1932

Abstract

There is a remarkable diversity in the animal kingdom regarding mechanisms underlying the production, maturation, structure, and function of sperm cells. Spermatology studies contribute to the knowledge of species diversity and also provide information about individual or population fitness. Furthermore, this fundamental research is required before collected spermatozoa can be used for conservation breeding, including assisted reproduction and cryobanking. This article aims to () review the most recent knowledge on sperm morphology and function in wild animal species, () analyze how this knowledge can be used to save species in their natural habitat or ex situ, and () propose future scientific directions in wildlife spermatology that could positively impact animal conservation. Variations in sperm structure and performance within and between species have multiple origins and significance. This collective body of knowledge enables the design and implementation of conservation strategies and action plans that integrate several disciplines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-020420-040600
2022-02-15
2025-01-08
The full text of this item is not currently available.

Literature Cited

  1. 1. 
    Williams BA, Watson JEM, Butchart SHM, Ward M, Brooks TM et al. 2020. A robust goal is needed for species in the Post-2020 Global Biodiversity Framework. Conserv. Lett. 14:3e12778
    [Google Scholar]
  2. 2. 
    Comizzoli P, Brown JL, Holt WV. 2019. Reproductive science as an essential component of conservation biology: new edition. Adv. Exper. Med. Biol. 1200:1–10
    [Google Scholar]
  3. 3. 
    Comizzoli P, Holt WV. 2019. Breakthroughs and new horizons in reproductive biology of rare and endangered animal species. Biol. Reprod. 101:3514–25
    [Google Scholar]
  4. 4. 
    Wildt DE, Comizzoli P, Pukazhenthi B, Songsasen N 2010. Lessons from biodiversity—the value of nontraditional species to advance reproductive science, conservation, and human health. Mol. Reprod. Dev. 77:5397–409
    [Google Scholar]
  5. 5. 
    Holt WV, Brown JL, Comizzoli P. 2014. Reproductive science as an essential component of conservation biology Adv. . Exper. Med. Biol. 753:3–14
    [Google Scholar]
  6. 6. 
    Herrick JR. 2019. Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod. 100:51158–70
    [Google Scholar]
  7. 7. 
    Birkhead TR, Montgomerie R 2009. Three centuries of sperm research. Sperm Biology: An Evolutionary Perspective TR Birkhead, DJ Hosken, S Pitnick 1–42 London: Academic
    [Google Scholar]
  8. 8. 
    Wildt D, Pukazhenthi B, Brown J, Monfort S, Howard J, Roth T 1995. Spermatology for understanding, managing and conserving rare species. Reprod. Fertil. Dev. 7:4811–24
    [Google Scholar]
  9. 9. 
    Le Blévec E, Muroňová J, Ray PF, Arnoult C 2020. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization. Mol. Cell. Endocrinol. 518:110964
    [Google Scholar]
  10. 10. 
    Spindler R, Keeley T, Satake N 2014. Applied andrology in endangered, exotic and wildlife species. Animal Andrology: Theories and Applications P Chenoweth, S Lorton 450–73 Wallingford, UK: CABI
    [Google Scholar]
  11. 11. 
    Temple-Smith PD, Ravichandran A, Nunez FEH 2018. Sperm: comparative vertebrate. Encyclopedia of Reproduction, Vol. 6 Comparative Reproduction, ed. P Swanson, MK Skinner 210–20 Oxford, UK: ElsevierA very well-documented review illustrating the differences in vertebrate species.
    [Google Scholar]
  12. 12. 
    Roldan ERS, Teves ME. 2020. Understanding sperm physiology: proximate and evolutionary explanations of sperm diversity. Mol. Cell. Endocrinol. 518:110980An excellent analysis of spermatology with an interesting prospect.
    [Google Scholar]
  13. 13. 
    Brown JL. 2018. Comparative ovarian function and reproductive monitoring of endangered mammals. Theriogenology 109:2–13
    [Google Scholar]
  14. 14. 
    Brown JL. 2014. Comparative reproductive biology of elephants. Adv. Exp. Med. Biol. 753:135–69
    [Google Scholar]
  15. 15. 
    Lemos LS, Olsen A, Smith A, Chandler TE, Larson S et al. 2020. Assessment of fecal steroid and thyroid hormone metabolites in eastern North Pacific gray whales. Conserv. Physiol. 8:1coaa110
    [Google Scholar]
  16. 16. 
    Sugianto NA, Dehnhard M, Newman C, Macdonald DW, Buesching CD. 2021. A non-invasive method to assess the reproductive status of the European badger (Meles meles) from urinary sex-steroid metabolites. Gen. Comp. Endocrinol. 301:113655
    [Google Scholar]
  17. 17. 
