1932

Abstract

Spurred by rich, multiwavelength observations and enabled by new simulations, ranging from cosmological to subparsec scales, the past decade has seen major theoretical progress in our understanding of the circumgalactic medium (CGM). We review key physical processes in the CGM. Our conclusions include the following:

  • ▪  The properties of the CGM depend on a competition between gravity-driven infall and gas cooling. When cooling is slow relative to free fall, the gas is hot (roughly virial temperature), whereas the gas is cold ( ∼ 104 K) when cooling is rapid.
  • ▪  Gas inflows and outflows play crucial roles, as does the cosmological environment. Large-scale structure collimates cold streams and provides angular momentum. Satellite galaxies contribute to the CGM through winds and gas stripping.
  • ▪  In multiphase gas, the hot and cold phases continuously exchange mass, energy, and momentum. The interaction between turbulent mixing and radiative cooling is critical. A broad spectrum of cold gas structures, going down to subparsec scales, arises from fragmentation, coagulation, and condensation onto gas clouds.
  • ▪  Magnetic fields, thermal conduction, and cosmic rays can substantially modify how the cold and hot phases interact, although microphysical uncertainties are presently large.
Key open questions for future work include the mutual interplay between small-scale structure and large-scale dynamics, and how the CGM affects the evolution of galaxies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-052920-125203
2023-08-18
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/astro/61/1/annurev-astro-052920-125203.html?itemId=/content/journals/10.1146/annurev-astro-052920-125203&mimeType=html&fmt=ahah

Literature Cited

  1. Abdo AA, Ackermann M, Ajello M et al. 2010a. Ap. J. Lett. 709:L152–57
    [Google Scholar]
  2. Abdo AA, Ackermann M, Ajello M et al. 2010b. Astron. Astrophys. 523:L2
    [Google Scholar]
  3. Abruzzo MW, Bryan GL, Fielding DB. 2022a. Ap. J. 925:199
    [Google Scholar]
  4. Abruzzo MW, Fielding DB, Bryan GL. 2022b. arXiv:2210.15679
  5. Ackermann M, Ajello M, Allafort A et al. 2012. Astron. Astrophys. 538:A71
    [Google Scholar]
  6. Agertz O, Moore B, Stadel J et al. 2007. MNRAS 380:963–78
    [Google Scholar]
  7. Amato E, Blasi P. 2018. Adv. Space Res. 62:2731–49
    [Google Scholar]
  8. Anglés-Alcázar D, Faucher-Giguère CA, Kereš D et al. 2017. MNRAS 470:4698–719
    [Google Scholar]
  9. Armillotta L, Fraternali F, Marinacci F. 2016. MNRAS 462:4157–70
    [Google Scholar]
  10. Armillotta L, Ostriker EC, Jiang YF. 2021. Ap. J. 922:11
    [Google Scholar]
  11. Armstrong JW, Rickett BJ, Spangler SR. 1995. Ap. J. 443:209–21
    [Google Scholar]
  12. Bai XN. 2022. Ap. J. 928:112
    [Google Scholar]
  13. Bai XN, Ostriker EC, Plotnikov I, Stone JM. 2019. Ap. J. 876:60
    [Google Scholar]
  14. Balbus SA. 1986. Ap. J. Lett. 303:L79
    [Google Scholar]
