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Abstract

Plant invasions, a byproduct of globalization, are increasing worldwide. Be-
cause of their ecological and economic impacts, considerable efforts have
been made to understand and predict the success of non-native plants.
Numerous frameworks, hypotheses, and theories have been advanced to
conceptualize the interactions of multiple drivers and context dependence
of invasion success with the aim of achieving robust explanations with
predictive power. We review these efforts from a community-level per-
spective rather than a biogeographical one, focusing on terrestrial systems,
and explore the roles of intrinsic plant properties in determining species
invasiveness, as well as the effects of biotic and abiotic conditions in medi-
ating ecosystem invasibility (or resistance) and ecological and evolutionary
processes. We also consider the fundamental influences of human-induced
changes at scales ranging from local to global in triggering, promoting, and
sustaining plant invasions and discuss how these changes could alter future
invasion trajectories.
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Range expansion:
a process whereby a
species (native or
non-native) spreads
into new areas adjacent
to its current
distribution, with or
without human
intervention

Introduction-
naturalization-
invasion continuum
(invasion
continuum):
a conceptualization of
the progression of
stages and phases in
the status of an
organism introduced
to a new environment

Lag phase: the time
between the arrival of
a species in a new area
and the onset of a
rapid or exponential
population growth and
range expansion
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1. INVASIONS BY NON-NATIVE PLANTS

Plant invasions are a global phenomenon associated with human activities and socioeconomic
drivers (217). Human activities are important in not only transporting non-native plants beyond
their native distribution ranges at unprecedented rates (177, 246) but also promoting range expan-
sion within the introduced ranges, even in protected or highly biodiverse systems (13, 71, 210, 233,
282). Moreover, invasions are mitigated or exacerbated by negative and positive feedback loops
resulting from people’s movements, behavior, and response to the collection, transport, introduc-
tion, and spread of non-native species (251). There is also evidence that new introductions may
be expanding faster than past or current invasions (290). This evidence, coupled with global envi-
ronmental changes that inevitably interfere with biotic interactions in the new ranges, requires a
deep understanding of the drivers of the successful establishment and spread of non-native plants
to predict and prevent new invasions and manage the current ones (86, 123, 215).

The stages of the invasion process form the so-called introduction-naturalization-invasion
continuum (hereafter invasion continuum) (235). Following an introduction, a species must nego-
tiate a series of environmental and reproductive barriers or filters to progress along the different
stages of the invasion continuum (13, 17, 233, 235). These barriers can prevent the introduced
propagules from establishing viable populations (249). Some species survive only temporarily in
the new region (casual species); others establish self-sustaining populations (naturalized species);
and some of these naturalized species spread rapidly, become widespread, become locally abun-
dant, and/or occupy a variety of habitats (invasive species) (13, 78, 194, 234). Consequently, only
a small proportion of non-native species become established and even fewer become invasive (13,
235, 289). Rapid population growth, range expansion, and increase in local dominance are re-
ported for many invasive plants, but many non-native species experience long lag phases before
they start to proliferate and spread (4, 43, 100, 148, 195).

In this paper, the term invasion success refers to plant species that progress along the invasion
continuum and pass through consecutive stages to become invasive. The probability of a species
overcoming these ecological barriers and progressing along the invasion continuum has been
typically examined as a function of (a) intrinsic factors, that is, inherent plant properties or
functional traits that determine its invasiveness (163, 218, 236); (b) extrinsic ecological and evo-
lutionary processes associated with the characteristics of the recipient ecosystems that determine
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Invasion success:
the extent to which a
non-native species can
negotiate barriers and
exploit opportunities
along the invasion
continuum, often
expressed by its rapid
population increase,
local dominance, and
rapid range expansion
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Figure 1

Hypotheses presented in this review that have been used in the literature to evaluate the invasiveness of non-native plants or the
invasibility of native ecosystems. Hypotheses formulated on the importance of biotic interactions on invasion success are distinguished
depending on whether they refer to plant–plant interactions or other biotic interactions. Propagule pressure acts as a bias in analyses
aimed at determining the role of species traits in promoting invasiveness and the invasibility of the recipient ecosystems by increasing
opportunities for successful establishment, hybridization, and long-distance dispersal.

their susceptibility to invasions, that is, invasibility (29, 34, 36, 38, 50, 70, 77, 163, 180); and
(c) introduction effort, termed propagule pressure, defined as the number and frequency of
propagules (i.e., any reproductive structure of a plant) introduced into a system (17, 28, 36, 160,
163, 249). The associated term colonization pressure refers to the number of species introduced
(160).

We build on the review by Richardson & Pyšek (233) to discuss progress in understanding
how species properties at different stages of the invasion continuum and the characteristics of the
recipient ecosystems influence ecological and evolutionary processes, leading to successful inva-
sions by terrestrial plants, and why some species become invasive in some ecosystems while others
fail. Our focus is on ecological processes occurring at the local (community) scale. We refer to
the most influential hypotheses proposed to explain invasion success (62, 211) (Figure 1) and
theories that attempt to unify some of these hypotheses (Table 1). We describe how levels of
consensus for many paradigms in invasion ecology have changed over time as evidence has accu-
mulated, new or more rigorous hypotheses have been tested, and the potential effects of multiple
(rather than individual) drivers have been investigated (65, 215, 220, 286). The inherent context
dependence of invasions (30, 215) demands the consideration of the joint effects of species traits,
environment, and socioeconomic characteristics to explain and predict plant naturalizations and
invasions.
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Table 1 List of theories and frameworks that have been proposed to unify multiple hypotheses on key ecological
processes or drivers of successful invasions

Framework Description of the framework Key process or drivers Source
Williamson framework Invasions as a series of stages: casual,

naturalization, and invasion
Non-native species traits; habitat properties;

human activities (including propagule
pressure)

289

Disturbed
Resource-Flux
Invasion Matrix
(DRIM)

An integrative method classifying habitats
in a 16-cell matrix depending on quality
of changes in physical and chemical
resource flux (relative to historical
patterns)

Disturbance 248

Richardson framework Barriers along the introduction-
naturalization-invasion continuum

Geographic, environmental, reproductive,
dispersal, and environmental barriers

235

State factor model
(quantitative)

State factor model that incorporates five
broadly defined state factors

Propagule pressure; properties of the
introduced habitat; invading species (or
genotype) autecology; properties of the
source habitat; residence time

8

Vacant niches Invasion success attributed to vacant
niches that become available under
environmental changes

Resident species traits; invasive species traits;
environmental conditions

180

PAB framework Invasion success resulting from propagule
pressure (P), abiotic characteristics (A),
and biotic characteristics (B), with the
additional influence of humans (H) on
P, A, and B

Propagule pressure; habitat properties; human
activities

28

Niche versus fitness
differences

Coexistence and competitive exclusion,
which vary along two axes: niche
differences versus fitness differences

Functional differences between native and
non-native species

167

Unified framework for
biological invasions

Stages separated by barriers Geographic, cultivation, survival, reproductive,
dispersal, and environmental barriers

13

Expanded framework of
plant invasion ecology

Hierarchical framework with three
contributing processes

Non-native species traits; system context;
habitat characteristics

70

Invasion triangle Invasion success as the result of three
processes located at the sides of the
invasion triangle

Potential invader attributes; biotic
characteristics; environmental conditions;
external influences (climate change and
land-use change)

207

Invasion syndromes Four invasion syndromes relating invader
attributes to the biotic characteristics
and environmental conditions of
invaded sites

Invader attributes (competitive ability, niche
construction, phenotypic plasticity, and
phenological niche separation); biotic
characteristics (biodiversity and enemies);
environmental conditions (resource
abundance and fluctuation)

208

Quantifying invasiveness Mathematical framework aiming to
quantify the invasiveness of species
along two axes: (a) native and non-native
differences in performance within a
region; (b) intraspecific differences in
the native and non-native range

Attributes of non-native species in the native
and non-native ranges; comparison with
native species

38

(Continued)
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Functional traits:
morphological,
biochemical,
physiological,
structural,
phenological, or
behavioral
characteristics of
individual plants
(phenotypes) that
determine their
response to the
environment

Invasiveness:
the biological
properties of a species
that determine its
capacity to be invasive
after its introduction
into new ranges

Invasibility:
the properties of a
community, habitat, or
ecosystem that
determine its
vulnerability to
invasion by non-native
species

Table 1 (Continued)

Framework Description of the framework Key process or drivers Source
Ecological networks Models the structural stability and

invasibility of the recipient ecological
networks

Species invasiveness (invasion fitness);
ecosystem invasibility (assembly saturation)

119

Invasion factor
framework

Three components of the invasion process,
which are influenced by three factors

Components of the invasion process: rapid
population increase, established local
dominance, and rapid range expansion; three
factors influencing the invasion process:
ecosystem resistance, invader fitness, and
climate dynamics

299

Conceptual map of
hypothesis

Conceptual map grouping 39 hypotheses
on biological invasions into 5 clusters
and linking individual hypotheses to
each other

Darwin’s, trait, biotic resistance, propagule
pressure, and resource availability clusters

62

Macroecological
Framework for
Invasive Aliens
(MAFIA)

Invasions as a function of non-native
species traits, location characteristics,
and factors related to introduction
events

Non-native species traits; habitat characteristics
and climate; pathways of introduction;
socioeconomic context; propagule pressure;
residence time

215

2. SPECIES INVASIVENESS

2.1. The Importance of Species Traits Along the Invasion Continuum

The search for inherent biological properties—functional traits and their plasticity—that make
plants successful invaders has received much attention (36, 220, 222, 225, 226, 234, 277), dating
back to the identification of the characteristics of the ideal weed typically associated with human
activities (7) (Figure 1). An underlying assumption of trait-based approaches is that invasion suc-
cess is associated with one or more functional traits of non-native species (38) and depends on
how these traits make a species preadapted to the biotic and abiotic characteristics of the recipient
ecosystems (18, 73).