    Della Togna G, Trudeau VL, Gratwicke B, Evans M, Augustine L et al. 2017. Effects of hormonal stimulation on the concentration and quality of excreted spermatozoa in the critically endangered Panamanian golden frog (Atelopus zeteki). Theriogenology 91:27–35
    [Google Scholar]
  18. 18. 
    Zainuddin ZZ, Sipangkui S, Farqhan Kelana M, Chee YK, Tarmizi MRM, Comizzoli P 2021. Repeated evaluations of testes and semen characteristics in two binturongs (Arctictis binturong). Front. Vet. Sci. 8:658573
    [Google Scholar]
  19. 19. 
    Kouba AJ, Lloyd RE, Houck ML, Silla AJ, Calatayud N et al. 2013. Emerging trends for biobanking amphibian genetic resources: the hope, reality and challenges for the next decade. Biol. Conserv. 164:10–21
    [Google Scholar]
  20. 20. 
    Martínez-Pastor F, Álvarez M, Guerra C, Chamorro CA, Anel-López L et al. 2019. Extender osmolality, glycerol and egg yolk on the cryopreservation of epididymal spermatozoa for gamete banking of the Cantabric Chamois (Rupicapra pyrenaica parva). Theriogenology 125:109–14
    [Google Scholar]
  21. 21. 
    Comizzoli P. 2015. Biobanking efforts and new advances in male fertility preservation for rare and endangered species. Asian J. Androl. 17:4640–45
    [Google Scholar]
  22. 22. 
    Pudney J. 1995. Spermatogenesis in nonmammalian vertebrates. Microsc. Res. Tech. 32:6459–97
    [Google Scholar]
  23. 23. 
    Yoshida S. 2016. From cyst to tubule: innovations in vertebrate spermatogenesis. Wiley Interdiscip. Rev. Dev. Biol. 5:1119–31
    [Google Scholar]
  24. 24. 
    Devigili A, Fitzpatrick JL, Gasparini C, Ramnarine IW, Pilastro A, Evans JP 2018. Possible glimpses into early speciation: The effect of ovarian fluid on sperm velocity accords with post-copulatory isolation between two guppy populations. J. Evol. Biol. 31:166–74
    [Google Scholar]
  25. 25. 
    Foster SJ, Vincent ACJ. 2004. Life history and ecology of seahorses: implications for conservation and management. J. Fish Biol. 65:11–61
    [Google Scholar]
  26. 26. 
    Avidor-Reiss T, Zhang Z, Li XZ. 2020. Editorial: sperm differentiation and spermatozoa function: mechanisms, diagnostics, and treatment. Front. Cell Dev. Biol. 8:219
    [Google Scholar]
  27. 27. 
    Hodgson AN. 1986. Invertebrate spermatozoa—structure and spermatogenesis. Arch. Androl. 17:2105–14
    [Google Scholar]
  28. 28. 
    Johnson L. 1995. Efficiency of spermatogenesis. Microsc. Res. Tech. 32:5385–422
    [Google Scholar]
  29. 29. 
    Johnson L, Varner DD, Roberts ME, Smith TL, Keillor GE, Scrutchfield WL. 2000. Efficiency of spermatogenesis: a comparative approach. Anim. Reprod. Sci. 60–61:471–80
    [Google Scholar]
  30. 30. 
    van der Horst G, Maree L, Kotzé SH, O'Riain MJ. 2011. Sperm structure and motility in the eusocial naked mole-rat, Heterocephalus glaber: A case of degenerative orthogenesis in the absence of sperm competition?. BMC Evol. Biol. 11:351
    [Google Scholar]
  31. 31. 
    van der Horst G, Maree L. 2014. Sperm form and function in the absence of sperm competition. Mol. Reprod. Dev. 81:3204–16
    [Google Scholar]
  32. 32. 
    Swanson WF, Johnson WE, Cambre RC, Citino SB, Quigley KB et al. 2003. Reproductive status of endemic felid species in Latin American zoos and implications for ex situ conservation. Zoo Biol. 22:5421–41
    [Google Scholar]
  33. 33. 
    Wolf KN, Wildt DE, Vargas A, Marinari PE, Kreeger JS et al. 2000. Age-dependent changes in sperm production, semen quality, and testicular volume in the black-footed ferret (Mustela nigripes). Biol. Reprod. 63:1179–87
    [Google Scholar]
  34. 34. 
    Martinez G, Garcia C. 2020. Sexual selection and sperm diversity in primates. Mol. Cell. Endocr. 518:110974
    [Google Scholar]
  35. 35. 
    Van Look KJW, Dzyuba B, Cliffe A, Koldewey HJ, Holt WV. 2007. Dimorphic sperm and the unlikely route to fertilisation in the yellow seahorse. J. Exp. Biol. 210:3432–37
    [Google Scholar]
  36. 36. 