  15. Balbus SA. 1995. Publ. Astron. Soc. Pac. 80:328–45
    [Google Scholar]
  16. Balbus SA, Soker N. 1989. Astrophys. J. 341:611–30
    [Google Scholar]
  17. Banda-Barragán WE, Brüggen M, Heesen V et al. 2021. MNRAS 506:5658–80
    [Google Scholar]
  18. Banda-Barragán WE, Zertuche FJ, Federrath C et al. 2019. MNRAS 486:4526–44
    [Google Scholar]
  19. Barkana R, Loeb A. 2001. Phys. Rep. 349:125–238
    [Google Scholar]
  20. Begelman MC. 1995. Publ. Astron. Soc. Pac. 80:545–552
    [Google Scholar]
  21. Begelman MC, Fabian AC. 1990. MNRAS 244:26P–29P
    [Google Scholar]
  22. Begelman MC, Zweibel EG. 1994. Ap. J. 431:689–704
    [Google Scholar]
  23. Behroozi P, Wechsler RH, Hearin AP, Conroy C. 2019. MNRAS 488:3143–94
    [Google Scholar]
  24. Berlok T, Pfrommer C. 2019. MNRAS 489:3368–84
    [Google Scholar]
  25. Besla G, Kallivayalil N, Hernquist L et al. 2012. MNRAS 421:2109–38
    [Google Scholar]
  26. Bett P, Eke V, Frenk CS et al. 2007. MNRAS 376:215–32
    [Google Scholar]
  27. Binney J. 1977. Ap. J. 215:483–91
    [Google Scholar]
  28. Birnboim Y, Dekel A. 2003. MNRAS 345:349–64
    [Google Scholar]
  29. Booth CM, Agertz O, Kravtsov AV, Gnedin NY. 2013. Ap. J. Lett. 777:L16
    [Google Scholar]
  30. Bouché N, Murphy MT, Kacprzak GG et al. 2013. Science 341:50–53
    [Google Scholar]
  31. Bowen DV, Chelouche D, Jenkins EB et al. 2016. Ap. J. 826:50
    [Google Scholar]
  32. Bower RG, Benson AJ, Malbon R et al. 2006. MNRAS 370:645–55
    [Google Scholar]
  33. Bower RG, Schaye J, Frenk CS et al. 2017. MNRAS 465:32–44
    [Google Scholar]
  34. Breitschwerdt D, McKenzie JF, Voelk HJ. 1991. Astron. Astrophys. 245:79–98
    [Google Scholar]
  35. Brüggen M, Scannapieco E. 2016. Ap. J. 822:31
    [Google Scholar]
  36. Brüggen M, Scannapieco E. 2020. Ap. J. 905:19
    [Google Scholar]
  37. Bryan GL, Norman ML, O'Shea BW et al. 2014. Ap. J. Suppl. 211:19
    [Google Scholar]
  38. Buck T, Pfrommer C, Pakmor R et al. 2020. MNRAS 497:1712–37
    [Google Scholar]
  39. Bullock JS, Dekel A, Kolatt TS et al. 2001. Ap. J. 555:240–57
    [Google Scholar]
  40. Bustard C, Gronke M. 2022. Ap. J. 933:120
    [Google Scholar]
  41. Bustard C, Oh SP. 2022. Ap. J. 941:65
    [Google Scholar]
  42. Bustard C, Zweibel EG. 2021. Ap. J. 913:106
    [Google Scholar]
  43. Bustard C, Zweibel EG, Cotter C. 2017. Ap. J. 835:72
    [Google Scholar]
  44. Butsky IS, Fielding DB, Hayward CC et al. 2020. Ap. J. 903:77
    [Google Scholar]
  45. Butsky IS, Werk JK, Tchernyshyov K et al. 2022. Ap. J. 935:69
    [Google Scholar]
  46. Byrne L, Faucher-Giguère CA, Stern J et al. 2023. MNRAS 520:722–39
    [Google Scholar]
  47. Cantalupo S, Arrigoni-Battaia F, Prochaska JX et al. 2014. Nature 506:63–66
    [Google Scholar]
  48. Cantalupo S, Porciani C, Lilly SJ, Miniati F. 2005. Ap. J. 628:61–75
    [Google Scholar]
  49. Cesarsky CJ, Kulsrud RM 1981. Origin of Cosmic Rays, IAU Symp. 94 G Setti, G Spada, AW Wolfendale 251–52. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  50. Chan TK, Kereš D, Hopkins PF et al. 2019. MNRAS 488:3716–44