Invasive species have specific combinations of traits that promote establishment, population in-
crease, and range expansion and that are, in some instances, useful to outcompete resident species
in the non-native ranges (57). Functional traits vary in their importance along the invasion con-
tinuum (54, 185, 219, 235). Some traits confer advantages for establishment; others may become
important during the invasion stage because the barriers and filters characterizing these phases dif-
fer (235). A well-developed theoretical framework describes how environmental factors mediate
naturalization (13, 18, 28, 221, 233, 234). The realized ecological niche of a species is a function of
the environmental conditions a species can tolerate and requires for survival and reproduction (i.e.,
its fundamental niche) and of biotic interaction with other species (competitors, natural enemies,
and mutualists). Environmental filtering has long been regarded as a major driver of the success-
ful naturalization of non-native plants (18) (see Section 3.1). A non-native species is expected to
become naturalized if its fundamental ecological niche matches the conditions in the new range
(18, 53). This correspondence depends on preadaptation (275), including climatic preadaptation
or climatic matching (83, 262) or preintroduction selection (17, 37), and varies with the char-
acteristics of the recipient ecosystems (13, 18, 85, 86, 234, 261). A recent synthesis of empirical
evidence indicates that invasive plants tend to prefer climates similar to those they encounter in
their native range and that there is very limited climatic niche expansion between native and in-
troduced ranges, with non-native species occupying similar niches as natives in the environmental
space (158). However, even if its ecological requirements are met, a non-native species encounters
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Propagule pressure:
a concept
encompassing
variation in the
quantity, quality,
composition, and rate
of supply of non-native
propagules in an area

Ecological niche: the
range of resources and
conditions needed to
allow a species to
maintain a viable
population

Competition:
a negative interaction
between individuals
associated with a
requirement for shared
limited resources,
potentially reducing
the fitness of
individuals or
populations

a degree of biotic resistance associated with competition from native species (61, 155), new natural
enemies (200), and/or the absence of its mutualists (179). A criticism of invoking environmental
filtering as a mechanism for selecting against certain non-native species is that other mechanisms
such as competition can generate similar, indistinguishable patterns (20).

Because founder population sizes are usually small due to limited propagule input (160) or
survival and are prone to stochastic extinction (249), reproductive traits are key to overcoming
barriers to establishment (88, 185, 186, 223, 234, 275). High seed production and/or a capacity
for extensive vegetative propagation and growth can be useful at multiple stages of the invasion
continuum, and many invasive plants have such traits (126, 186, 222, 277). Comparative studies
suggest that species- or individual-level traits associated with regeneration, such as seed mass (185,
233), self-compatibility, and autofertility (223), facilitate establishment in the introduced ranges.
Also, producing seeds that persist in the soil over multiple seasons greatly increases the probability
of naturalization (88, 220) and the geographic extent of naturalization (88), especially in annual
and perennial herbs. This has important consequences for the persistence and resilience of intro-
duced populations, allowing seeds to persist in the soil even during unfavorable conditions, hence
increasing opportunities for successful seedling recruitment (88).

A capacity for long-distance dispersal is an important determinant of range expansion rates
(150, 186, 295). However, field evidence of long-distance dispersal is often contrasting and dif-
ficult to collect (44, 233, 296). Molecular studies have helped to disentangle how the mode of
dispersal, admixture among plant lineages resulting from repeated introductions, and plasticity
in reproductive strategy mediate plant invasion dynamics (252, 296) and shape the global and
regional distributions of non-native species (6, 252). Genetic analyses have also improved our un-
derstanding of which genotypes of global invaders colonize and spread in the introduced ranges
(3) and how invasion patterns and trajectories respond to climatic change along environmental
gradients (44, 159). They have even shown how communities of granivores that disperse the seed
in the new range have shaped the population density and distribution of non-native plants such as
dandelions (Taraxacum officinale) (166).

Naturalization and invasiveness have long been related to superior ability to compete for re-
sources compared to native species (90). Performance traits related to fitness, growth rate, size,
biomass allocation, and physiology are regarded as good predictors of invasiveness (53, 150, 233,
277).Many invasive species have preadaptations that are useful in the early stages of succession (29)
and in disturbed habitats (86, 134, 277). However, the presumed importance of rapid nutrient ac-
quisition, growth, and reproduction in determining invasion success may be mainly due to ruderal
species colonizing nutrient-rich, disturbed habitats (183). The high proportion of invasive species
possessing these performance traits might also reflect an introduction bias; the capacity for trait
plasticity contributes to invasiveness and favors introduction. In other words, species with those
traits might have been preferentially selected by humans for intentional introduction (18, 33).
This intersection might partly explain why non-native species that are introduced intentionally
are more likely to become invasive than those introduced accidentally (33, 172).

Functional traits influence not only the strategies that plants adopt to acquire and use resources
but also their ability to alter resources available to other plants. An example is the ability to fix
nitrogen, a trait often associated with invasiveness and shared by many invasive woody and herba-
ceous plants, such as Gunnera tinctoria, Morella faya, and Ulex europaeus (27, 117, 129). Invasive
species that possess this trait can alter nitrogen cycling and availability by changing nitrification
rates and creating positive feedback that may favor the persistence of the invader (59, 298) at the
expense of native species adapted to low-nutrient conditions (79).Themagnitude of such feedback
depends on interspecific interactions (153). These changes, and, more generally, biogeochemical
changes associated with differences in rates in decomposition or nitrogen release between native
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Allelopathy:
a biological
phenomenon whereby
an organism produces
biochemicals that
negatively influence
the germination,
survival, and
reproduction of other
organisms

Residence time:
the time since the
introduction of a
species into a region,
which can be viewed as
a component of
propagule pressure

and non-native species (59), may also facilitate secondary invasions by other non-native species
that take advantage of a high soil nitrogen availability (82, 117).

For some species, invasion success relates to their ability to produce secondarymetabolites (i.e.,
allelopathy) that are evolutionarily novel in their introduced ranges and can inhibit neighboring
native plants directly or indirectly by disrupting beneficial mutualisms (i.e., the novel weapon
hypothesis) (23, 271). Allelopathic substances are commonly produced by invasive plants (132),
although empirical evidence both supports and refutes this hypothesis (191). The full ecologi-
cal, evolutionary, and coevolutionary implications of allelopathic interactions between non-native
and native plants remain unclear (271, 300). Increases in the production of allelochemicals in re-
sponse to intense resource competition could confer a competitive advantage over natives (300),
and the production of allelochemicals often has greater effects on native than non-native species
(271, 303). Whether allelopathic ability can evolve in the introduced ranges (i.e., the evolution
of increased weaponry hypothesis) (96) remains largely unknown, and we know of no evidence
that supports this hypothesis (96, 191). Moreover, the production of allelochemicals is influenced
by the amount and quality of available resources (40), closely tying any impacts of allelopathy
on native communities to resource dynamics in recipient ecosystems. A recent synthesis showed
that native species are more strongly inhibited by naturalized species than by other native species,
while naturalized species are less likely to suppress other naturalized species than the natives, even
if they often do not share a coevolutionary history with other naturalized non-native species (303).
The fact that the negative effects of allelopathy are greater with increasing phylogenetic distance
suggests that allelopathy could contribute to the dominance of invaders that are distantly related
to non-native species or their coexistence with closely related non-native species (303).

Failure to recognize the different contributions of individual functional traits along the in-
vasion continuum has led to contradictory findings on their importance in mediating invasion
success (54), and some traits have been reported to contribute in opposing ways to naturaliza-
tion and invasion. For example, large seeds are associated with naturalization, while small-seeded
species are more likely to be invasive (185, 219). This contrast emerges because a larger seed mass
may provide a species with a short-term competitive advantage over small-seeded species at the
phase of seedling recruitment (181), but small seeds increase opportunities for dispersal and range
expansion over space and time (88). Overall, there is limited scope for meaningful extrapolation
of such insights across taxa; for example, insights gleaned from studies of pine trees are likely
irrelevant for daisies or orchids.