    Mayer I. 2019. The role of reproductive sciences in the preservation and breeding of commercial and threatened teleost fishes. Adv. Exper. Med. Biol. 1200:187–224
    [Google Scholar]
  37. 37. 
    Cosson J. 2019. Fish sperm physiology: structure, factors regulating motility, and motility evaluation. Biological Research in Aquatic Science Y Bozkurt London: IntechOpen
    [Google Scholar]
  38. 38. 
    Dzyuba V, Ninhaus-Silveira A, Kahanec M, Veríssimo-Silveira R, Rodina M et al. 2019. Sperm motility in ocellate river stingrays: evidence for post-testicular sperm maturation and capacitation in Chondrichthyes. J. Zool. 307:19–16
    [Google Scholar]
  39. 39. 
    Nixon B, Anderson AL, Bromfield EG, Martin JH, Cafe SL et al. 2021. Post-testicular sperm maturation in the saltwater crocodile Crocodylus porosus: assessing the temporal acquisition of sperm motility. Reprod. Fertil. Dev. 33:9530–39
    [Google Scholar]
  40. 40. 
    Della Togna G, Gratwicke B, Evans M, Augustine L, Chia H et al. 2018. Influence of extracellular environment on the motility and structural properties of spermatozoa collected from hormonally stimulated Panamanian Golden Frog (Atelopus zeteki). Theriogenology 108:153–60
    [Google Scholar]
  41. 41. 
    Hagedorn M, Ricker J, McCarthy M, Meyers SA, Tiersch TR et al. 2009. Biophysics of zebrafish (Danio rerio) sperm. Cryobiology 58:112–19
    [Google Scholar]
  42. 42. 
    Nixon B, De Iuliis GN, Hart HM, Zhou W, Mathe A et al. 2019. Proteomic profiling of mouse epididymosomes reveals their contributions to post-testicular sperm maturation. Mol. Cell. Proteom. 18:S91–108
    [Google Scholar]
  43. 43. 
    Rowlison T, Cleland TP, Ottinger MA, Comizzoli P. 2020. Novel proteomic profiling of epididymal extracellular vesicles in the domestic cat reveals proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals. Mol. Cell. Proteom. 19:122090–103
    [Google Scholar]
  44. 44. 
    Druart X, de Graaf S. 2018. Seminal plasma proteomes and sperm fertility. Anim. Reprod. Sci. 194:33–40
    [Google Scholar]
  45. 45. 
    Anel-López L, Ortega-Ferrusola C, Martínez-Rodríguez C, Álvarez M, Borragán S et al. 2017. Analysis of seminal plasma from brown bear (Ursus arctos) during the breeding season: its relationship with testosterone levels. PLOS ONE 12:8e0181776
    [Google Scholar]
  46. 46. 
    McGraw LA, Suarez SS, Wolfner MF. 2015. On a matter of seminal importance. BioEssays 37:2142–47
    [Google Scholar]
  47. 47. 
    Thongphakdee A, Sukparangsi W, Comizzoli P, Chatdarong K 2020. Reproductive biology and biotechnologies in wild felids. Theriogenology 150:360–73
    [Google Scholar]
  48. 48. 
    Santymire RM, Marinari PE, Kreeger JS, Wildt DE, Howard JG. 2006. Sperm viability in the black-footed ferret (Mustela nigripes) is influenced by seminal and medium osmolality. Cryobiology 53:137–50
    [Google Scholar]
  49. 49. 
    Kiso WK, Selvaraj V, Nagashima J, Asano A, Brown JL et al. 2013. Lactotransferrin in Asian elephant (Elephas maximus) seminal plasma correlates with semen quality. PLOS ONE 8:8e71033
    [Google Scholar]
  50. 50. 
    Hatef A, Niksirat H, Amiri BM, Alavi SMH, Karami M. 2007. Sperm density, seminal plasma composition and their physiological relationship in the endangered Caspian brown trout (Salmo trutta caspius). Aquac. Res. 38:111175–81
    [Google Scholar]
  51. 51. 
    Santiago-Moreno J, Blesbois E. 2020. Functional aspects of seminal plasma in bird reproduction. Int. J. Mol. Sci. 21:165664
    [Google Scholar]
  52. 52. 
    Hagedorn M, Page CA, O'Neil KL, Flores DM, Tichy L et al. 2021. Assisted gene flow using cryopreserved sperm in critically endangered coral. PNAS 118:38e2110559118
    [Google Scholar]
  53. 53. 
    Zuchowicz N, Daly J, Bouwmeester J, Lager C, Henley EM et al. 2021. Assessing coral sperm motility. Sci. Rep. 11:61
    [Google Scholar]
  54. 54. 