    [Google Scholar]
  51. Chandrasekhar S. 1961. Hydrodynamic and Hydromagnetic Stability Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  52. Chawla P, Kaspi VM, Ransom SM et al. 2022. Ap. J. 927:35
    [Google Scholar]
  53. Chen HW, Gauthier JR, Sharon K et al. 2014. MNRAS 438:1435–50
    [Google Scholar]
  54. Chen HW, Johnson SD, Zahedy FS et al. 2017. Ap. J. Lett. 842:L19
    [Google Scholar]
  55. Chen Z, Fielding DB, Bryan GL. 2022. arXiv:2211.01395
  56. Chevalier RA, Clegg AW. 1985. Nature 317:44–45
    [Google Scholar]
  57. Choudhury PP, Sharma P. 2016. MNRAS 457:2554–68
    [Google Scholar]
  58. Choudhury PP, Sharma P, Quataert E. 2019. MNRAS 488:3195–210
    [Google Scholar]
  59. Christensen CR, Davé R, Governato F et al. 2016. Ap. J. 824:57
    [Google Scholar]
  60. Chynoweth KM, Langston GI, Yun MS et al. 2008. Astron. J. 135:1983–92
    [Google Scholar]
  61. Cicone C, Maiolino R, Sturm E et al. 2014. Astron. Astrophys. 562:A21
    [Google Scholar]
  62. Cooper JL, Bicknell GV, Sutherland RS, Bland-Hawthorn J. 2009. Ap. J. 703:330–47
    [Google Scholar]
  63. Corlies L, Peeples MS, Tumlinson J et al. 2020. Ap. J. 896:125
    [Google Scholar]
  64. Correa CA, Schaye J, Wyithe JSB et al. 2018. MNRAS 473:538–59
    [Google Scholar]
  65. Croton DJ, Springel V, White SDM et al. 2006. MNRAS 365:11–28
    [Google Scholar]
  66. Dalcanton JJ, Spergel DN, Summers FJ. 1997. Ap. J. 482:659–76
    [Google Scholar]
  67. Damköhler G. 1940. Z. Elektrochem. Angew. Phys. Chem. 46:601–26
    [Google Scholar]
  68. Danovich M, Dekel A, Hahn O et al. 2015. MNRAS 449:2087–111
    [Google Scholar]
  69. Das HK, Choudhury PP, Sharma P. 2021. MNRAS 502:4935–52
    [Google Scholar]
  70. Davé R, Oppenheimer BD, Finlator K. 2011. MNRAS 415:11–31
    [Google Scholar]
  71. De Pontieu B, Martens PCH, Hudson HS. 2001. Ap. J. 558:859–71
    [Google Scholar]
  72. DeFelippis D, Genel S, Bryan GL et al. 2020. Ap. J. 895:17
    [Google Scholar]
  73. Defouw RJ. 1970. Ap. J. 160:659–69
    [Google Scholar]
  74. Dekel A, Birnboim Y. 2006. MNRAS 368:2–20
    [Google Scholar]
  75. Dekel A, Birnboim Y. 2008. MNRAS 383:119–38
    [Google Scholar]
  76. Dekel A, Birnboim Y, Engel G et al. 2009a. Nature 457:451–54
    [Google Scholar]
  77. Dekel A, Lapiner S, Dubois Y. 2019. arXiv:1904.08431
  78. Dekel A, Sari R, Ceverino D. 2009b. Ap. J. 703:785–801
    [Google Scholar]
  79. Dijkstra M, Haiman Z, Spaans M. 2006. Ap. J. 649:14–36
    [Google Scholar]
  80. Dijkstra M, Loeb A. 2008. MNRAS 386:492–504
    [Google Scholar]
  81. Dijkstra M, Loeb A. 2009. MNRAS 400:1109–20
    [Google Scholar]
  82. Donahue M, Voit GM. 2022. Phys. Rep. 973:1–109
    [Google Scholar]
  83. Dorfi EA, Breitschwerdt D. 2012. Astron. Astrophys. 540:A77
    [Google Scholar]
  84. Drake JF, Pfrommer C, Reynolds CS et al. 2021. Ap. J. 923:245
    [Google Scholar]
  85. Drury LOC, Strong AW. 2017. Astron. Astrophys. 597:A117