Several factors hamper our ability to predict invasion success from species traits alone. Propa-
gule pressure and residence time,which is a component of propagule pressure because the number
of propagules introduced into the community usually accumulates with the time since introduc-
tion, affect the probability of a species becoming invasive (13, 36, 50, 182, 215) (see Section 3.3).
These factors often override species traits in promoting successful naturalization or invasions
(219, 220). A longer residence time also increases the probability of the successful spread of viable
propagules (78, 219, 226) and opportunities for evolutionary changes thatmight promote invasive-
ness. Local dominance in plant communities typically increases with residence time, with positive
feedback between aboveground population densities and soil seed densities being observed
(92).

There is a taxonomic introduction bias: not all species or higher taxonomic groups have been
moved around the globe to the same extent. This means that opportunities to become naturalized
and/or invasive have been different for different taxa, which in turn constrains the opportuni-
ties for unbiased evaluation of the determinants of invasiveness (172, 193, 222, 233). For many
intentional introductions, there is also a bias toward species that are preadapted to the climatic
conditions in the introduced ranges and species that grow rapidly (107).
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Phenotypic
plasticity: the ability
of a particular
genotype to express a
range of phenotypes in
different environments

It is also important to note that functional traits also have indirect effects. For instance, func-
tional traits influence the naturalization of Central European species in North America through
their effect on the number of habitats occupied in the native range and on cultivation rather than
directly on species performance (220). Also, the contribution of traits to predicting naturalization
or invasiveness often varies with the spatial and temporal scales at which such effects are assessed
and depends on whether phylogenetic relatedness among non-native species is considered (150).

The role of functional traits in determining invasiveness is alsomediated by local biotic and abi-
otic conditions in the introduced range since the ability of a species to progress along the invasion
continuum often depends on plastic and/or evolutionary responses to the conditions experienced
in introduced ranges (38, 105, 170, 182, 301). Not accounting for variability or changes in key
species traits may strongly affect our perception of their role in promoting successful invasions
(38) (see Section 2.2).

2.2. The Importance of Phenotypic Plasticity in Promoting Invasiveness

Phenotypic plasticity in ecologically important traits has long been linked with invasion suc-
cess because the flexibility afforded by plasticity may enhance responses to the biotic and abiotic
conditions encountered in the introduced ranges (a concept known as the phenotypic plastic-
ity hypothesis) (228) (Figure 1), broadening the ecological niche of a species (42, 188, 228).
Moreover, plasticity in traits affecting regeneration and resource use can present an advantage
in responding to climatic changes and in promoting range shifts (87) so that species with broad
variation in mean trait values may have an enhanced capacity to colonize a wide range of climatic
conditions (182). Theoretical frameworks that address the link between plasticity and invasion
success (57, 228) postulate that (a) invasive species may maintain high fitness across a broad
environmental range due to morphological and physiological plasticity or fitness homeostasis;
(b) invasive species may experience greater increases in fitness under favorable environmental con-
ditions than native species do (termed master-of-some) or may be better able to maintain fitness
in unfavorable environments (termed jack-of-all-trades); or (c) invasive species may combine these
strategies (i.e., jack-and-master), in both stressful and resource-rich environments. Examples from
empirical studies include herbs such as dandelion T. officinale and Senecio inaequidens, which are
jack-and-master invaders (182, 259), and Centaurea maculosa, a jack-of-all-trades invader (259).

Despite the potential benefits of plasticity in the introduced ranges, empirical evidence is in-
conclusive (184), as indicated by the contrasting results of meta-analyses. Some found differences
in plasticity between invasive and noninvasive species (39, 42), while others reported no major
differences (93, 197), although in some comparisons native species were considered noninvasive
despite being invasive or potentially invasive elsewhere (273). Moreover, the potential benefits
of plasticity may change with the stage of invasion (184). Transplant garden experiments con-
ducted in the native and invaded ranges for two invasive maple tree species (Acer negundo and
Acer platanoides) suggest that plastic effects might be more important during the early stages of
colonization than later in the invasion process, when genetic differentiation may contribute more
significantly during the spread of established populations (147). In this respect, a biogeograph-
ical approach comparing many species (and life forms) from the native and non-native ranges
and grown under common conditions, while accounting for maternal effects, has the potential to
provide insights into the role of plasticity.

Potential evolutionary changes in plasticity complicate our understanding of how plant pop-
ulations behave during the invasion process, although this possibility is often overlooked (171).
Phenotypic plasticity may be adaptive if the phenotypes produced in response to environmental
change result in higher-than-average fitness (72, 228). However, high phenotypic plasticity is not
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Allee effects:
the positive density
dependence that many
species experience
when population size
and/or density is low,
primarily due to
difficulty in finding
mates

necessarily correlated with high fitness (46), and the extent to which it may promote successful in-
vasions relative to mean species traits or evolutionary changes remains largely unknown (122, 168;
but see 184). Empirical evidence both supports (25, 149) and contradicts (52, 274) the hypothesis
that populations of invasive species in introduced ranges have become more plastic than those in
native ranges. Huang and colleagues (114) suggested that these inconsistencies may arise from
the costs of plasticity, which determine whether the evolution of increased plasticity is advanta-
geous or not. They proposed that the release from natural enemies or any other factor relieving
an introduced population from stress may promote the evolution of greater adaptive plasticity by
reducing the costs and increasing the benefits of plasticity.

2.3. The Importance of Evolutionary Processes in Driving Invasion Success

Invasion success across broad environmental gradients has often been associated with rapid evo-
lutionary changes in several functional traits in response to new selection regimes experienced in
the introduced ranges (37, 55, 105, 146, 149, 170, 182, 242). Since non-native species must over-
come different types of barriers along the invasion continuum, it is plausible that each phase of
the invasion process leaves traces in the genetic makeup of invading species populations, affecting
their ability to succeed in the subsequent phases (37, 146).

Several key evolutionary mechanisms act at different stages of the invasion process (301)
(Figure 1). Preintroduction history can have important evolutionary effects that may be bene-
ficial in the introduced range (37, 100, 146, 301); such effects include climate preadaptation (146)
or human commensalism (86, 116, 134).Hufbauer and colleagues (116) defined the latter scenario
as an “anthropogenically induced adaptation to invade,” suggesting that propagules from popu-
lations adapted to anthropogenic disturbances in the native range will perform well in similarly
disturbed conditions in the introduced range. Moreover, the evolutionary history of a non-native
species in the presence of human-induced disturbance is likely to be beneficial under ongoing
global changes (37). Yet, adaptation may occur only in the introduced range, and successful inva-
sion may be contingent on the introduction of populations that were especially successful (i.e., the
invasive bridgehead effect) (162), although this effect has mainly been tested for animals and not
plants.

Allee effects and genetic bottlenecks associated with low initial population size may affect the
probability of naturalization of non-native plants (55, 160) and cause stochastic extinctions (249).
Multiple introductions maymitigate the effects of severe demographic bottlenecks that reduce the
genetic diversity in small founding populations.Many non-native plants have become invasive de-
spite genetic bottlenecks that are expected to result in inbreeding depression, increased fixation
of deleterious mutations by genetic drift (i.e., drift load), and reduced evolutionary potential to
respond to novel selection pressures (i.e., the genetic paradox of invasions) (55, 65, 243). Avoid-
ance of inbreeding depression and drift load can also be linked to reproductive traits and genetic
characteristics, although there is no empirical evidence to explain invasion success where strong
genetic depletion, inbreeding depression, and drift load occur (243). It has been suggested that
temporary or permanent releases from stressful conditions in the introduced range may mitigate
the negative effects of genetic depletion on fitness and that interactions with local environmen-
tal conditions may even result in rapid evolutionary changes and contribute to the adaptation of
non-native species in the absence of high genetic variation (243).

Selective pressures that may limit the establishment of non-native plants include suboptimal
environmental conditions, biotic resistance via competition with native species (75, 90), and ac-
quisition of novel enemies (200), although evolutionary changes associated with the release from
specialist natural enemies are also possible (14, 24, 39) (see Section 3.2). At the invasion stage, high
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densities achieved by many invasive species can facilitate demographic and evolutionary changes
that reduce extinction risks in changing environments (37).

