constant-potential capacitive sensing most users are concerned about deleterious memory
effects in the capacitor, this new technique utilizes the memory as a feature of the device. After
the charging step, a single potential measurement (across the capacitor) transduces signal that
correlates with ion activity during a specified time period. The approach was used to quantify time-
resolved pH changes in river water. Taken together, these three key advancements (removing the
requirement for surface conditioning, the use of capacitive switching, and self-powering without
reliance on triboelectricity) demonstrate an electrochemical platform thatis potentially deployable
in water systems.

Exciting analytical advancements are underway in the area of magnetic impedance as a trans-
duction mechanism (13) as well as touch screen sensors. Seminal reviews by the Davis group (47)
and Wang group (48) describe touch-based systems for biometrics and small-molecule sensing, re-
spectively. Another noteworthy discovery is a new bioelectric transduction system for self-powered
human sweat sensing (49).

2.3. Key Contributions in the Area of Signal Acquisition

Signal acquisition and post-measurement analysis are the third pillar of RTA and have undergone
major changes in the last five years. Key advancements in the area of multivariate analysis and
nonlinear modeling are briefly discussed below. Many of the sensors summarized in this section
are not classically defined as biosensors, but they may offer insight, as the techniques are amenable
to other sensor systems.
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Multivariate analysis is at the heart of many analytical studies such as spectroscopy (50). In
biosensing, techniques such as the partial least squares model, Gaussian process regression, and/or
artificial neural networks are common for analyzing sensor data (51). In a recent example, Tuan
et al. (52) recently demonstrated an algorithmic approach for smart diagnostics. A deep kernel
learning model was developed in Python and implemented in a real-time monitoring system.
Sensors were used to monitor ions in a lettuce hydroponic nutrient solution. In a similar line
of work, wastewater data (unstructured) were analyzed in a cloud-based system using a soft sensor
approach by Wu et al. (53). The dissemination of open source code (GitHub) may pave the way
for similar studies.

Another area of current interest in the post hoc signal domain is the development of digital
proxies (54-56). Digital proxies require real-time sensor data (structured and/or unstructured)
that feed a statistically robust in silico model (commonly from the suite of ML tools). Recent work
has demonstrated the use of this approach for monitoring flow-through bioreactors, the protocol
and code of which are available in an open access form (57, 58). In addition, digital proxies are
under development for bioprinting (59) and mammalian cell culture (60), but to date, sensors
have not been integrated for near-real-time modeling, as promised by purported digital twins

(54).

2.4. Key Contributions in the Area of Decision Support for Sensors

The lateral flow assay (LFA) is the most common example of a device with three-tier decision
support (yes/no/inconclusive). Digitization of the data from any biosensor or biodetector allows
the exploration of quantitative data (or semiquantitative) (61) and introduces the notion of un-
certainty for the user to consider. Advancements in the area of data fusion and decision support
systems have primarily focused on algorithm development in healthcare, namely noncontact wire-
less body sensors (62). These physical sensors collect periodic measures and then coordinate data
prior to fusion. New models based on fuzzy set theory (63) may be amenable to data analysis
in biosensing. Similar frameworks were used to connect sensors to decision support systems for
coastal weather systems (64) or precision agriculture (65).

In an example of ML connected to biosensing, Rong et al. (66) developed a post hoc data analy-
sis approach for impedimetric biosensors based on protein—protein interactions. An unsupervised
support vector ML tool was applied for data analysis (in lieu of equivalent circuit analysis). This
effort aims to open new pathways toward direct sensor analysis on site to be extended by im-
proved decision support tools. An open source code and tutorial (written in English, Spanish,
Portuguese, and Mandarin) were provided in an effort to distribute the baseline tool and promote
challenges/advancement of the technique through open source sharing.

While there are limited examples to date that demonstrate biosensors directly connected to
decision support, theories of decision support are well established and have been challenged in
different levels of uncertainty (67). In a previous review, we illuminated two different model
frameworks for connecting biosensor data to decision support (68) and, in a related follow-
up review, we addressed economic issues of the sensors with embedded decision support tools
(69). As biosensors and other diagnostic tools diversify, user demand for real-time information
grows. This societal need creates opportunities to expand traditional biosensor design frame-
works by including decision science with the aim of delivering service. Sensor networks based
on RTA(D) are becoming mainstream in healthcare and are also beginning to evolve in the food,
environmental, and agricultural domains (70). For this to become a reality, a concurrent effort is
needed to establish connections between user needs and sensor engineering using an informatics
approach.