    [Google Scholar]
  86. Dubois Y, Pichon C, Welker C et al. 2014. MNRAS 444:1453–68
    [Google Scholar]
  87. Dubois Y, Volonteri M, Silk J et al. 2015. MNRAS 452:1502–18
    [Google Scholar]
  88. Dursi LJ. 2007. Ap. J. 670:221–30
    [Google Scholar]
  89. Dursi LJ, Pfrommer C. 2008. Ap. J. 677:993–1018
    [Google Scholar]
  90. Dvorkin C, Mishra-Sharma S, Nord B et al. 2022. arXiv:2203.08056
  91. Efstathiou G. 1992. MNRAS 256:43P–47P
    [Google Scholar]
  92. El-Zant AA, Kim WT, Kamionkowski M. 2004. MNRAS 354:169–75
    [Google Scholar]
  93. Elphick C, Regev O, Shaviv N. 1992. Ap. J. 392:106–17
    [Google Scholar]
  94. Elphick C, Regev O, Spiegel EA. 1991. MNRAS 250:617–28
    [Google Scholar]
  95. Esmerian CJ, Kravtsov AV, Hafen Z et al. 2021. MNRAS 505:1841–62
    [Google Scholar]
  96. Everett JE, Zweibel EG, Benjamin RA et al. 2008. Ap. J. 674:258–70
    [Google Scholar]
  97. Fabian AC. 1994. Annu. Rev. Astron. Astrophys. 32:277–318
    [Google Scholar]
  98. Fabian AC. 2012. Annu. Rev. Astron. Astrophys. 50:455–89
    [Google Scholar]
  99. Fabian AC, Nulsen PEJ, Canizares CR. 1984. Nature 310:733–40
    [Google Scholar]
  100. Faerman Y, Sternberg A, McKee CF. 2020. Ap. J. 893:82
    [Google Scholar]
  101. Fall SM, Efstathiou G. 1980. MNRAS 193:189–206
    [Google Scholar]
  102. Farber R, Ruszkowski M, Yang HYK, Zweibel EG. 2018. Ap. J. 856:112
    [Google Scholar]
  103. Farber RJ, Gronke M. 2022. MNRAS 510:551–67
    [Google Scholar]
  104. Farmer AJ, Goldreich P. 2004. Ap. J. 604:671–74
    [Google Scholar]
  105. Faucher-Giguère CA, Feldmann R, Quataert E et al. 2016. MNRAS 461:L32–36
    [Google Scholar]
  106. Faucher-Giguère CA, Hopkins PF, Kereš D et al. 2015. MNRAS 449:987–1003
    [Google Scholar]
  107. Faucher-Giguère CA, Kereš D. 2011. MNRAS 412:L118–22
    [Google Scholar]
  108. Faucher-Giguère CA, Kereš D, Dijkstra M et al. 2010. Ap. J. 725:633–57
    [Google Scholar]
  109. Faucher-Giguère CA, Kereš D, Ma CP. 2011. MNRAS 417:2982–99
    [Google Scholar]
  110. Faucher-Giguère CA, Quataert E. 2012. MNRAS 425:605–22
    [Google Scholar]
  111. Faucher-Giguère CA, Quataert E, Murray N. 2012. MNRAS 420:1347–54
    [Google Scholar]
  112. Field GB. 1965. Ap. J. 142:531–67
    [Google Scholar]
  113. Fielding D, Quataert E, Martizzi D, Faucher-Giguère CA. 2017a. MNRAS 470:L39–43
    [Google Scholar]
  114. Fielding D, Quataert E, McCourt M, Thompson TA. 2017b. MNRAS 466:3810–26
    [Google Scholar]
  115. Fielding DB, Bryan GL. 2022. Ap. J. 924:82
    [Google Scholar]
  116. Fielding DB, Ostriker EC, Bryan GL, Jermyn AS. 2020. Ap. J. Lett. 894:L24
    [Google Scholar]
  117. Fischer J, Sturm E, González-Alfonso E et al. 2010. Astron. Astrophys. 518:L41
    [Google Scholar]
  118. Franchetto A, Tonnesen S, Poggianti BM et al. 2021. Ap. J. Lett. 922:L6
    [Google Scholar]
  119. Fraternali F 2017. Gas Accretion onto Galaxies A Fox, R Davé, Ap. Space Sci. Libr. 430 323–53. Cham, Switz: Springer