Invasion success and invasibility are influenced by opportunities for inter- and intraspecific
hybridization among historically isolated populations that generate novel adaptive gene combina-
tions or increase the genetic variation available for adaptive evolution (60, 137). Because abiotic
and biotic conditions (and associated stress) vary over time and along the invasion continuum, new
allelic combinations and epigenetic changes may contribute to invasion success (187). A growing
body of evidence indicates that genetic admixture, hybridization, and polyploidization or increased
ploidy are associated with successful naturalization and invasiveness (187, 258, 301). Genome size
and polyploidy (the heritable condition of possessing more than two complete sets of chromo-
somes) are species traits that have been linked to naturalization and invasiveness (141, 198, 256,
258) and play different roles in plant trait expression (176). Autopolyploidy (the acquisition of
more than two sets of chromosomes by means of intraspecific genome duplication) and allopoly-
ploidy (the merging of genomes of distinct species through hybridization and subsequent genome
duplication) have important ecological and evolutionary consequences for the fate of introduced
plant species (258). Polyploidization induces several types of genetic and epigenetic events and
alters plant functional traits, producing individuals that can cope with environmental variability
and stressful conditions and exploit new niches (187, 240, 254, 258). Polyploid plants are expected
to be more successful invaders than diploid plants since polyploidy generates higher fitness during
the establishment phase and/or increased potential for subsequent adaptation due to a larger ge-
netic diversity that may contribute to the evolution of invasiveness (112, 237, 238, 258). Polyploids
are also less likely to experience inbreeding depression due to the balancing effect of multiple gene
copies (238).The combination of higher seedling growth rates and diminished inbreeding depres-
sion suggests that polyploids must bemore invasive and, therefore,more competitive than diploids
(240). Newly formed polyploids have been shown to exhibit rapid range expansion. Examples are
C. maculosa, in which tetraploids dominate populations in the introduced range (269), and Solidago
canadensis, in which tetraploids occur only in the introduced ranges and diploids and hexaploids
only in the native ranges (121). For Centaurea stoebe and S. inaequidens, native tetraploids are more
competitive than native diploids, which partly explains the invasion success of the preadapted
tetraploid genotypes (260). Ploidy level has also been suggested to drive impacts of invasive plants
in the introduced ranges, as in the case of C. stoebe (257), although the effect might be neutral, as
in the case of Phragmites australis (216). There is, however, no conclusive evidence that polyploids
make better invaders than nonpolyploids (240), possibly because other factors such as propag-
ule pressure may have an overriding influence. It has been suggested that the establishment and
success of polyploidy are influenced by abiotic and biotic stress (272).

Small genomes are significantly overrepresented among invasive taxa (256), supporting the
large genome constraint hypothesis (139). This hypothesis posits that species with small genomes
achieve a much wider range of trait states than species with large genomes, and many traits asso-
ciated with large genomes are not compatible with the characteristics of successful invaders (256).
Small genome size is associated with faster growth (74, 145). However, Meyerson and colleagues
(176) found that larger monoploid genome size in P. australis was associated with better-defended
leaves, potentially suggesting a trade-off between defense and growth rate. Studies exploring the
association of naturalization success with small genome size indicate that this is a potentially
powerful trait for predicting non-native species’ success in stressful environments in dry regions
(178).

Intra- and interspecific hybridization is another mechanism that induces several types of
genetic and epigenetic events that potentially lead to novel traits, new species, and increased in-
vasiveness (104, 237, 242), which can affect the reproductive and growth potential of hybrids and

644 Gioria et al.



their successful establishment (112, 187). Hybridization is linked to variation in traits that typi-
cally promote invasiveness (112, 242), such as increased fecundity and size (112), although these
relationships may not be causal (187).Moreover, transient hybridization with a resident species or
an earlier invader may allow a species to overcome low genetic diversity resulting from founding
events (242). This can play a role with regard to Allee effects and overcome constraints associ-
ated with initial low densities even without enhancing local adaptation; such a mechanism has
been proposed for the replacement of an earlier invader Cakile edentula by later-arriving Cakile
maritima (175).

How polyploidization and hybridization affect invasion success will depend on introduction
histories (historic versus recent) and whether the polyploids and/or hybrids occur within a found-
ing population or arise following introduction into new environments (187, 258). Positive and
negative long-term implications of hybridization generally remain poorly understood, and they
could result in genomic extinction by disrupting local adaptation (97).

3. ECOSYSTEM INVASIBILITY

3.1. Edaphic Conditions: Disturbance and Resource Availability

Several hypotheses have been proposed to explain invasion success in relation to the characteristics
of the recipient ecosystem or the evolutionary histories and functional roles of its species (10,
38) (Figure 1). Invasibility can be quantified as the probability of successful establishment per
introduced propagule (50). It should not be confused with the level of invasion (163), which is
a measure of the extent to which a system has been invaded and varies over time as an invasion
progresses (29, 34, 35, 98). Yet, most studies examining ecosystem invasion refer to the level of
rather than the vulnerability to invasion, which is often confounded by propagule pressure and
residence time of the invaders (5).

The concepts of species invasiveness and the invasibility of recipient communities (163) and
ecosystems have long been primarily examined separately (144, 234, 261). However, the impor-
tance of plant biological properties for invasion success varies with the characteristics of the
recipient ecosystems (119), which influence invasibility and resilience against invasion (61, 234,
273). Thus, some species are likely to become invasive in certain ecosystems but not in others,
and their success may vary even within the same ecosystem type, although the evidence for this is
scarce.

Properties of recipient ecosystems that may affect their invasibility include (a) resource avail-
abilities and their temporal fluctuations, disturbance regimes, and environmental heterogeneity;
(b) the diversity and species richness of native plant communities that are linked to the biotic resis-
tance to invasions or their functional or evolutionary similarities to incoming non-native species;
and (c) the presence (or absence) of natural enemies and mutualists.

Invasibility has been strongly linked to the disturbance regime of recipient ecosystems (29, 49)
(Figure 1). Natural or human-induced disturbances typically promote invasibility through major
changes in resource availability (49, 78, 106), displacement of native plant species, and forma-
tion of vegetation gaps that create new opportunities for rapid colonization by non-native plants
(29, 106). By resetting succession and increasing resource availability, such disturbances favor the
establishment and spread of non-native plants that acquire resources more effectively than co-
occurring native species (known as the disturbance-mediated hypothesis) (28), rapidly respond to
temporary increases in resources, and benefit disproportionately more from such increases than
native species (11, 78, 81, 277). It has been argued that invasion-facilitating disturbances are those
that alter historical regimes of disturbance, resulting in changes in turnover rates or fluxes of re-
sources (e.g., space, nutrients, or light) in a system, and not disturbances per se (248), although the
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different components of disturbance regimes at the ecosystem level are often not distinguished in
invasion studies.

Naturalization is positively related to ruderal and competitor strategies and negatively to stress
tolerance (94) for all life forms but trees (99). In systems that experience frequent and severe dis-
turbances, ruderal species tend to prevail over native competitors and stress-tolerant species in
early successional stages (29, 183). Ruderal species are able to rapidly exploit windows of oppor-
tunity created by disturbances and thus avoid competition but can be good competitors too (94).
The presence of native species that respond rapidly to disturbances confers some resistance to
invasions (90). Yet, native ruderal species adapted to disturbances are often unable to colonize
disturbed areas as successfully as non-natives (263), and the competitive ability of native commu-
nities is generally reduced by extreme disturbances (161) that favor colonization by opportunistic
non-native species (245).

A positive relationship between disturbance and invasibility is most often reported in produc-
tive, nutrient-rich ecosystems (109, 183). Accumulating evidence indicates that both increases and
decreases in resources are strongly associated with higher performance of invaders, while native
plants vary in their responses (11).However, disturbances that decrease the availability of resources
are expected to promote resistance to invasions by the recipient communities (142). In general,
fluctuations in available resources (49), including pulse events (106), disrupt plant–plant interac-
tions, especially in systems where the natives are better adapted to low-resource or stressful condi-
tions.This is the basis of the fluctuating resource availability hypothesis (49),which does not imply
any specific relationship between the diversity of native communities or functional/phylogenetic
similarities in resource use between the non-native and native species (see Section 3.2). Catford
and colleagues (29) pointed out that intermediate levels of disturbance,which are expected tomax-
imize plant diversity (according to the intermediate disturbance hypothesis), may have different
effects on the diversity of native and non-native species. The different responses are attributable
to several interacting factors, including human-mediated dispersal, the overrepresentation of early
successional species in the non-native species pool, the tendency for fast-growing species to profit
most from enemy release, and increased disturbance levels in human-modified habitats (29).

Low-resource and stressful ecosystems are traditionally regarded as less invasible (35, 61, 226),
but many have become invaded by non-native plants (79–81, 131, 282). Preadaptation and rapid
evolutionary changes might be one cause (see Section 2.3). Again, the release from stressful condi-
tions or natural enemies, high environmental heterogeneity (i.e., the environmental heterogeneity
hypothesis) (28, 174), and disturbances that disrupt competitive interactions between non-natives
and natives can partly account for the ability of invasive plants to colonize low-resource or stressful
ecosystems. In low-resource ecosystems, any temporary increase in nutrient levels from natural or
anthropogenic disturbances can compensate for the negative effects of resource competition with
native species (58, 90) and may promote invasion, assuming that fluctuations in resources coincide
with propagule availability (49).