McLamore o Datta



3. IS BIOSENSOR INFORMATICS ON THE HORIZON?

The notion of biosensors as-a-service to society depends on the fusion of sensor data with other
types of metadata (e.g., data from mixed methods social science studies). Agent-based systems
facilitate status update based on correlation with new data streams, whether from sensor data or
metadata, but these systems have unique requirements in terms of data privacy/security (71). One
design feature that can overwhelm any design team working in analytics is the complexity of the
molecular phenomena coupled with device physics. If we add the complexity of the user need, this
becomes a nebulous mixture of uncertainty (71). Allen & Boulton (72) juxtapose the inevitability
of system uncertainty against the impossibility of having full knowledge as a driving force for
change. What are the processes and practices for addressing such complexity?

We may begin to unpack the complexity of biosensors-as-a-service to society by extending the
classic information hierarchy (73) and extend the model to include tools in the hidden layer that
produce data (Figure 2). In this model, the boundaries between layers of W-U-K-I-D (wisdom,
understanding, knowledge, information, data) are porous. Exchange across the boundaries is dy-
namic, albeit hierarchical. Data from sensors may transform into useful information through data
analytics (68), moving up the hierarchy from the hidden layer to the first actionable layer.

In Figure 2, the sensor-data-information foundation represents approximately 70-80% of the
system. These so-called Pareto problems (74) are where many opportunities lie for biosensor
research. Extending beyond the foundation of data-informed action (i.e., above the information
layer) may be unrealistic in the near future. Currently, extension into the knowledge domain may

Wisdom Social needs

Understanding

Information_ Data-informed action Actionable layer
°3 _

Sensors Data collection

Recognition-transduction-acquisition (RTA) engine ;‘

Figure 2

Data fusion

Hidden layer

Data analytics

The information hierarchy may be extended to include tools in the hidden layers that produce data, such as
sensors. In this model, social needs and data converge in the actionable layers to produce information. The
recognition-transduction-acquisition (RTA) engine is the underpinning of data production, but sensors
alone are not capable of action. Data analytics is the vehicle for advancing data into the actionable layer
(decision support systems, partially autonomous systems that are capable of actuation). In the diagram, the
sensor-data-information foundation (Jower three levels) represents approximately 70-80% of the system,
which we argue is where many opportunities lie for biosensor applications. Extending beyond this
foundation may be unrealistic in the near future; even extension into the knowledge domain may be a stretch
for cyber physical systems.
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be a stretch for cyber physical systems (CPSs), as fusion of knowledge networks with sensor data
has not been achieved. In the near term, if we discipline our efforts to focus on Pareto problems,
we may make important strides. Because key performance indicators (KPIs) reside within the
information layer of the hierarchy, we may begin to delineate pathways by connecting sensor
KPIs to service-oriented indices.

Meaningful use is a term used as a system metric in healthcare record curation (75, 76), where
quality of service (QoS) is the tangible outcome of medical technologies and practices. QoS has
been applied in wireless sensor networks applied in the healthcare industry through near-real-time
interaction of data using agent-based models (77-80). The dynamic nature of the agent-based
system fuses sensor data with metadata on the situational context (a feature referred to as context
awareness in the computer science literature). Yet, those QoS indicators are not common design
aspects, nor reported outcomes, for biosensor development in the literature. Thus, analytical sen-
sors designed for the connected world must modify the design approach at the most granular
level, considering the nature/ontology of sensor data, as well as contemporary issues of data pri-
vacy/security (71). This notion is intertwined with the economic principle of path dependence, as
discussed in subsequent sections.

QoS and related indicators are key to connecting sensor data with the information hierarchy
shown in Figure 2 and opening pathways toward decision support. Analytically, the addition of
QoS is merely an extension of the mixed methods approaches used in clinical studies. For example,
quantitative diagnostic tools often utilize metrics such as the Youden index (81) to report testing
efficiency. The mathematical framework for this index is rooted in calculations of percent positive/
negative agreement in an analytical context or clinical sensitivity/selectivity in the context of a
clinical trial. Calculation of the Youden index, and other similar indices, depends on sensor KPI
such as sensitivity and limit of detection. Data for calculating diagnostic indices may be nondigital,
such as LFAs (82), or digital data from technologies such as wearable sensors (83). The notion of
integrating new indices and metrics related to QoS depends on an informatic backbone, but the
idea of informatics for sensors has yet to be established within the general research communities.