    [Google Scholar]
  120. Fumagalli M, Hennawi JF, Prochaska JX et al. 2014. Ap. J. 780:74
    [Google Scholar]
  121. Fumagalli M, O'Meara JM, Prochaska JX. 2011a. Science 334:1245–49
    [Google Scholar]
  122. Fumagalli M, Prochaska JX, Kasen D et al. 2011b. MNRAS 418:1796–821
    [Google Scholar]
  123. Garrison-Kimmel S, Hopkins PF, Wetzel A et al. 2018. MNRAS 481:4133–57
    [Google Scholar]
  124. Gaspari M, McDonald M, Hamer SL et al. 2018. Ap. J. 854:167
    [Google Scholar]
  125. Gaspari M, Ruszkowski M, Oh SP. 2013. MNRAS 432:3401–22
    [Google Scholar]
  126. Gaspari M, Ruszkowski M, Sharma P. 2012. Ap. J. 746:94
    [Google Scholar]
  127. Genel S, Nelson D, Pillepich A et al. 2018. MNRAS 474:3976–96
    [Google Scholar]
  128. Girichidis P, Pfrommer C, Pakmor R, Springel V. 2022. MNRAS 510:3917–38
    [Google Scholar]
  129. Goerdt T, Ceverino D. 2015. MNRAS 450:3359–70
    [Google Scholar]
  130. Grand RJJ, Marinacci F, Pakmor R et al. 2021. MNRAS 507:4953–67
    [Google Scholar]
  131. Grenier IA, Black JH, Strong AW. 2015. Annu. Rev. Astron. Astrophys. 53:199–246
    [Google Scholar]
  132. Gronke M, Bull P, Dijkstra M. 2015. Ap. J. 812:123
    [Google Scholar]
  133. Gronke M, Dijkstra M, McCourt M, Oh SP. 2016. Ap. J. Lett. 833:L26
    [Google Scholar]
  134. Gronke M, Dijkstra M, McCourt M, Oh SP. 2017. Astron. Astrophys. 607:A71
    [Google Scholar]
  135. Gronke M, Oh SP. 2018. MNRAS 480:L111–15
    [Google Scholar]
  136. Gronke M, Oh SP. 2020a. MNRAS 492:1970–90
    [Google Scholar]
  137. Gronke M, Oh SP. 2020b. MNRAS 494:L27–31
    [Google Scholar]
  138. Gronke M, Oh SP. 2022. arXiv:2209.00732
  139. Gronke M, Oh SP, Ji S, Norman C 2022. MNRAS 511:859–76
    [Google Scholar]
  140. Grønnow A, Tepper-García T, Bland-Hawthorn J. 2018. Ap. J. 865:64
    [Google Scholar]
  141. Grønnow A, Tepper-García T, Bland-Hawthorn J, Fraternali F. 2022. MNRAS 509:5756–70
    [Google Scholar]
  142. Guo F, Oh SP. 2008. MNRAS 384:251–66
    [Google Scholar]
  143. Gurvich AB, Stern J, Faucher-Giguère CA et al. 2023. MNRAS 519:22598–614
    [Google Scholar]
  144. Hafen Z, Faucher-Giguère CA, Anglés-Alcázar D et al. 2017. MNRAS 469:2292–304
    [Google Scholar]
  145. Hafen Z, Faucher-Giguère CA, Anglés-Alcázar D et al. 2019. MNRAS 488:1248–72
    [Google Scholar]
  146. Hafen Z, Faucher-Giguère CA, Anglés-Alcázar D et al. 2020. MNRAS 494:3581–95
    [Google Scholar]
  147. Hafen Z, Stern J, Bullock J et al. 2022. MNRAS 514:5056–73
    [Google Scholar]
  148. Haislmaier KJ, Tripp TM, Katz N et al. 2021. MNRAS 502:4993–5037
    [Google Scholar]
  149. Heitsch F, Marchal A, Miville-Deschênes MA et al. 2022. MNRAS 509:4515–31
    [Google Scholar]
  150. Heitsch F, Putman ME. 2009. Ap. J. 698:1485–96
    [Google Scholar]
  151. Henley DB, Kwak K, Shelton RL. 2012. Ap. J. 753:58
    [Google Scholar]
  152. Hennawi JF, Prochaska JX, Cantalupo S, Arrigoni-Battaia F. 2015. Science 348:779–83
    [Google Scholar]