The presence of multiple non-native species may affect invasibility and result in inva-
sional meltdown (250), which occurs when positive interactions among invaders initiate positive
population-level feedback that amplifies their impact (82, 302) or facilitates secondary invasions
(89, 186, 192). This phenomenon is especially important when invasive species promote major
biotic and abiotic changes in the recipient communities, such as soil legacy effects and changes in
biogeochemical cycles (82, 89, 129, 186, 192). In this respect, it is important to distinguish between
invaders that are only passengers of wider environmental pressures from those that are drivers of
changes that can facilitate their own persistence and spread (288).

Proximity to highly modified ecosystems, such as crop fields and forest plantations, which act
as major sources of non-native propagules (232, 282, 294), inevitably affects vulnerability to plant
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invasions. Urban ecosystems are exposed to a high propagule pressure and repeated local intro-
ductions from building activities, transport, gardening, and other activities (211). Changes in land
use and uses of non-native plants in agriculture and forestry that result in landscape fragmen-
tation and degradation represent further disturbances at the landscape level. These phenomena
have contributed to the range expansion of many non-native species (210, 282), including invasion
into ecosystems traditionally regarded as less invasible, such as forest remnants (282), by creating
habitat edges that can be colonized by non-native species (106, 173).

Roads, rivers, and canals that act as dispersal corridors of propagules also increase ecosystem
invasibility (35, 44, 282), even in species-rich ecosystems. Flooding facilitates invasions in riparian
and other ecosystems subject to recurrent floods (108) through a temporary increase in available
nutrients and dispersal of propagules (41, 204, 231).

Roads and railways provide opportunities for the establishment and spread of non-native plants,
even in protected and species-rich ecosystems (151, 281). This is especially true in mountain
ecosystems globally, which are threatened by climate change, greater anthropogenic land use,
and new propagule introductions, which provide opportunities for increased colonization along
elevational gradients (44, 173, 205, 209, 281). Although the occurrence of non-native species typ-
ically decreases with elevation (173, 205, 281), a warming climate may create opportunities for
non-native plants near roads to spread further upwards (44, 281). Recent evidence from moun-
tain roads in seven regions worldwide suggests that invasive species colonizing roadsides differ in
species traits from those spreading into adjacent natural vegetation (173); invasive species along
roadsides were long-lived, nonruderal species with less efficient dispersal compared to those col-
onizing the adjacent vegetation, which were instead shade and moisture tolerant. Though this
seems counterintuitive, it confirms roads as corridors facilitating the dispersal of species that do
not necessarily possess traits for long-distance dispersal. Recreational trails have also been found
to act as habitats and corridors for the movement of non-native plants (157); this represents a
rising threat to protected areas as the importance of tourism and recreational activities increases
(71, 157).

3.2. Biotic Interactions and Invasibility

Biotic interactions between non-native plants and resident plants and organisms from other taxo-
nomic groups have a strong influence on the invasibility of recipient ecosystems (268).While most
hypotheses refer to antagonistic interactions such as competition from the resident plant species
or the role of herbivores, predators, and pathogens, evidence from the past two decades points
to the need to include positive (facilitative or mutualistic) interactions as important mediators of
community invasibility (268).

3.2.1. Importance of competition and facilitation. The failure of many invasive non-native
plants to become weedy in their native ranges indicates that they interact in novel ways with the
biota in recipient ecosystems in their invaded range (38, 203). The characteristics of the recip-
ient plant communities determine the quality and strength of competitive interactions and thus
the resistance (or vulnerability) to plant invasions. Hypotheses on the biotic resistance to (or ac-
ceptance of ) plant invasions of recipient communities focus on (a) community diversity (mainly
species richness) and (b) functional or phylogenetic similarity or dissimilarity between native and
non-native plants. Many of these hypotheses relate the invasibility or resistance to differences in
the competitive ability of the native and non-native species, especially through acquisitive rather
than conservative traits (80, 90, 286).

The biotic resistance hypothesis posits that ecosystems supporting high native diversity are
more resistant to plant invasions than species-poor ones [see Traveset & Richardson (268) for
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a comprehensive treatment of this topic]. One version of this idea is the diversity–invasibility
hypothesis, which links species diversity to biotic resistance, typically invoking mechanisms of
competition for available resources, as suggested by Davis and colleagues (49). This hypothesis
has been mainly tested by assessing the relationship between native and non-native species rich-
ness. This relationship is strongly context dependent and varies with the spatial scale of the study,
in observational versus experimental studies (9, 49, 85, 155, 194, 268), and with environmental
conditions, such as environmental stress (280), productivity (47), and disturbance (156). In gen-
eral, the sign of this relationship changes from negative to positive with increasing spatial scale
(77, 247, 265), constituting the so-called invasion paradox.This paradox reflects that different pro-
cesses act at different spatial scales, including biotic interactions at fine scales, and that native and
non-native species respond to large-scale factors such as soils, geology, or climate in the same way
(77, 140). Recently, Ernst and colleagues (64) used a 15-year, 15-site grassland data set to show
that the invasion paradox dissolves when phylogenetic and temporal perspectives are invoked.
More phylogenetically diverse communities had higher abundances of invasive species. However,
with increasing time, the phylogenetically diverse communities became most resistant to invasion,
highlighting that diversity–invasibility relationships need to be examined over time (64).

The observation that native and non-native species richness are positively correlated in some
ecosystems has informed the biotic acceptance hypothesis (or the rich-get-richer hypothesis) (11,
77, 255); at large spatial scales native−non-native species-richness relationships are always positive
(206) since the diversity of both groups tends to increase as landscape heterogeneity and habitat
diversity increase (255).

An observed negative relationship between native plant diversity and plant community in-
vasibility (9) has been explained by two major mechanisms: the sampling effect (264) and
complementary resource use (155, 264). The sampling effect is based on the premise that, in more
diverse plant communities, there is a high probability that good competitors are present, mak-
ing a community less invasible. Complementarity has been attributed to the higher stability of
diverse communities (i.e., the diversity–stability hypothesis) (264) since they occupy more space,
generate more biomass, and/or use available resources more completely (45, 49). Empty ecolog-
ical niches, which may facilitate invasions by non-native species occupying different ecological
niches with respect to their use of limited resources, are thought to be less available in diverse
plant communities (known as the empty niche hypothesis) (61). To unify theories on invasiveness
and invasibility, MacDougall and colleagues (167) suggested that this issue should be examined
with regard to niche and fitness differences. The presence of empty niches or trait space (180)
unoccupied by native species, resulting from differences in resource use (156), would facilitate the
establishment of non-native species through competition avoidance. By contrast, in the absence
of niche differences, fitness differences (i.e., differences in the competitive ability, fecundity, or
susceptibility to predators and pathogens) would result in competitive exclusion by species with
the highest average fitness.

A more complex perspective on the diversity−invasibility relationship distinguishes strong in-
vaders, which become dominant in the recipient communities, from weak invaders, which occur at
low densities (194). The expectation based on this distinction is that at local scales, native species
richness will vary negatively with the richness of strong invader species and positively with the
richness of weak invader species, as observed for grassland communities invaded by bunchgrass
C. maculosa in western Montana, USA (194). There is also evidence that native species abundance,
rather than species richness, regulates resistance to plant invasions and that intermediate distur-
bances provide the greatest resistance because they promote the greatest native species abundance
(32). In this respect, dominance by one or more native species may affect the diversity−invasibility
relationship. Grime (95) warned about linking invasibility exclusively to plant diversity since most
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of the plant biomass (a proxy for the resources used by a community) is often attributed to a small
number of dominant species, even in species-rich communities. Since dominance is important in
regulating community and competition dynamics (95, 253), the presence of one or more dominant
native species may facilitate plant invasions through the amelioration of stressful or suboptimal
conditions (253, 278) or provide resistance by exacerbating resource competition (253). Nonethe-
less, available evidence suggests that non-native dominants are often competitively superior to
native dominants (16) or are better at suppressing the diversity of native species compared to
native dominants (110).

Other processes affecting invasiveness and the diversity−invasibility relationship include the
abovementioned opportunities for inter- and intraspecific hybridization and genetic admixture,
the presence of multiple non-native species that may result in invasional meltdown (250), and
positive interactions (facilitation) with native plant species (31, 164, 230). Facilitation can have
especially important effects on invasibility in stressful environments (164). For instance, recent
evidence shows that facilitation by native shrubs in arid ecosystems can both accelerate the in-
vasion process and amplify the negative effects of non-native species on native annuals through
indirect shrub-mediated interactions (164).