Although details are beyond the scope of this review, sensor informatics (SENSICS) requires
three key types of data: materials data (e.g., metadata on material stability, toxicity), sensor KPI
data (e.g., sensitivity, limit of detection, reversibility in a given application), and user data (e.g.,
metadata on user needs, QoS metrics). Databases within the materials genome initiative (84), for
example, may satisfy the first requirement. However, databases on sensor KPIs and user experience
have not yet crystallized. Early efforts toward developing a sensor KPI database are underway (85),
but are application-specific and must be applied with caution. Recent advancements in biometrics
and touch-based sensing (47-49), as well as the emerging use of smartphones in participatory
surveys (86), could produce data for the third requirement. Analytical sensing researchers would
benefit from focused efforts on building high-quality data sets for each of these three domains
related to SENSICS.

The notion of connecting these three information nodes is a major challenge. The hetero-
geneity, distribution, and aberrant veracity of the data from users and sensor developers are in
sharp contrast to the highly structured field of materials informatics, making integration a diffi-
cult proposition. The pieces of the puzzle are known (data on materials, sensors, and users), but
the relationship among and within each component remains elusive. Moving forward, these re-
lationships may be explored using knowledge graph theories (87) (see the sidebar titled Graph
Theoretic Approaches).

Biosensor data, considered in isolation, are agnostic to change(s) in current status, but interpre-
tation of the data and extraction of meaningful value are not. Agent-based systems are capable of
correlating new(er) information with prior information for drawing inference based on established
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GRAPH THEORETIC APPROACHES

Graph theoretic approaches are key for search and discovery of data and information, facilitating relational analysis
and knowledge discovery. Knowledge graphs are one tool from graph theory and have five key elements: () an
entity may have multiple entity types; () relationships between a pair, or pairs, of entities have associated labels;
(c) entities may have more than one interrelationship; (4) an entity may possess different values of a single attribute;
and (e) entity types are defined by a hierarchical ontology (88). Examples applied to material science are emerging.
By using relationships between materials and their properties, which may be organized as graphs with edges and
nodes, Tshitoyan et al. (89) developed a methodology that may lend itself to exploring non-obvious relationships
by noting an entity relationship mode that remains the bread and butter of context awareness. Developing and
implementing knowledge graph tools may aid in unleashing new ideas, reveal unknown features, and enable context-
aware knowledge discovery.

logic networks. Contextualization of the problem in a given space and time may alter the nature
of the need and therefore modify the data integration step prior to feature engineering. This il-
lustrates the need for a robust biosensor KPI database not limited to claims of superior sensitivity
and limit of detection. To realize these ambitions, a data warehouse that promotes robust testing
of analytical devices in controlled and uncontrolled conditions is required. If such an informatics
database is developed using an open science framework, associated repositories may provide the
key evidence needed for optimizing QoS from numerous biosensor systems to enact SENSICS.

4. KNOWLEDGE GRAPHS AS A TOOL FOR DECONSTRUCTING
COMPLEXITY

Digitization of information is not a new concept. The idea of atoms to bits (A2B) predates the
invention of the computer (90). Underneath many of these concepts and metaphors lie graph
networks, which are ML paradigms that support relational reasoning and combinatorial general-
ization. Liu & Sun (91) provide a tutorial review of ML, focusing on the fundamental principles
and applications of data classification or clustering, as well as use of ML for in silico models, ratio-
nal design of biomaterials, or molecular computing. In addition, ML may also play an important
role in retroactive analysis, particularly when validating data with ground truth (92).

Knowledge graphs are process-oriented diagrams that show the mechanism for nonhuman
computer systems to understand relationships between entities, objects, processes, people, and
things (93). Relationships between entities are critical in the context of making decisions and thus
necessary to develop biosensors that aim to provide decision support. The resource description
framework (RDF) is a general method for description and exchange of graph data based on princi-
ples of linguistics (noun, verb, subject, predicate). When data are mapped against an RDF ontology,
instances of the data are expressed based on the idea of making statements about resources in the
form of triples [using RDF terminology (94)]; see Figure 3 for an example. RDF triples, despite
their shortcomings and potential for linguistic bias, enable the formation of association(s) be-
tween two or more objects by linking a series of relationships but with the distinct disadvantage
that knowledge graphs do not address causality. The latter makes knowledge graphs only as useful
as the facts as known to the creator (programmer) but without any intelligence whatsoever.