  153. Hitomi Collab., Aharonian F, Akamatsu H et al. 2016. Nature 535:117–21
    [Google Scholar]
  154. Ho SH, Martin CL, Kacprzak GG, Churchill CW. 2017. Ap. J. 835:267
    [Google Scholar]
  155. Hodges-Kluck EJ, Miller MJ, Bregman JN. 2016. Ap. J. 822:21
    [Google Scholar]
  156. Hogan MT, McNamara BR, Pulido F et al. 2017. Ap. J. 837:51
    [Google Scholar]
  157. Holcomb C, Spitkovsky A. 2019. Ap. J. 882:3
    [Google Scholar]
  158. Hopkins PF. 2015. MNRAS 450:53–110
    [Google Scholar]
  159. Hopkins PF. 2023. MNRAS 518:45882–92
    [Google Scholar]
  160. Hopkins PF, Chan TK, Garrison-Kimmel S et al. 2020. MNRAS 492:3465–98
    [Google Scholar]
  161. Hopkins PF, Squire J, Butsky IS, Ji S. 2021a. MNRAS 517:45413–48
    [Google Scholar]
  162. Hopkins PF, Squire J, Chan TK et al. 2021b. MNRAS 501:4184–213
    [Google Scholar]
  163. Huang S, Katz N, Scannapieco E et al. 2020. MNRAS 497:2586–604
    [Google Scholar]
  164. Huang T, Stechmann SN, Torchinsky JL. 2022. Phys. Rev. Fluids 7:010502
    [Google Scholar]
  165. Huang X, Jiang Y, Davis SW. 2022. Ap. J. 931:140
    [Google Scholar]
  166. Huang YH, Chen HW, Johnson SD, Weiner BJ. 2016. MNRAS 455:1713–27
    [Google Scholar]
  167. Hummels CB, Smith BD, Hopkins PF et al. 2019. Ap. J. 882:156
    [Google Scholar]
  168. Ipavich FM. 1975. Ap. J. 196:107–20
    [Google Scholar]
  169. Jacob S, Pfrommer C. 2017. MNRAS 467:1449–77
    [Google Scholar]
  170. Jennings F, Beckmann R, Sijacki D, Dubois Y. 2023. MNRAS 518:45215–35
    [Google Scholar]
  171. Ji S, Chan TK, Hummels CB et al. 2020. MNRAS 496:4221–38
    [Google Scholar]
  172. Ji S, Kereš D, Chan TK et al. 2021. MNRAS 505:259–73
    [Google Scholar]
  173. Ji S, Oh SP, Masterson P. 2019. MNRAS 487:737–54
    [Google Scholar]
  174. Ji S, Oh SP, McCourt M. 2018. MNRAS 476:852–67
    [Google Scholar]
  175. Jiang F, Dekel A, Kneller O et al. 2019. MNRAS 488:4801–15
    [Google Scholar]
  176. Jiang YF, Oh SP. 2018. Ap. J. 854:5
    [Google Scholar]
  177. Jokipii JR, Morfill G. 1987. Ap. J. 312:170–77
    [Google Scholar]
  178. Jones TW, Gaalaas JB, Ryu D, Frank A. 1997. Ap. J. 482:230–44
    [Google Scholar]
  179. Kanjilal V, Dutta A, Sharma P. 2021. MNRAS 501:1143–59
    [Google Scholar]
  180. Keller BW, Wadsley J, Couchman HMP. 2016. MNRAS 463:1431–45
    [Google Scholar]
  181. Kempski P, Quataert E. 2020. MNRAS 493:1801–17
    [Google Scholar]
  182. Kempski P, Quataert E. 2022. MNRAS 514:657–74
    [Google Scholar]
  183. Kereš D, Katz N, Davé R et al. 2009a. MNRAS 396:2332–44
    [Google Scholar]
  184. Kereš D, Katz N, Fardal M et al. 2009b. MNRAS 395:160–79
    [Google Scholar]
  185. Kereš D, Katz N, Weinberg DH, Davé R. 2005. MNRAS 363:2–28
    [Google Scholar]
  186. Kim CG, Ostriker EC, Somerville RS et al. 2020. Ap. J. 900:61
    [Google Scholar]
  187. Klein RI, McKee CF, Colella P. 1994. Ap. J. 420:213–36
    [Google Scholar]
  188. Kollmeier JA, Zheng Z, Davé R et al. 2010. Ap. J. 708:1048–75