In contrast to the diversity−invasibility hypothesis, which focuses on how community-level
metrics (i.e., diversity or richness of the recipient communities) predict invasion success, other
hypotheses focus on how similarities in functional traits (85, 263) or phylogenetic relatedness be-
tween non-native and native species affects ecosystem invasibility (21, 48, 138). These hypotheses
cast an eco-evolutionary perspective on plant invasions (38, 62) and are based on mixed evidence
(21, 48, 138) that invasion success is more or less likely by non-native species that are either dis-
tantly (as in Darwin’s naturalization hypothesis) (45) or closely related to native species (53, 199).
Darwin’s naturalization conundrum (53) refers to how Darwin (45) provided two seemingly op-
posing views regarding the relatedness of non-native and native species. Given the importance of
environmental filtering in selecting traits, non-native species closely related to native ones should
be more likely to become established because they share preadaptation to local conditions (i.e.,
the preadaptation hypothesis). However, if competition is important, we should expect that in-
tense competition among closely related native species would favor the establishment of distantly
related non-native species via a differential use of resources and the exploitation of different eco-
logical niches, as in the competition-relatedness hypothesis (21, 199). This apparent inconsistency
is largely explained by the fact that these relationships have been examined at different spatial and
temporal scales and at different stages of invasion; many different mechanisms drive patterns that
are observable at the different scales and invasion stages (18). For instance, vegetation data from
the USA indicate that the presence of native species that are closely related to potentially invasive
species is more likely to predict invasion success at larger spatial extents than at finer, local spa-
tial scales, where competition for the same pool of limited resources tends to be stronger among
closely related species (199). There, non-native species and their close native relatives were found
to be more likely to co-occur at larger spatial extents than at smaller, local spatial scales (199).
Moreover, in harsher climates, non-native species are more closely related to native species since
adaptations to harsh environments tend to be phylogenetically conserved (103), while the effect
of competition is generally stronger in more homogeneous and benign environments (199).

Functional and phylogenetic relationships between native and non-native plants can change
during the invasion process. Since selection pressures vary over time, postintroduction evolu-
tionary processes and coevolutionary processes in the native species may alter the strength and
direction of competitive interactions between non-native and native species over time (18).More-
over, the significance of competition in shaping the recipient communities depends strongly on
the timing of any competitive interaction (90, 293). A high (or superior) capacity to compete
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for resources may be less important or irrelevant if native and non-native species are displaced
phenologically, such that non-native species germinate or initiate vegetative growth earlier than
co-occurring native species, thereby reducing the intensity of competition with native species (79,
90, 293) or completing their life cycles earlier (136).

In a comprehensive review of the functional similarity approach in invasion community ecol-
ogy, Gallien & Carboni (85) showed that at fine spatial scales, the resistance of plant communities
to invasion tends to increase with the diversity of native species and similarities between the native
and invasive species. Interestingly, they found conflicting evidence for differences in community
assembly processes in the native versus non-native ranges of an invader, suggesting that the pro-
cesses of filtering differ at home and abroad.This study confirmed that the role of trait differences
is strongly context dependent, varying across plant communities, along environmental gradients
(124), with the stage of the invasion process (80, 85), and with life form (80).

Evidence that communities with high phylogenetic diversity are more resistant to plant in-
vasions is limited (48, 138). Phylogenetic relatedness with the native species in the recipient
communities is not a consistent predictor of invasion success at fine spatial scales (19), and lo-
cal environmental conditions, community types, and propagule pressure interact in determining
invasion success (75, 138). In this respect, the ecological imbalance hypothesis stipulates that non-
native species originating from regions with highly diverse evolutionary lineages could be more
likely to become invasive in less diverse regions (76) through an expected higher competitive abil-
ity (75), placing emphasis on the evolutionary characteristics of both the recipient region and
potential donor regions (73). This hypothesis was recently supported by findings that, in natural
areas in New Zealand, phylogenetic diversity of the native range was one of the best predic-
tors of invasiveness in forests, while it declined in importance in more disturbed habitats (75).
In this study, Fridley and colleagues (75) found support for the ecological imbalance hypothesis
and Darwin’s naturalization hypothesis, although, in the latter, the role of resource competition
as a predictor of invasiveness was not important.

3.2.2. The role of natural enemies. The presence (or absence) of natural enemies and mutu-
alists affects invasion success and invasibility, especially at the initial stages of invasion. Popular
explanations attribute invasion success to the release (the enemy release hypothesis) (24, 45, 61,
135) or partial release (the enemy reduction hypothesis) (39) from natural enemies (e.g., special-
ist herbivores, pathogens, and parasites) in the recipient communities. A decrease in regulation
by herbivores and other enemies has been linked to dominance and widespread distribution (39),
although Colautti and colleagues (39) argued against an uncritical acceptance of this hypothesis
since it depends on the extent to which natural enemies regulate demographic processes. It is also
possible that introduced enemies of non-native plants might be less harmful in the invaded than
in the native range due to better conditions the invaders encounter in the former (the enemy in-
version hypothesis) (39) or might be more harmful to co-occurring native than to co-occurring
introduced species (the enemy of my enemy hypothesis) (63).

Release from specialist enemies could promote evolutionary shifts toward allocating fewer re-
sources to defense and more resources to enhanced competitive ability through genetic changes
[the evolution of increased competitive ability (EICA) hypothesis] (14, 24). Support for the full
EICA hypothesis is mixed (15, 67, 170, 239). A meta-analysis found broad support for genetically
based changes in plant defense and competitive traits after introduction into new ranges, but not in
the manner proposed by the EICA hypothesis, suggesting that evolution occurs as a result of plant
introduction and population expansion in invasive plant species, although it might not necessar-
ily result in increased size and competitive ability in the introduced ranges (37). It has also been
observed that the effects of both intraspecific and interspecific competition should be accounted

650 Gioria et al.



for when testing the EICA hypothesis (15) since invasive populations may have lower fitness (276)
and reduced competitive ability under intense intraspecific competition. Indeed, one prediction is
that non-native populations may evolve reduced intraspecific competitive abilities (i.e., the evo-
lutionary reduced competitive ability hypothesis), allowing the conservation of resources needed
to compete against native species in the introduced range or to use for other defensive processes
such as the release of allelochemicals (213) or improvement of tolerance to herbivory (15). Evi-
dence for the evolution of increased intraspecific competitive ability in the invasive clonal herb
Alternanthera philoxeroides suggests that interactions among the same genotypes may shift from
competition toward facilitation following introduction (305).

It has been argued that the release from enemies hypothesis is too simplistic to provide a help-
ful explanation for invasion success (39, 244). Non-native plants may escape some enemies but
not others, and the identity of the enemies, and whether they are generalists or specialists, is very
important in determining invasion success (130, 165, 202). Invasive non-native plants are expected
to be released from specialist herbivores but to encounter biotic resistance from resident general-
ist herbivores, with evidence that non-native plants evolve decreased defense against the former
and increased defense against the latter (304) (i.e., the shifting defense hypothesis) (130). While
non-native plants are susceptible to native generalist herbivores (biotic resistance), non-native her-
bivores may facilitate both the abundance and species richness of non-native plants (201). Native
consumers may even prefer non-native over native species, thereby increasing resistance against
invasions (125, 201, 202). If non-native species have not coevolved with consumers found in the
introduced range (termed new associations) (36), they will lack effective defenses against them (as
in the increased susceptibility hypothesis) (39), although this increased susceptibility to enemies
associated with postintroduction evolution at the expense of defensive abilities does not preclude
non-native populations from outperforming native ones, as shown for the invasive herb Silene lat-
ifolia (291). Release from natural enemies is a dynamic process, and as the range size and residence
time of introduced species increase, they ultimately fail to escape enemies (244). The native biota
can also evolve in response to the presence of invasive plants, and some invasive plants retain or
recover their natural defenses over time (241). Highly invasive species have even shown a greater
prevalence of natural enemies than phylogenetically related noninvasive introduced species
(200).

3.2.3. Mutualism. The diversity of mutualists such as pollinators, seed dispersers, and micro-
biota forming symbioses with plant roots may strongly influence ecosystem invasibility (152, 169,
214, 230, 292). By contrast, the absence of coevolved mutualists in the introduced range might
have a negative effect on non-native species, thereby conferring resistance against certain in-
vaders (known as missed mutualists) (179). The net effects of soil microbial communities in the
introduced range determine failure or success, depending on the relative strength of pathogenic
(negative) effects (as in the enemy release hypothesis) as opposed to mutualistic (positive) interac-
tions (as in the enhanced mutualist hypothesis) (224) with soil microorganisms in the introduced
range (297). Not only do invasive plants interact with the native soil biota, but they may also pro-
mote changes in the soil biota (292). Plant invasions often increase the diversity of bacteria (but
not fungi), with possible effects on nutrient cycles, enzymatic activity,mineralization rates, and soil
carbon and nitrogen content (266). Introduced mutualists, such as seed-dispersing ants, have been
found to promote the dominance of non-native plants (214), supporting the invasional meltdown
hypothesis. Moreover, invasive populations have been shown to suppress soil mutualists in intro-
duced ranges more aggressively than mutualists in their native ranges, resulting in a competitive
advantage over mutualist-dependent native species (as in the mutualism disruption hypothesis)
(22), via either negative feedback (279) or novel chemical weapons (23, 102).
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Indirect interactions mediated by organisms such as herbivores, pollinators, seed dispersers,
or the soil biota can mitigate or exacerbate direct plant–plant effects and affect invasibility and
invasion success. Examples of indirect interactions include competition for shared pollinators
(287), which often results in reduced visitation of pollinators to native species in the presence
of a non-native species; such effects may be exacerbated by the dominance of invasive species in
a community [see Traveset & Richardson (268) for a comprehensive review of this topic]. Appar-
ent competition between plants occurs when one species alters the abundance or distribution of
consumers and thus the consumption of the other plant species; this type of interaction between
native and non-native plants has been most frequently examined in plant–herbivore systems (287),
and there is evidence of negative effects for native species (90, 287). However, non-native species
could have positive effects on the competitive ability of native species by reducing the pressure
from generalist herbivores, although empirical evidence of this is lacking.