    Cobey SW, Tarpy DR, Woyke J. 2013. Standard methods for instrumental insemination of Apis mellifera queens. J. Apic. Res. 52:41–18
    [Google Scholar]
  55. 55. 
    Penfold LM, Wyffels JT. 2019. Reproductive science in sharks and rays. Adv. Exp. Med. Biol. 1200:465–88
    [Google Scholar]
  56. 56. 
    Clulow J, Trudeau VL, Kouba AJ. 2014. Amphibian declines in the twenty-first century: why we need assisted reproductive technologies. Adv. Exp. Med. Biol. 753:275–316
    [Google Scholar]
  57. 57. 
    Silla AJ, Roberts JD. 2012. Investigating patterns in the spermiation response of eight Australian frogs administered human chorionic gonadotropin (hCG) and luteinizing hormone-releasing hormone (LHRHa). Gen. Comp. Endocrinol. 179:1128–36
    [Google Scholar]
  58. 58. 
    Mansour N, Lahnsteiner F, Patzner RA. 2009. Optimization of the cryopreservation of African clawed frog (Xenopus laevis) sperm. Theriogenology 72:91221–28
    [Google Scholar]
  59. 59. 
    López Juri G, Chiaraviglio M, Cardozo G 2018. Electrostimulation is an effective and safe method for semen collection in medium-sized lizards. Theriogenology 118:40–45
    [Google Scholar]
  60. 60. 
    Martínez-Torres M, Sánchez-Rivera , Cruz-Cano NB, Castro-Camacho YJ, Luis J, Medrano A 2019. A non-invasive method for semen collection and evaluation in small and median size lizards. Reprod. Domest. Anim. 54:S454–58
    [Google Scholar]
  61. 61. 
    Cramer E, Krauss N, Rowlison T, Comizzoli P 2020. Sperm morphology and male age in black-throated blue warblers, an ecological model system. Animals 10:71175
    [Google Scholar]
  62. 62. 
    Cramer ERA, Rowlison T, Comizzoli P, Ryder T 2019. Uniform sperm morphology in the lek-breeding wire-tailed manakin (Pipra filicauda). Ornitol. Neotropical 30:135–39
    [Google Scholar]
  63. 63. 
    Comizzoli P, Mermillod P, Mauget R. 2000. Reproductive biotechnologies for endangered mammalian species. Reprod. Nutr. Dev. 40:5493–504
    [Google Scholar]
  64. 64. 
    Rodrigues Silva HV, Rodrigues Silva A, Da Silvada LDMH, Comizzoli P 2019. Semen cryopreservation and banking for the conservation of neotropical carnivores. Biopreserv. Biobank. 17:2183–88
    [Google Scholar]
  65. 65. 
    Zainuddin ZZ, Tarmizi MRM, Yap KC, Pierre C, Sipangkui S 2020. First evaluations and cryopreservation of semen samples from Sunda clouded leopards (Neofelis diardi). Animals 10:61072
    [Google Scholar]
  66. 66. 
    Arregui L, Garde JJ, Soler AJ, Espeso G, Roldan ERS 2021. Effect of season and social environment on semen quality and endocrine profiles of three endangered ungulates (Gazella cuvieri, G. dorcas and Nanger dama). Animals 11:3901
    [Google Scholar]
  67. 67. 
    Roldan ERS. 2020. Assessments of sperm quality integrating morphology, swimming patterns, bioenergetics and cell signalling. Theriogenology 150:388–95
    [Google Scholar]
  68. 68. 
    Pollock K, Gosálvez J, López-Fernández C, Johnston SD. 2018. Amphibian sperm chromatin structure and function and its relevance to sperm preservation. J. Herpetol. 52:4487–92
    [Google Scholar]
  69. 69. 
    Ménézo Y, Dale B, Cohen M 2010. DNA damage and repair in human oocytes and embryos: a review. Zygote 18:4357–65
    [Google Scholar]
  70. 70. 
    Gosálvez J, López-Fernández C, Fernández JL, Gouraud A, Holt WV 2011. Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species. Mol. Reprod. Dev. 78:12951–61A critical study highlighting the major differences in sperm DNA packaging between different species.
    [Google Scholar]
  71. 71. 
    Zee YP, López-Fernández C, Arroyo F, Johnston SD, Holt WV, Gosálvez J. 2009. Evidence that single-stranded DNA breaks are a normal feature of koala sperm chromatin, while double-stranded DNA breaks are indicative of DNA damage. Reproduction 138:2267–78
    [Google Scholar]
  72. 72. 
    Baccetti B. 1986. Evolutionary trends in sperm structure. Comp. Biochem. Physiol. A 85:129–36
    [Google Scholar]
  73. 73. 