    [Google Scholar]
  189. Komarov S, Schekochihin AA, Churazov E, Spitkovsky A. 2018. J. Plasma Phys. 84:905840305
    [Google Scholar]
  190. Koyama H, Inutsuka Si. 2004. Ap. J. Lett. 602:L25–28
    [Google Scholar]
  191. Kravtsov AV. 2013. Ap. J. Lett. 764:L31
    [Google Scholar]
  192. Kravtsov AV, Borgani S. 2012. Annu. Rev. Astron. Astrophys. 50:353–409
    [Google Scholar]
  193. Kravtsov AV, Klypin AA, Khokhlov AM. 1997. Ap. J. Suppl. 111:73–94
    [Google Scholar]
  194. Krumholz MR, Crocker RM, Sampson ML. 2022. MNRAS 517:1355–80
    [Google Scholar]
  195. Krumholz MR, Gnedin NY. 2011. Ap. J. 729:36
    [Google Scholar]
  196. Kulsrud R, Pearce WP. 1969. Ap. J. 156:445–69
    [Google Scholar]
  197. Kwak K, Henley DB, Shelton RL. 2011. Ap. J. 739:30
    [Google Scholar]
  198. Kwak K, Shelton RL. 2010. Ap. J. 719:523–39
    [Google Scholar]
  199. Kwak K, Shelton RL, Henley DB. 2015. Ap. J. 812:111
    [Google Scholar]
  200. Lacki BC, Thompson TA, Quataert E. 2010. Ap. J. 717:1–28
    [Google Scholar]
  201. Lapiner S, Dekel A, Dubois Y. 2021. MNRAS 505:172–90
    [Google Scholar]
  202. Lau MW, Prochaska JX, Hennawi JF. 2016. Ap. J. Suppl. 226:25
    [Google Scholar]
  203. Lehner N, Staveley-Smith L, Howk JC. 2009. Ap. J. 702:940–54
    [Google Scholar]
  204. Leitherer C, Schaerer D, Goldader JD et al. 1999. Ap. J. Suppl. 123:3–40
    [Google Scholar]
  205. Li Y, Bryan GL. 2014a. Ap. J. 789:54
    [Google Scholar]
  206. Li Y, Bryan GL. 2014b. Ap. J. 789:153
    [Google Scholar]
  207. Li Y, Bryan GL, Quataert E. 2019. Ap. J. 887:41
    [Google Scholar]
  208. Li Z, Hopkins PF, Squire J, Hummels C. 2020. MNRAS 492:1841–54
    [Google Scholar]
  209. Liang CJ, Remming I. 2020. MNRAS 491:5056–72
    [Google Scholar]
  210. Lim J, Ao Y, Dinh-V-Trung. 2008. Ap. J. 672:252–65
    [Google Scholar]
  211. Lopez S, Tejos N, Ledoux C et al. 2018. Nature 554:493–96
    [Google Scholar]
  212. Lucchini S, D'Onghia E, Fox AJ 2021. Ap. J. Lett. 921:L36
    [Google Scholar]
  213. Lyutikov M. 2006. MNRAS 373:73–78
    [Google Scholar]
  214. Mandelker N, Nagai D, Aung H et al. 2019a. MNRAS 484:1100–32
    [Google Scholar]
  215. Mandelker N, Nagai D, Aung H et al. 2020a. MNRAS 494:2641–63
    [Google Scholar]
  216. Mandelker N, Padnos D, Dekel A et al. 2016. MNRAS 463:3921–47
    [Google Scholar]
  217. Mandelker N, van den Bosch FC, Nagai D et al. 2020b. MNRAS 498:2415–27
    [Google Scholar]
  218. Mandelker N, van den Bosch FC, Springel V, van de Voort F. 2019b. Ap. J. Lett. 881:L20
    [Google Scholar]
  219. Mandelker N, van den Bosch FC, Springel V et al. 2021. Ap. J. 923:115
    [Google Scholar]
  220. Manzano-King CM, Canalizo G, Sales LV. 2019. Ap. J. 884:54
    [Google Scholar]
  221. Mao SA, Ostriker EC. 2018. Ap. J. 854:89
    [Google Scholar]
  222. Marinacci F, Binney J, Fraternali F et al. 2010. MNRAS 404:1464–74
    [Google Scholar]
  223. Markevitch M, Vikhlinin A. 2007. Phys. Rep. 443:1–53
    [Google Scholar]