3.3. Ecosystem Invasibility and Propagule Pressure

To assess the invasibility of an ecosystem, the number and frequency of propagules introduced
(propagule pressure) and the fraction of propagules that survive must be jointly considered (163,
233). Based on a meta-analysis of the relationship between propagule pressure and the successful
establishment of non-native herbaceous species and long-lived trees, Cassey and colleagues (26)
concluded that propagule pressure is the most consistent and strongest determinant of non-native
species establishment. Propagule pressure can influence invasion success in many ways: multiple
introductions, environmental preadaptation and human commensalism, high gene flow along in-
vasion routes, and human-induced dispersal (69, 154). High propagule pressure has been shown
to increase the probability that a non-native species will find opportunities to become established,
such as a suitable microclimate, an empty ecological niche, or a microhabitat free from enemies
(50, 226, 289), and can accelerate range expansion (227). An increase in propagule pressure is ex-
pected to favor colonization in low-stress environments, where nutrient availability is high and
biotic resistance weak, as shown for the annual ruderal Arabidopsis thaliana (111).

3.4. Ecosystem Invasibility Under Global Changes

There are major concerns about how human-induced climatic changes, increasing atmospheric
CO2, and nitrogen deposition will affect ecosystem invasibility, the trajectories of plant invasions,
and the resilience of the recipient communities. Long-term implications of the influence of global
changes on plant invasions are speculative, given the many unknowns. Both non-native and na-
tive species might shift, shrink, or expand their ranges and colonize new areas and ecosystems
in response to climate changes (115, 212). This can lead to the creation of new assemblages of
co-occurring taxa, affecting the biotic resistance of the new communities and disrupting biotic
interactions, which could be advantageous to either the non-native or native species (283). There
is evidence that these human impacts alter disturbance and resource dynamics (58, 101, 115, 270)
and disrupt biotic interactions with enemies and mutualists (115, 268), although the long-term di-
rection of these changes remains unclear. Climatic changes may also alter the phenology of native
species, thereby opening phenological opportunities for non-native species establishment under
low competition (90, 113, 293).

Evidence frommountain ecosystems, which are particularly vulnerable to the combined effects
of a warming climate and increasing human activity, indicates that non-native plants have expanded
and will continue to expand their range at higher elevations under the warming climate (44, 209,
281). In the European Alps, non-native plants are spreading upwards approximately twice as fast
as natives, with species in both categories spreading upwards faster than would correspond to the
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current velocity of climate change because the spread is accelerated by the proximity to roads and
long-distance dispersal events (44). For non-native clonal plants, evidence from protected areas
suggests that under a changing climate, the risk of invasions, compared to that of nonclonal species,
increases in biomes located at high elevations and high latitudes and decreases in lower elevations
and in tropical and subtropical biomes, where asexual reproduction may be a less successful trait
(284).

Because rapid postintroduction evolutionary changes and/or broad environmental tolerance
characterizes many invasive plants, they may respond rapidly to climatic changes (66, 87, 286).
Yet, evidence for climatic adaptation in resilience traits is mixed (66). Available evidence based on
demographic processes suggests that plant species that are less likely to be impacted by climate
warming will be those whose seeds can survive in persistent soil seed banks that are not rapidly
depleted by temperature increases or other related environmental changes (91). Since the capacity
to accumulate persistent seed banks is an important trait associated with naturalization and inva-
siveness (88), it is possible that many invasive species may be more resistant and resilient against
climatic changes through dispersal in time, although the buffering effects of seed banks may be
only temporary (91). Although information on the potential effects of climate change on plants is
available only for a small proportion of species and suffers from a geographical bias, it is becom-
ing increasingly evident that invasive species respond to climate change through decreased seed
dormancy, earlier germination, and increased germination percentages (115).

4. MOVING FORWARD IN INVASION ECOLOGY RESEARCH

Much progress has been made in identifying functional traits that predispose species invasiveness
and the ecosystem properties that increase vulnerability to invasions. However, attempts to find a
common recipe for invasion success for the global flora are unlikely to succeed. Indeed, seeking a
one-size-fits-all answer is counterproductive. Species in different taxonomic groups achieve suc-
cess in invasiveness in very different ways (189, 233, 236), and the contribution of species traits to
invasiveness varies across life forms (80, 84, 219, 222) and ecosystem properties.Moreover, there is
a taxonomic introduction bias because not all species or higher taxonomic groups have beenmoved
around the globe to the same extent, resulting in different opportunities to become naturalized
and/or invasive (133, 172, 193, 222, 236). This pattern has also biased the current understanding
of traits associated with invasiveness.

The field of invasion ecology suffers from too many theories and too little empirical data for
many of them (127). There is an absence of comparative tests of different theories, and some
studies have tested some theories only partially; this is the case of the enemy release hypothesis,
which is typically examined by focusing on one or a few enemies rather than exploring the roles
of all enemies, both specialists and generalists, that an invasive species acquires in the introduced
range. Therefore, some hypotheses are supported by little empirical evidence and the support is
even declining over time (127).

From this admission, it follows that we need more data, but not just any data. We need large-
scale experiments, combining biogeographical and ecological approaches, that are built on global
collaboration and designed to elucidate the role of drivers of invasiveness and their interactions
in defined environmental and different socioeconomic contexts (e.g., 68). International networks
for invasion science have been recommended to address questions that require a biogeographic
approach, such as evaluating the role of biogeography on the susceptibility, resistance, and re-
silience of ecosystems against invasion (267); predicting the probability of an invasion and the
vulnerability of ecosystems to plant invasions under global change (2); and the role of adaptation
and evolution in determining invasion success (196).
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Invasion syndrome:
a combination of
pathways, non-native
species traits, and
characteristics of the
recipient ecosystem
that results in
predictable dynamics
and impacts

Another challenge is to incorporate traits that are missing from our models because this knowl-
edge is restricted to a limited number of species, and screening for complete floras is not available.
For example, in the last decade substantial progress has been made in predicting invasiveness by
including knowledge of the persistence of seeds in natural seed banks (88) and genome size (256),
which both play pivotal roles in many plant invasions but have long been ignored because of the
lack of information. Evidence at a global scale shows that the capacity to produce persistent seeds
better captures the ability of a species to spread through time and space than traits such as seed
mass and seed dormancy (88). The roles of many other traits in the various stages of the invasion
process (and not only correlations between mean trait values with the naturalization or invasion
status of a species) remain to be discovered, explored, and integrated into models. Among the pri-
orities are traits involved in plant–microbe interactions, not only in the rhizosphere but also in
the phyllosphere, as well as endophytes found within the plants themselves.

Molecular tools have made important contributions to our understanding of aspects of plant
invasiveness in the last two decades, but many exciting opportunities remain, for example, to de-
termine the potential role of horizontal gene transfer in rapid evolution during invasions. The
fields of metabolomics and transcriptomics will enable greater functional insights into the evolu-
tionary shifts following the naturalization of species in new regions and under different selection
pressures.

More options for yielding novel insights into plant invasiveness lie at the interface between
spatial scales. For example, new technologies for remote sensing provide novel avenues for viewing
and studying invasions at multiple scales of space and time. A rocking approach that continuously
shifts focus between stages and scales (229) has the potential to provide new perspectives on, for
example, the role of long-distance dispersal in initiating and sustaining plant invasions.

Much uncertainty pertains to the temporal dimension of plant invasions, and evidence is ac-
cumulating of long-established invasive populations being replaced by native or other non-native
species or of decreasing impact of the invader on species richness over time (56). While a suite
of species traits (e.g., those related to the ability to acquire or conserve resources and maintain
high plasticity) indeed characterizes invasion success in many ecosystem types, it remains unclear
whether the benefits of these traits will persist over time or are only transient, especially under
global environmental changes or after major disturbance events. Some opportunistic traits that
provide initial advantages over natives may, in fact, pose a risk for survival in a community, such as
those leading to early germination or growth in the growing season. Long-term studies evaluating
demographic and evolutionary processes under varying environmental conditions are needed to
evaluate how invasive species may facilitate their own growth or that of other alien species through
altering the biotic and abiotic conditions of the introduced ranges.