Knowledge graphs are the basis for ideas in ubiquitous connectivity, where networks of knowl-
edge graphs can form the foundation linking objects and things in the context of an internet of
things (IoT). IoT is a digital design metaphor that may be viewed as a subset of CPSs. Mayer
& Baeumner (70) review potential analytical sensors through 2018 and call for an internet of
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analytical things for service in the areas of agriculture, food production, and healthcare, among
other applications. The acquisition, analysis, and communication of processed data form the basis
for an internet of analytical things. In the four years since their review, progress has been made in
expanding this concept beyond what we denote below as the sensing and decision layers.

The knowledge network in Figure 3 illustrates one example for connecting user query with
decision support in a biosensing application. The graph network demonstrates an example of
relational data that is a service as part of a larger system-of-systems. The sensing layer knowledge
graph is the comfort zone for many research labs working in sensor development. In this isolated
layer, a problem has been previously contextualized, which is used to inform the design and testing
of a biosensor using the RTA framework. KPIs are the outcome of this layer (sensitivity, limit of
detection, etc.). To interact with other metrics of the system, analytical outcomes (KPIs) must
interface with other layers of the knowledge network. For example, KPIs may interact with QoS
in the query layer and decision layer. This illustrates the importance of upstream activities in
relation to sensor data (context of the query, tool discovery) and downstream processes (type of
decision support requested). Further, feedback loops shown in the diagram illustrate the complex
relational analysis.

Examples of recent progress contributing to the framework in Figure 3 include the develop-
ment of a proof-of-concept tool discovery layer (85) as well as artificial reasoning tools for control
of water pumps (95) or traffic light decision support (96). This knowledge graph diagram pro-
vides a single example of a proof-of-principle for a more complex system and is not intended to
represent the complexity of analytical and social sciences.

Figure 4 diagrams one conceptual cyber physical decision support system applied for the
detection of target(s) called for by current societal needs. In the example, hidden and actionable
layers fuse sensor data (Figures 2 and 3) via agent-based systems using standards such as the RDF
triplet, among numerous others. If integrated with appropriate cybersecurity, the sensor plus
decision support system may be capable of carrying out such agent-driven tasks, as depicted in
Figure 4 (71). On first inspection, the approach in the figure may seem intuitive, but for current
digital systems, the absence of causal architecture makes it difficult to select what is relevant,
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The key driving force for development of a future cyber physical system (CPS, represented by the Venn
diagram in the center) may be a focus on ensuring the health and welfare of future generations. Agent-based
systems (two-way arrows) are key to CPS data fusion, including bidirectional response (green arrows) and
reporting (gray arrows) as shown. Citizen science and open science are pathways and processes that have the
potential to connect CPSs with people. The four pillars of the World Health Organization’s International
Health Regulations are shown in white text. Target detection and context-aware assessment (innermost circle)
occur within the CPS domain, where reporting and response are integrated into decision support systems
based on agent-based systems.

relative to the semantic context, and to connect distributed data with the aim of extracting
information that aids decision making or executing action(s). Embedding knowledge systems
from the social component (see top of Figure 2) is a complex and uncertain task for any CPS (see
Sections 5 and 6). This is the rationale for using RDF triples as a poor but only available substitute
for knowledge nodes (see the sidebar titled RDF Triples). RDF is a machine-readable standard
based on principles of linguistics. Despite the absence of causality and lack of semantics, as well
as other shortcomings and the potential for linguistic bias from RDE, graph networks spanning
the hidden and actionable layers of the information hierarchy may be viewed as a crude archi-
tectural framework formed to link a series of relationships in a manner similar to the example in
Figure 4.

RDF TRIPLES

The resource description framework (RDF) standard is a general model of entities (nodes) and relationships. When
data are mapped against an RDF ontology, instances of the data are expressed based on the idea of making statements
about resources in the form of subject—predicate—object expressions. The linguistic application upon which RDF
was established is intuitive, albeit incomplete. Interestingly, the RDF ontology is applicable to multi-sensor data as
well as the metadata described herein. In this ontology, the subject denotes the object, and the predicate denotes
a single semantic trait or aspect of the object that can be a literal value or expressed as a relationship between the
subject and another object that is the target of the relationship. See knowledge network graph in Figure 3 for an

example specific to the combination of a user query and a sensor plus decision support system.
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Contributions in the area of data analytics, rational design, and molecular computing (91) fuel
the development of next-generation systems required for the example process flow (from user
query to decision support outcome) shown in Figures 3 and 4. Workflows in these diagrams were
based on the QUDE (quantifying uncertainty in data exploration) system (97). In the QUDE
model, data extraction, integration, and processing from various data sources converge through
a feature extraction filter, leading to a knowledge graph network. Feature extraction is key to
efficient decision support systems and is paramount for agent-based systems. QUDE tracks un-
certainty through the workflow in an attempt to minimize algorithmic bias as system complexity
increases.