    Holt WV, Hernandez M, Warrell L, Satake N 2010. The long and the short of sperm selection in vitro and in vivo: Swim-up techniques select for the longer and faster swimming mammalian sperm. J. Evol. Biol. 23:3598–608
    [Google Scholar]
  74. 74. 
    Hagedorn M, Carter VL, Steyn RA, Krupp D, Leong JC et al. 2006. Preliminary studies of sperm cryopreservation in the mushroom coral, Fungia scutaria. Cryobiology 52:3454–58
    [Google Scholar]
  75. 75. 
    Fitzpatrick JL. 2020. Sperm competition and fertilization mode in fishes. Philos. Trans. R. Soc. B 375:181320200074
    [Google Scholar]
  76. 76. 
    Kholodnyy V, Gadêlha H, Cosson J, Boryshpolets S 2020. How do freshwater fish sperm find the egg? The physicochemical factors guiding the gamete encounters of externally fertilizing freshwater fish. Rev. Aquac. 12:21165–92
    [Google Scholar]
  77. 77. 
    Coeti RZ, Antoniazzi MM, Sánchez R, Almeida-Santos SM. 2021. Sperm storage in coral snakes: a spermatozoa ultrastructural approach (Serpentes: Elapidae). Zool. Anz. 290:49–57
    [Google Scholar]
  78. 78. 
    Schmoll T, Kleven O, Rusche M. 2018. Individual phenotypic plasticity explains seasonal variation in sperm morphology in a passerine bird. Evol. Ecol. Res. 19:547–60
    [Google Scholar]
  79. 79. 
    Carballo L, Battistotti A, Teltscher K, Lierz M, Bublat A et al. 2019. Sperm morphology and evidence for sperm competition among parrots. J. Evol. Biol. 32:8856–67
    [Google Scholar]
  80. 80. 
    Villaverde-Morcillo S, Soler AJ, Esteso MC, Castaño C, Miñano-Berna A et al. 2017. Immature and mature sperm morphometry in fresh and frozen-thawed falcon ejaculates. Theriogenology 98:94–100
    [Google Scholar]
  81. 81. 
    Stewart KA, Wang R, Montgomerie R 2016. Extensive variation in sperm morphology in a frog with no sperm competition. BMC Evol. Biol. 16:29
    [Google Scholar]
  82. 82. 
    Apostólico LH, Marian JEAR. 2017. Dimorphic ejaculates and sperm release strategies associated with alternative mating behaviors in the squid. J. Morphol. 278:111490–505One of the few recent papers on cephalopod spermatozoa.
    [Google Scholar]
  83. 83. 
    Johnston S. 2019. Challenges associated with the development and transfer of assisted breeding technology in marsupials and monotremes: lessons from the koala, wombat and short-beaked echidna. Reprod. Fertil. Dev. 31:71305–14A critical review showing how different and complex marsupials are when it comes to spermatology.
    [Google Scholar]
  84. 84. 
    Pintus E, Ros-Santaella JL. 2018. Assessment of reproductive traits in male gemsbok (Oryx gazelle). Spixiana 41:2205–9
    [Google Scholar]
  85. 85. 
    Pukazhenthi BS, Johnson A, Guthrie HD, Songsasen N, Padilla LR et al. 2014. Improved sperm cryosurvival in diluents containing amides versus glycerol in the Przewalski's horse (Equus ferus przewalskii). Cryobiology 68:2205–14
    [Google Scholar]
  86. 86. 
    Steinberg ER, Sestelo AJ, Ceballos MB, Wagner V, Palermo AM, Mudry MD. 2019. Sperm morphology in neotropical primates. Animals 9:10839
    [Google Scholar]
  87. 87. 
    Schoeller SF, Holt WV, Keaveny EE. 2020. Collective dynamics of sperm cells. Philos. Trans. R. Soc. B 375:180720190384
    [Google Scholar]
  88. 88. 
    Lüpold S, de Boer RA, Evans JP, Tomkins JL, Fitzpatrick JL. 2020. How sperm competition shapes the evolution of testes and sperm: a meta-analysis: sperm competition meta-analysis. Philos. Trans. R. Soc. B 375:181320200064
    [Google Scholar]
  89. 89. 
    Birkhead TR, Møller AP. 1993. Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals. Biol. J. Linn. Soc. 50:4295–311
    [Google Scholar]
  90. 90. 
    Simmons LW. 2002. Sperm Competition and Its Evolutionary Consequences in the Insects Princeton, NJ: Princeton Univ. PressA critical review on insect sperm.
    [Google Scholar]
  91. 91. 
    Holt WV, Fazeli A. 2016. Sperm selection in the female mammalian reproductive tract. Focus on the oviduct: hypotheses, mechanisms, and new opportunities. Theriogenology 85:1105–12
    [Google Scholar]
  92. 92. 