A way to side-step the limitations of separate studies of species invasiveness and community
invasibility is to adopt the invasion syndromes approach (144), which aims to identify combina-
tions of “pathways, [non-native] species traits, and characteristics of the recipient ecosystem which
collectively result in predictable dynamics and impacts, and that can be managed effectively us-
ing specific policy and management actions” (189, p. 1806). This approach recognizes that some
cross-taxon and cross-habitat generalizations are legitimate, robust, and useful (208), albeit only
within a certain shared context (143). Compared to other syndrome approaches, such as the do-
mestication syndrome (1) or the pollination syndrome (51), this approach goes beyond identifying
shared characteristics of a certain taxon or taxonomic group; it encompasses features of invaded
ecosystems and the causes and pathways that lead to the introduction of non-native taxa. Examples
of this approach include syndromes identified for invasions of cacti through clonal fragmentation
in arid ecosystems, plant invasions in the mountains, and invasions by tall-statured grasses (189)
(Figure 2).
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Figure 2

Example of an invasion syndrome: the tall-statured grasses syndrome. An invasion syndrome is defined as a combination of pathways,
alien species traits, and characteristics of the recipient ecosystem that collectively result in predictable dynamics and impacts and that
can be managed effectively using specific policy and management actions. The invasion context is displayed on three vertical axes
(triangles) ranging from (top) general to (bottom) specific. Grey sliders indicate the level of generality/specificity of each axis (pathways
are in orange, species traits are in green, ecosystem properties are in blue) within a syndrome, while dots indicate the property within each
axis that is known to influence the syndrome. The positions along the axes (grey sliders) are adjusted so that all invasion events within the
selected context result in similar outcomes and response options. For it to be meaningful, the shared characteristics (pathways, alien
species traits, and characteristics of the recipient ecosystem) within a syndrome must result in predictable outcomes (regarding invasion
dynamics and impacts) that can be best managed using similar management or policy responses. In this example, non-native species
traits vary from general to specific, while the characteristics of the recipient ecosystems are broadly defined. Tall-statured grasses reach
heights of at least 2 m and share similar pathways of introduction in the non-native ranges (introduction as biomass feedstock and
bioenergy crops). Their invasion success is attributed to traits such as high biomass production and accumulation, dual reproductive
modes, and a generally economic interest. They can invade different ecosystems (grasslands, wetlands, and forests) and their impacts on
native communities include competitive exclusion of understory plants and light reduction through high rates of resource acquisition.
Figure adapted from Novoa et al. (189) (CC BY 4.0).

Since ecological opportunities and barriers can be formed dynamically and adaptively in
response to the ecological novelty created by biological invasions, Hui and colleagues (120) rec-
ommend that the barrier scheme of the invasion continuum (13, 180) be expanded to account for
the dynamic complexity of ecological networks (119), including species-specific eco-evolutionary
dynamics (118). If we consider persistent invasions in the context of trait-mediated biotic inter-
actions as ensembles of evolutionary games in an open-adaptive system, the invasiveness of an
introduced species can be precisely and unambiguously defined and quantified as the per capita
population growth rate when rare (190); invasibility maps the terrain of positive invasiveness in
the trait space. This approach opens avenues for exploring links between invasiveness and diverse
ecosystem structures (124).

Another promising approach to model invasion success and account for context dependency is
the Macroecological Framework for Invasive Aliens (MAFIA) (215). This framework merges in-
sights on invasions by using three interacting classes of factors—non-native species traits, location
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Figure 3

The Macroecological Framework for Invasive Aliens [Pyšek and colleagues (215)]. Traits of non-native species (termed alien in the
scheme), including their values in the native range, are shown in green, location characteristics are in blue, and event-related factors are
in orange. Individual factors are shown as operating along the introduction-naturalization-invasion continuum. Species geographic
attributes and habitat and climate in the native range affect both alien species traits and event-related socioeconomic factors by
influencing the probability that a species will be transported by humans from its native range. However, they are not directly related to
the location characteristics in the introduced range. Lineage survival probability is the probability that any of the introduced non-native
individuals leaves a surviving lineage, that is, founds a population. Abbreviations: I, number of introduction events; N, number of
individuals introduced per introduction event; S, number of species introduced. Figure adapted from Pyšek et al. (215) (CC BY 4.0).

characteristics, and factors related to introduction events—to explicitly map these interactions
onto the invasion sequence from introduction to naturalization to invasion (215) (Figure 3).
MAFIA accounts for socioeconomic factors and propagule/colonization pressure, which ulti-
mately play a key role in driving invasion success (12, 251), and introduces the biogeographical
dimension of invasiveness by accounting for species traits, ecology, and performance in the na-
tive range and how these characteristics change after introduction to a new region. An example
of the application of this framework is a study of European plants that have become naturalized
in North America (220) where, besides time since introduction and propagule pressure in both
ranges, the naturalization success most strongly depended on the breadth of habitat niche that
a species occupies in its native range. Species traits, specifically a persistent seed bank and long
flowering period, had only an indirect effect on naturalization success, which manifested via their
effects on the variety of habitats occupied in the native range (220). This suggests that future re-
search should explicitly link biological traits to the different stages of invasion and that a failure to
consider characteristics of the native range may lead to overestimating the role of biological traits
and result in spurious predictions of the major determinants of plant invasiveness (215).
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5. CONCLUDING REMARKS

Much progress has been made over the last 20 years in identifying ecological and evolutionary
drivers of plant invasions. The capacity of non-native species to proceed along the invasion con-
tinuum ismediated by complex interactions amongmultiple facilitating and limiting processes (28,
29) and by even more complex system feedback loops. Unsurprisingly, no single theory explains
the success of naturalized and invasive plants in all contexts (62, 189, 285). Species traits (i.e., inher-
ent factors), features of the abiotic and biotic environment, introduction histories, and associations
with humans affect invasion success in diverse ways (215). The resulting context dependences (30)
make it unrealistic to achieve comprehensive, mechanistic explanations for all plant invasions.
Much better results emerge when invasion success is examined by focusing on target taxonomic
groups (e.g., genera such asAcacia and Pinus or families such as Cactaceae), functional groups (e.g.,
trees or grasses), or habitats (e.g., riparian ecosystems, arid or semiarid grasslands, or temperate
or tropical forests). In this respect, the invasion syndromes approach (144, 189, 208) provides a
tractable roadmap for achieving reasonable levels of generalization based on incorporating the
interacting factors in frameworks aimed at understanding and managing plant invasions.

Increasing pressure from human activities acting across scales, from local to global, has con-
tributed to successful invasions even in ecosystems long regarded as resistant to invasions. Our
understanding of the invasion process needs to consider that almost any ecosystem is invasible
should the right propagules be introduced in a sufficient quantity and over a long enough pe-
riod. Ultimately, the future distribution of both native and non-native plants will depend on how
their populations respond to local- and global-level environmental changes and associated biotic
changes throughout their life cycles.

Overall, the field of invasion ecology suffers from too many theories and too little empirical
data to support many of them (127, 128). The use of ecological frameworks going beyond the
traditional search for traits associated with successful naturalization and invasion or properties
characterizing invasible ecosystems is a promising approach. Further progress can only be made
by integrating species invasiveness, community invasibility, and environmental context into a new
school of thought about invasions.

FUTURE ISSUES

1. No single theory currently explains the naturalization and invasion of non-native plants
in all contexts, and seeking such a theory is an unrealistic aim. However, more work is
needed to test multiple, rather than single, hypotheses through experiments.

2. The role of many traits at the individual and population levels in the various stages of
the invasion process remains to be discovered, elucidated, and integrated into models.
Traits involved in plant–microbe interactions, particularly in the rhizosphere and the
phyllosphere, as well as endophytes, are a priority in this regard.

3. Large-scale experiments combining biogeographical and ecological approaches, built
on global collaboration, are needed to uncover the role of eco-evolutionary pro-
cesses in determining invasiveness and their interactions in different environmental and
socioeconomic contexts.

4. Plant invasions must be examined at multiple scales of space and time to gain new per-
spectives on the importance of species traits and on long-term community dynamics in
invaded ecosystems.
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5. Molecular tools will continue to improve our understanding of diverse aspects of plant
invasiveness as many exciting opportunities remain, such as determining the potential
role of horizontal gene transfer in rapid evolution during invasions. Metabolomics and
transcriptomics are promising tools to gain functional insights into the evolutionary
shifts following the naturalization of species in new regions under different selection
pressures.

6. Although the invasion continuum paradigm has served invasion ecology well as a foun-
dational construct for exploring many facets of plant invasiveness, viewing invasions
through the lens of network ecology has huge potential for uncovering new dimensions
in the interplay between species invasiveness and community invasibility.

7. We suggest that the invasion syndromes approach is the most profitable way to pro-
ceed to achieve reasonable levels of generalization based on incorporating multiple
interacting factors in frameworks aimed at understanding and managing plant invasions.
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