As reviewed in Sections 2—4, the frameworks and skillsets are in place to propel the field of
biosensors toward systems-level support. However, this optimism is a cautionary tale. Technology
mistranslation (98, 99) and low adoption, coupled with the known ethical problems of ML (100)
and misuse of black box models for high stakes decisions (101), are a few of the obstacles we face
for realizing the concept of sensors-as-a-service to society. An overarching question first raised in
Section 1 is: Do these technologies deliver a service to meet at least 80% of certain societal needs?

In the next section, we discuss the opportunities and challenges for developing analytical
biosensors and decision support systems viewed through the lens of this challenging question.

5. OPPORTUNITIES FOR BIOSENSING-AS-A-SERVICE

The goals of the SDGs and associated global health efforts are a blueprint that could define biosen-
sor research and development. Using biosensors as a boundary object, convergence of the goals
listed in the first sidebar may be formalized in the following summary statement: Future biosen-
sors may focus on ensuring the health and welfare of future generations of people, animals, and
environment by detection, assessment, reporting, and response. As summarized below, each of the
four tasks in this summary statement interacts through a CPS (Figure 4).

5.1. Opportunities in Analytical Biosensing

One key opportunity for analytical biosensing is the improved understanding of controlled actu-
ation. Actuation of sensor systems requires the design of RTA processes that have more than one
state (where the state may be physical and/or cyber). Examples of multistate biosensor systems
have been demonstrated. For example, polymer-DNA nanobrush systems that physically actu-
ate were developed for detecting bacteria in food systems (102, 103). In this system, nanobrush
hydrogels were actuated using either thermal-responsive or pH-responsive polymers. This was
recently extended by integrating a cyber-actuation control system for liquid pumping (connect-
ing macroscale cyber actuation with nanoscale actuation) (96). This system demonstrates the basic
ability to partition multistate biosensor signals from the response in combination with partially
autonomous actuation of simple control features. In another example of multistate systems to
build from, de novo protein switches have been developed as biosensors (104). The aim of this
approach is also to auto-actuate, but this new biosensor system has room to grow in terms of sen-
sitivity and repeatability. Realization of multistate actuating systems, in whatever modality, may
improve testing accuracy by minimizing false positives/false negatives (i.e., improving the Youden
index) (105). If actuating systems are improved in a manner that allows us to partition signals with
tight control of material-scale actuation, we may improve our understanding of RTA causality (71)
when testing complex media.

Development of actuating biosensors using mature technology platforms may expedite the
development of systems that possess detection, assessment, reporting, and response features.
Use of mature platforms improves the likelihood that developed sensor systems are amenable
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to use in centralized analytical facilities and as decentralized applications (e.g., point of care,
point of need, point of use). Example platforms include wearables, screen-printed electrodes,
cage systems such as metal-organic frameworks (MOFs), and laser-induced graphene (LIG) de-
vices. Numerous reviews detail the current state-of-the-art for wearables applied in biosensing
(106, 107), including self-powered devices (108) and biosensors that are used in theranostic
applications (109). Singh et al. (110) recently reviewed the market status of screen-printed
electrodes (including multilayered inks and nanomodifiers). Both wearable biosensors and screen-
printed bioelectronics/biosensors will likely continue to grow in the future, as discussed in recent
reviews.

Chemical cages such as MOFs may become potentially transformative as a biosensor platform
to trap/release molecules on demand (111). This multistate platform is amenable to hybridiza-
tion with biomaterials including aptamers, peptides, and other biomacromolecules (112, 113). A
similar material, deemed nanocontainers, is a polymeric structure that combines some attributes
of MIPs and MOFs as a multistate platform (114). One theoretical advantage of multistate plat-
forms in point-of-use sensor systems is the ability to differentiate between false positives and false
negatives. Using a two-sensor system with two states fortifies the result (outcome). For example,
the hACE2 SARS-CoV-2 biosensor may test positive for spike protein in saliva, as demonstrated
by Moreira et al. (115). If this biosensor were expanded to be used in a multiplexing format to-
gether with a lectin biosensor for the spike glycoprotein, a negative test may be observed due
to the presence of a glycan shield. Using such a multiplex/multistate approach, the probabil-
ity of a false positive would be higher. If both sensors were positive [spike(+); glycan(+)], then
the credibility of the positive result would be much higher (nonzero probability of a false pos-
itive) and vice versa. It is worthy of future research to explore whether one could add/subtract
molecules in the same testing microenvironment using MOFs, nanocontainers, or as demonstrated
in the microRNA vaccine, lipid micelles. This raises the questions of whether chemical cages or
molecular Hoberman spheres could enable differential molecular diagnostic tools/devices to en-
hance strength of decision support systems at the point of use. There is much opportunity in
creatively transforming principles into practice based on the fundamental disciplines of analytical
chemistry.