    Almiňana C, Caballero I, Heath PR, Maleki-Dizaji S, Parrilla I et al. 2014. The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genom. 15:293
    [Google Scholar]
  93. 93. 
    Fazeli A, Affara NA, Hubank M, Holt WV. 2004. Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice. Biol. Reprod. 71:160–65
    [Google Scholar]
  94. 94. 
    Long EL, Sonstegard TS, Long JA, Van Tassell CP, Zuelke KA. 2003. Serial analysis of gene expression in Turkey sperm storage tubules in the presence and absence of resident sperm. Biol. Reprod. 69:2469–74
    [Google Scholar]
  95. 95. 
    Georgiou AS, Snijders APL, Sostaric E, Aflatoonian R, Vazquez JL et al. 2007. Modulation of the oviductal environment by gametes. J. Proteome Res. 6:124656–66
    [Google Scholar]
  96. 96. 
    Robinson JA, Ortega-Del Vecchyo D, Fan Z, Kim BY, vonHoldt BM et al. 2016. Genomic flatlining in the endangered island fox. Curr. Biol. 26:91183–89
    [Google Scholar]
  97. 97. 
    Fitzpatrick JL, Evans JP. 2009. Reduced heterozygosity impairs sperm quality in endangered mammals. Biol. Lett. 5:3320–23
    [Google Scholar]
  98. 98. 
    Asa C, Miller P, Agnew M, Rebolledo JAR, Lindsey SL et al. 2007. Relationship of inbreeding with sperm quality and reproductive success in Mexican gray wolves. Anim. Conserv. 10:326–31
    [Google Scholar]
  99. 99. 
    Ruiz-Lopez MJ, Evenson DP, Espeso G, Gomendio M, Roldan ERS 2010. High levels of DNA fragmentation in spermatozoa are associated with inbreeding and poor sperm quality in endangered ungulates. Biol. Reprod. 83:3332–38
    [Google Scholar]
  100. 100. 
    Wedell N, Wiklund C, Bergström J. 2009. Coevolution of non-fertile sperm and female receptivity in a butterfly. Biol. Lett. 5:5678–81
    [Google Scholar]
  101. 101. 
    Wu C, Blondin P, Vigneault C, Labrecque R, Sirard MA 2020. Sperm miRNAs—potential mediators of bull age and early embryo development. BMC Genom. 21:798
    [Google Scholar]
  102. 102. 
    Morgan HL, Eid N, Khoshkerdar A, Watkins AJ 2020. Defining the male contribution to embryo quality and offspring health in assisted reproduction in farm animals. Anim. Reprod. 17:3e20200018
    [Google Scholar]
  103. 103. 
    Watkins A, Dias I, Tsuro H, Allen D, Emes R et al. 2018. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. PNAS 115:4010064
    [Google Scholar]
  104. 104. 
    Watkins AJ, Rubini E, Hosier ED, Morgan HL. 2020. Paternal programming of offspring health. Early Hum. Dev. 150:105185
    [Google Scholar]
  105. 105. 
    Maia KM, Souza ALP, Silva AM, Souza JBF Jr., Costa LLM et al. 2019. Environmental effects on collared peccaries (Pecari tajacu) serum testosterone, testicular morphology, and semen quality in the Caatinga biome. Theriogenology 126:286–94
    [Google Scholar]
  106. 106. 
    Comizzoli P, Ottinger MA. 2021. Understanding reproductive aging in wildlife to improve animal conservation and human reproductive health. Front. Cell Dev. Biol. 9:1281
    [Google Scholar]
  107. 107. 
    Comizzoli P, Marquant-Le Guienne B, Heyman Y, Renard JP 2000. Onset of the first S-phase is determined by a paternal effect during the G1-phase in bovine zygotes. Biol. Reprod. 62:61677–84
    [Google Scholar]
  108. 108. 
    Comizzoli P, Mermillod P, Cognié Y, Chai N, Legendre X et al. 2001. Successful in vitro production of embryos in the red deer (Cervus elaphus) and the sika deer (Cervus nippon). Theriogenology 55:2649–59
    [Google Scholar]
  109. 109. 
    Comizzoli P, Wildt DE, Pukazhenthi BS. 2006. In vitro development of domestic cat embryos following intra-cytoplasmic sperm injection with testicular spermatozoa. Theriogenology 66:6–71659–63
    [Google Scholar]
  110. 110. 
    Comizzoli P, Holt WV. 2014. Recent advances and prospects in germplasm preservation of rare and endangered species. Adv. Exp. Med. Biol. 753:331–56
    [Google Scholar]
  111. 111. 
    Howell LG, Frankham R, Rodger JC, Witt RR, Clulow S et al. 2020. Integrating biobanking minimises inbreeding and produces significant cost benefits for a threatened frog captive breeding programme. Conserv. Lett. 14:2e12776
    [Google Scholar]
  112. 112. 
    Hagedorn M, Carter VL, Henley EM, Van Oppen MJH, Hobbs R, Spindler RE. 2017. Producing coral offspring with cryopreserved sperm: a tool for coral reef restoration. Sci. Rep. 7:14432An essential proof of concept for sperm cryopreservation in highly endangered coral species.
    [Google Scholar]
  113. 113. 
    Rivers N, Daly J, Temple-Smith P. 2020. New directions in assisted breeding techniques for fish conservation. Reprod. Fertil. Dev. 32:9807–21An updated review about fish sperm handling and preservation.
    [Google Scholar]
  114. 114. 
    Browne RK, Silla AJ, Upton R, Della-Togna G, Marcec-Greaves R et al. 2019. Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology 133:187–200A recent review about efforts and successes in amphibian spermatology.
    [Google Scholar]
  115. 115. 
    Byrne PG, Silla AJ. 2020. An experimental test of the genetic consequences of population augmentation in an amphibian. Conserv. Sci. Pract. 2:6e194
    [Google Scholar]
  116. 116. 
    Campbell L, Clulow J, Howe B, Upton R, Doody S, Clulow S 2021. Efficacy of short-term cold storage prior to cryopreservation of spermatozoa in a threatened lizard. Reprod. Fertil. Dev. 33:9555–61117
    [Google Scholar]
  117. 117. 
    Woelders H. 2021. Cryopreservation of avian semen. Cryopreservation and Freeze-Drying Protocols379–99 Methods Mol. Biol. 2180 New York: Humana
    [Google Scholar]
  118. 118. 
    Millán de la Blanca MG, Martínez-Nevado E, Castaño C, García J, Bernal B et al. 2021. Sperm cryopreservation in American flamingo (Phoenicopterus ruber): influence of cryoprotectants and seminal plasma removal. Animals 11:1203
    [Google Scholar]
  119. 119. 
    Cardoso B, Sánchez-Ajofrín I, Castaño C, García-Álvarez O, Esteso MC et al. 2020. Optimization of sperm cryopreservation protocol for peregrine falcon (Falco peregrinus). Animals 10:4691
    [Google Scholar]
  120. 120. 
    Silva HVR, Nunes TGP, Brito BF, Campos LB, Silva AMD et al. 2020. Influence of different extenders on morphological and functional parameters of frozen-thawed spermatozoa of jaguar (Panthera onca). Cryobiology 92:53–61
    [Google Scholar]
  121. 121. 
    Thuwanut P, Tipkantha W, Siriaroonrat B, Comizzoli P, Chatdarong K 2017. Beneficial effect of extracellular adenosine 5′-triphosphate treatment on the Indochinese leopard (Panthera pardus delacouri) sperm quality after cryopreservation. Reprod. Domest. Anim. 52:S2269–74
    [Google Scholar]
  122. 122. 
    Tipkantha W, Thuwanut P, Siriaroonrat B, Comizzoli P, Chatdarong K 2017. Mitigation of sperm tail abnormalities using demembranation approach in the clouded leopard (Neofelis nebulosa). Reprod. Domest. Anim. 52:S2214–18
    [Google Scholar]
  123. 123. 
    Spindler RE, Huang Y, Howard JG, Wang P, Zhang H et al. 2004. Acrosomal integrity and capacitation are not influenced by sperm cryopreservation in the giant panda. Reproduction 127:5547–56
    [Google Scholar]
  124. 124. 
    Saragusty J. 2015. Directional freezing for large volume cryopreservation. Methods Mol. Biol. 1257:381–97
    [Google Scholar]
  125. 125. 
    O'Brien E, Esteso MC, Castaño C, Toledano-Díaz A, Bóveda P et al. 2019. Effectiveness of ultra-rapid cryopreservation of sperm from endangered species, examined by morphometric means. Theriogenology 129:160–67
    [Google Scholar]
  126. 126. 
    Santiago-Moreno J, Castaño C, Bóveda P, Mejía O, Velázquez R et al. 2021. Slow and ultra-rapid freezing protocols for cryopreserving roe deer (Capreolus capreolus) epididymal sperm collected at different times of year. Eur. J. Wildl. Res. 67:24
    [Google Scholar]
  127. 127. 
    Thuwanut P, Srisuwatanasagul S, Wongbandue G, Tanpradit N, Thongpakdee A et al. 2013. Sperm quality and the morphology of cryopreserved testicular tissues recovered post-mortem from diverse wild species. Cryobiology 67:2244–47
    [Google Scholar]
  128. 128. 