Since its discovery nearly 10 years ago (116), LIG has quickly become a competitive/mature
platform for biosensing. LIG is amenable to printing using laboratory-grade laser equipment (117)
or low-cost laser equipment (118, 119). One important feature of LIG is the ability to directly
print/embed microfluidics during fabrication (120) or use single transfer techniques (121). The
platform has been used for a multitude of diverse biosensing applications, including aptasensors
for small molecules and proteins (122, 123), impedimetric or capacitive biosensors for pathogens
(115, 124), cell electrophysiology (125), amperometric biosensing for small molecules (119, 126),
and multiplexing devices (127), for example. Numerous protocols are available for the reliable
manufacture of LIG electrodes (117, 128). This platform is currently being extended to include
actuating systems in addition to many other biosensor systems.

In addition to advances in control systems, the type of material selected for a study is equally
important. If preservation of a system for future generations is a goal, the use of sustainable mate-
rials for technology development is a key requirement. The basic requirements for development
of a technology using sustainable material are well known (129), but as Kirchherr (130) notes,
many of the published works on the topic of sustainability may detract from the goal of the SDGs
and related efforts. Rather than advocate for a single material in this review, we instead note that
the use of sustainable materials and techniques in the development of any technology is a design
choice, not a post facto feature. The peer reviewed literature on this topic is growing rapidly, as
reviewed recently (131, 132).
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5.2. Opportunities for Decision Sciences

Building from the previous section, some key opportunities in decision science related to
biosensing are proposed here. We highlight opportunities in informatics and tool development,
frameworks for connecting sensor data with decision support, and the inclusion of uncertainty in
decision support.

Use of ML in material informatics (133) is now a commonplace approach for in silico mod-
els that facilitate rapid predictions of material behavior (particularly for observed behaviors that
are difficult to quantify experimentally). For example, Jensen & Lewinski (134) used ML de-
scriptors to identify candidate green materials for nanoparticle synthesis within the guidelines
of holistic sustainability assessment. Section 3 introduced SENSICS as a new area of growing
interest/need for developing sensors-as-a-service. Key opportunities that may be accomplished
in the near term include development of a connected (#) open source data glossary, (b) repos-
itory of biosensor KPIs, and (¢) tool discovery protocols. First, the biosensing community has
in place an open source data glossary that was updated in 2019 (135), but the research com-
munity interested in coupling sensors with decision support would benefit from an updated list
and access to the repository through open science protocols so that tool discovery procedures
may interface with a standard (unifying) data glossary. Second, biosensor researchers lack an
open source database where common data elements such as KPIs are stored and available for
analysis by the data science community. For example, open access databases such as the RADx-
rad data coordinating center managed by the US National Institutes of Health developed such
a database for collecting data on research projects focused on rapid diagnosis of COVID-19.
This database collects KPIs from more than one dozen biosensor projects that contribute to
developing the data dictionary. If similar (application-specific) biosensor KPI databases were es-
tablished, data-informed trends could be established by mining the publicly available data. Third,
protocols that aim to match user questions (i.e., societal need) with biosensor capabilities are
emerging (94). Tools such as this complement commercial efforts by identifying users that may
benefit from services available in local educational institutions (e.g., agricultural extension ser-
vices in the United States or other similar institutional service programs). Early proof-of-concept
in tool discovery has been established (85), but there is much opportunity to advance the work
and integrate feedback loops between users, tool designers, and sensor data. For each of these
three opportunities, open science principles are in place to govern many aspects of such an
approach (see next section). These ideas depend on a few key steps that would benefit from in-
put from the larger biosensor community working together (perhaps across existing scientific
societies).

Working at the interface of the hidden layer and actionable layer shown in Figure 2 may also
be achievable in the near term. At a minimum, three-tier decision support (yes/no/inconclusive)
should be the testing outcome of all CPSs, regardless of the type and veracity of sensor data.
LFA, the point-of-need biosensor that dominates the current market (136), contains this type of
decision support in a visual output. In most cases, LFAs are standard for point-of-need biosensors,
where polymerase chain reaction is the gold standard for comparison of analytical performance.
The decision support provided by LFAs is a baseline level of decision support for new biosensor
systems. For some problems, quantitative data and advanced decision support systems are required.
In this instance, decision systems that address uncertainty of testing outcome are a key opportunity
for research (e.g., agent-based systems) (68). Development of connected architecture for linking
data nodes shown in Figure 3 has been published in the academic literature (94) but needs to be
field tested and challenged under dynamic conditions while considering uncertainty.

McLamore o Datta



5.3. Systems-Level Opportunities

Citizen science and open science are pathways and processes that have the potential to connect
technology with people (Figure 4). If communication with social systems is a goal, this is a key
avenue by which the connection may be realized. Although the two are tightly intertwined, the
purpose of separating the discussion is to focus on the outcome. In this review, citizen science
focuses on the activities that nonexperts conduct as a component of the biosensor research and
development pipeline (from ideation to sampling and data collection/analysis). Open science, as
discussed here, is broader in scope and may or may not include the participatory action of citizen
scientists.

Citizen science is an opportunity that can expand the user pool by establishing decentral-
ized analytical testing/diagnostic activities which augment the standard testing. One successful
approach in citizen science is based on voluntary sample donation (137). Another angle on citi-
zen science is to consider engaging active participants in the sampling, testing, and data analysis
pipeline using a more active approach (138). Engaging citizen scientists in the analytical pipeline
process has been successful in ecology, marine sciences, and environmental studies (139-144), but
it comes with challenges in terms of data privacy and willingness to share data. Further upstream,
engaging users in the development of biosensors may resolve some potential unseen problems, as
shown by the Citizen Sensing project (145).

Although there is much interest in open science efforts (including citizen science), trust net-
works between scientists and citizen scientists are lacking. There is a great opportunity for research
efforts aimed at these trust networks as well as the interaction among testbed networks that span
medicine, food, agriculture, and the environment. For improving sensor data veracity, frameworks
for open science protocols could be used. Existing frameworks have been established in cancer
biology (146) and social psychology (147), among other examples. Confidence assessment is a
growing research area in open science (137) and may drive development of biosensor-specific
efforts, if connected with KPIs and QoS. Another opportunity in the area of biosensor data ve-
racity is early engagement with peer review (whether by experts or nonexperts), which is known
to improve translation of scientific findings (148). Examples of open science that are relevant to
biosensors include the open-source platform Fiji (149), GAMESS (general atomic and molecular
structure system) (150), and simple tools such as the multilanguage data analysis tutorial by Rong
et al. (66), currently being used by citizen science to process biosensor data in the field.

Biosensors that are designed as a service to society may be disruptive in today’s technology
market. Seminal papers by David (151, 152) are the foundational work in economics remind-
ing us that technology developers must question whether path dependence is driving research.
Path dependence states that early design decisions constrain later events such as sensor capa-
bilities/performance in a non-reversible manner. If technology markets have a tendency toward
monopoly (153), the field of biosensors is in need of disruptive approaches. Designing for high
value to stakeholder(s) early in the design process is the most logical mechanism to avoid path
dependence and ensure devices contribute toward the goals of the SDGs or other related efforts
such as the IHRs. Establishing a specific definition of meaningful use (75, 76, 154) in the context
of the specific problem may be one place to initiate the design, rather than including these eco-
nomic and social aspects as an afterthought during marketing. Use of informatics approaches to
connect design intention(s) to user need through a KPI-QoS pipeline may be a first step toward
biosensors-as-a-service for a connected world.

6. SUMMARY OF CHALLENGES

We highlight major challenges in each of the categories defined and contextualized in the previous
sections. Additional references are provided when appropriate.
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In analytical science, these challenges include (#) maintaining KPIs (e.g., high analytical sensi-
tivity) while also using non-toxic materials, as reviewed by Wongkaew et al. (155); (b) the ability
to partition signals in complex a matrix; and (¢) digital biosensors that compete with LFA and/or
nucleic acid amplification in diagnostic trials.

In decision science, the challenges are (#) causal architectures that connect distributed data to
extract information from sensor(s) and social component(s), ()) development of a sensor infor-
matics (SENSICS) ontology that supports data from various sources (materials, sensor KPIs, user
data), and (¢) including data storage (144, 156) and privacy.