    Patra T, Pathak D, Gupta MK. 2021. Strategies for cryopreservation of testicular cells and tissues in cancer and genetic diseases. Cell Tissue Res 385:11–19
    [Google Scholar]
  129. 129. 
    World Health Organ 2021. 6th edition of the WHO laboratory manual for the examination and processing of human semen Draft Public Rev. World Health Organ. Geneva:
    [Google Scholar]
  130. 130. 
    Aitken RJ, Bakos HW. 2021. Should we be measuring DNA damage in human spermatozoa? New light on an old question. Hum. Reprod. 36:51175–85
    [Google Scholar]
  131. 131. 
    Rodrigues Alves MB, Carvalho Celeghini EC, Belleannée C 2020. From sperm motility to sperm-borne microRNA signatures: new approaches to predict male fertility potential. Front. Cell Dev. Biol. 8:791
    [Google Scholar]
  132. 132. 
    Valverde A, Castro-Morales O, Madrigal-Valverde M, Camacho M, Barquero V et al. 2021. Sperm kinematic subpopulations of the American crocodile (Crocodylus acutus). PLOS ONE 16:3e0248270
    [Google Scholar]
  133. 133. 
    Qu Y, Chen Q, Guo S, Ma C, Lu Y et al. 2021. Cooperation-based sperm clusters mediate sperm oviduct entry and fertilization. Protein Cell 12:10810–17
    [Google Scholar]
  134. 134. 
    Le Gac S, Ferraz M, Venzac B, Comizzoli P 2020. Understanding and assisting reproduction in wildlife species using microfluidics. Trends Biotechnol 39:6584–97
    [Google Scholar]
  135. 135. 
    Saadeldin IM, Khalil WA, Alharbi MG, Lee SH 2020. The current trends in using nanoparticles, liposomes, and exosomes for semen cryopreservation. Animals 10:122281
    [Google Scholar]
  136. 136. 
    Baer B, Armitage SAO, Boomsma JJ. 2006. Sperm storage induces an immunity cost in ants. Nature 441:7095872–75
    [Google Scholar]
  137. 137. 
    Collins AM, Williams V, Evans JD 2004. Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera. Insect Mol. Biol. 13:2141–46
    [Google Scholar]
  138. 138. 
    Friesen CR, Johansson R, Olsson M. 2017. Morph-specific metabolic rate and the timing of reproductive senescence in a color polymorphic dragon. J. Exp. Zool. A 327:7433–43
    [Google Scholar]
  139. 139. 
    Holt WV, Fazeli A. 2016. Sperm storage in the female reproductive tract. Annu. Rev. Anim. Biosci. 4:291–310
    [Google Scholar]
  140. 140. 
    Kaneko T, Ito H, Sakamoto H, Onuma M, Inoue-Murayama M. 2014. Sperm preservation by freeze-drying for the conservation of wild animals. PLOS ONE 9:11e113381
    [Google Scholar]
  141. 141. 
    Patrick J, Comizzoli P, Elliott G 2017. Dry preservation of spermatozoa: considerations for different species. Biopreserv. Biobank. 15:2158–68
    [Google Scholar]
  142. 142. 
    Anzalone DA, Palazzese L, Iuso D, Martino G, Loi P 2018. Freeze-dried spermatozoa: an alternative biobanking option for endangered species. Anim. Reprod. Sci. 190:85–93
    [Google Scholar]
  143. 143. 
    Lee PC, Zahmel J, Jewgenow K, Comizzoli P 2021. Desiccated cat spermatozoa retain DNA integrity and developmental potential after prolonged storage and shipping at non-cryogenic temperatures. J. Assist. Reprod. Genet. In press
    [Google Scholar]
  144. 144. 
    Rowlison T, Ottinger MA, Comizzoli P. 2021. Exposure to epididymal extracellular vesicles enhances immature sperm function and sustains vitality of cryopreserved spermatozoa in the domestic cat model. J. Assist. Reprod. Genet. 38:82061–71
    [Google Scholar]
  145. 145. 
    Avenarius MR, Hildebrand MS, Zhang Y, Meyer NC, Smith LLH et al. 2009. Human male infertility caused by mutations in the CATSPER1 channel protein. Am. J. Hum. Genet. 84:4505–10
    [Google Scholar]
  146. 146. 
    Greither T, Schumacher J, Dejung M, Behre HM, Zischler H et al. 2020. Fertility relevance probability analysis shortlists genetic markers for male fertility impairment. Cytogenet. Genome Res. 160:9506–22
    [Google Scholar]
/content/journals/10.1146/annurev-animal-020420-040600
Loading
/content/journals/10.1146/annurev-animal-020420-040600
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error