On a systems level, the challenges are (#) establishing a unifying framework for ensuring mean-
ingful use of biosensor data-as-a-service by international communities such as the International
Union of Pure and Applied Chemistry, () breaking the path dependence of biosensors through
disruptive approaches, and (¢) establishing trust networks within analytical testbeds that span
medicine, food, agriculture, and the environment (i.e., One Health).

7. CLOSING THOUGHTS

The UN’s SDGs, WHO’s IHRs, and related efforts are a blueprint for the future design of biosen-
sors aiming to protect the health of future generations. Connecting many devices through a
unifying platform may provide the foundation for a connected biosensor world. Granular research
on biomolecular mechanisms and/or signal transduction is the foundation for acquiring data, and
decision science applied to biosensor data is an emerging research space for pragmatic use. Data
from sensors will continue to evolve based on the nature of use cases. This is, justifiably, the key
focus of the user community. Sensor data and the information from such data must provide ac-
tionable value for the end user. This view is important for the implementation and adoption of
biosensor systems but incomplete in terms of what we can learn about the systems that the sensors
are probing.

Key questions will drive the future of the research field. For example, identifying one patient
with a biosensor for the likely presence/absence of SARS-CoV-2 delivers a solution for that in-
stance, that individual, and that diagnosis. When viewed collectively, these data are crucial to
understanding the spread of disease and transmissibility and demographics of the infection. The
collective view (epidemiology) is a higher level of analysis that can help a greater number of people.
The future of biosensor data science needs an epidemiological perspective. With the increasing
volume of data, it is likely that certain structures of data may begin to emerge. Lowest common
denominators describing a given application (metadata) may facilitate emerging frameworks for
complex systems (such as environmental sustainability) to obtain a higher level view of the field
(157). Along these lines, the biosensor community may benefit from considering not only analyt-
ical performance metrics but also how data contribute to produce information related to (#) the
incidence (i.e., unique sample) from which data are extracted, (b) the distribution of this incident
in a larger population of samples, and (¢) possible remedy/control strategies that result from the
information (see Figures 2 and 3).

To meet the need outlined in Section 1, we must ask: Are these technologies useful for 80%
of the world? An epidemiological perspective may be a foundation upon which to build next-
generation technologies, but an economics of scale is critical if the analytical solutions are to have
societal value. Seminal papers by David (151, 152) are the foundational work in economics remind-
ing us that technology developers must question whether path dependence is driving research. If
technology markets have a tendency toward monopoly (153), the field of biosensors is in need of
disruptive approaches to contribute toward the goals of the SDGs, IHRs and related efforts. De-
vices that are designed ab initio as a service to society may be that disruptive approach in today’s
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technology market. The specific definition of meaningful use (75, 76, 154) in the context of the
unique challenge may be one place to initiate design for meaningful use, and efforts to contextu-
alize the problem(s) with linguistics and computer science may play a role. Connecting designer
intentions to user need(s) through a KPI-QoS pipeline via sensor informatics may be a first step
toward biosensors-as-a-service for a connected world.

1. Goals aimed at protecting the health of future generations (e.g., UN Sustainable Devel-
opment Goals, International Health Regulations, One Health) may serve as a blueprint
for future biosensor design.

2. Integration of societal needs into the biosensor design framework is paramount for
achieving biosensors-as-a-service.

3. Sensor informatics (SENSICS) is an emerging concept that may facilitate information
arbitrage and optimize design of cyber physical systems that aim to connect societal
needs with data-informed action.

4. Data science and decision science should be connected with sensor science early in the
design process, rather than after the analytical device is developed.

5. Agent-based systems are key to fusion of sensor data with other metadata, including
bidirectional response and reporting.
6. Key opportunities and challenges were identified in three areas: analytical sciences,

decision science, and systems-level interactions.

7. Biosensor testing modalities are expanding to include decentralized approaches, which
may dovetail with best practices in open science for achieving success at a large scale.

1. A future review should focus on the four-way nexus where computer science, statistics,
probability, and information theory converge.

2. The field would benefit from a review that highlights and champions analytical
technologies (e.g., biosensors) geared toward non-OECD nations.
3. A review should focus on data science advances for sensor data acquisition and decision

support (e.g., agent-based systems for biosensors).

4. A review that explores the societal value of sensor analytics as a point solution (i.e., dis-
connected, stand-alone output such as a lateral flow assay) is needed. Along these lines,
the review could also explore the value of aggregated data when viewed as a swarm of
events.
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