  224. Martin DC, Seibert M, Neill JD et al. 2007. Nature 448:780–83
    [Google Scholar]
  225. Mathews WG, Bregman JN. 1978. Ap. J. 224:308–19
    [Google Scholar]
  226. Matsuda Y, Yamada T, Hayashino T et al. 2004. Astron. J. 128:569–84
    [Google Scholar]
  227. McCourt M, Oh SP, O'Leary R, Madigan AM. 2018. MNRAS 473:5407–31
    [Google Scholar]
  228. McCourt M, O'Leary RM, Madigan AM, Quataert E. 2015. MNRAS 449:2–7
    [Google Scholar]
  229. McCourt M, Sharma P, Quataert E, Parrish IJ. 2012. MNRAS 419:3319–37
    [Google Scholar]
  230. McKee CF, Begelman MC. 1990. Ap. J. 358:392–98
    [Google Scholar]
  231. McNamara BR, Nulsen PEJ. 2007. Annu. Rev. Astron. Astrophys. 45:117–75
    [Google Scholar]
  232. McNamara BR, Russell HR, Nulsen PEJ et al. 2016. Ap. J. 830:79
    [Google Scholar]
  233. McQuinn M. 2016. Annu. Rev. Astron. Astrophys. 54:313–62
    [Google Scholar]
  234. Meece GR, O'Shea BW, Voit GM 2015. Ap. J. 808:43
    [Google Scholar]
  235. Meiksin AA. 2009. Rev. Mod. Phys. 81:1405–69
    [Google Scholar]
  236. Mellema G, Kurk JD, Röttgering HJA. 2002. Astron. Astrophys. 395:L13–16
    [Google Scholar]
  237. Ménard B, Scranton R, Fukugita M, Richards G. 2010. MNRAS 405:1025–39
    [Google Scholar]
  238. Mertsch P. 2020. Ap. Space Sci. 365:135
    [Google Scholar]
  239. Mitchell PD, Schaye J, Bower RG. 2020a. MNRAS 497:4495–516
    [Google Scholar]
  240. Mitchell PD, Schaye J, Bower RG, Crain RA. 2020b. MNRAS 494:3971–97
    [Google Scholar]
  241. Mo HJ, Mao S, White SDM. 1998. MNRAS 295:319–36
    [Google Scholar]
  242. Morrissey P, Matuszewski M, Martin DC et al. 2018. Ap. J. 864:93
    [Google Scholar]
  243. Müller A, Poggianti BM, Pfrommer C et al. 2021. Nat. Astron. 5:159–68
    [Google Scholar]
  244. Muratov AL, Kereš D, Faucher-Giguère CA et al. 2015. MNRAS 454:2691–713
    [Google Scholar]
  245. Muratov AL, Kereš D, Faucher-Giguère CA et al. 2017. MNRAS 468:4170–88
    [Google Scholar]
  246. Murray N, Quataert E, Thompson TA. 2005. Ap. J. 618:569–85
    [Google Scholar]
  247. Naab T, Ostriker JP. 2017. Annu. Rev. Astron. Astrophys. 55:59–109
    [Google Scholar]
  248. Natl. Acad. Sci. Eng. Med 2021. Pathways to Discovery in Astronomy and Astrophysics for the 2020s Washington, DC: Natl. Acad. Press
    [Google Scholar]
  249. Navarro JF, Frenk CS, White SDM. 1997. Ap. J. 490:493–508
    [Google Scholar]
  250. Neistein E, Dekel A. 2008. MNRAS 383:615–26
    [Google Scholar]
  251. Nelson D, Genel S, Pillepich A et al. 2016. MNRAS 460:2881–904
    [Google Scholar]
  252. Nelson D, Genel S, Vogelsberger M et al. 2015. MNRAS 448:59–74
    [Google Scholar]
  253. Nelson D, Pillepich A, Springel V et al. 2019. MNRAS 490:3234–61
    [Google Scholar]
  254. Nelson D, Sharma P, Pillepich A et al. 2020. MNRAS 498:2391–414
    [Google Scholar]
  255. Nelson D, Vogelsberger M, Genel S et al. 2013. MNRAS 429:3353–70
    [Google Scholar]
  256. Nguyen DD, Thompson TA. 2021. MNRAS 508:5310–25
    [Google Scholar]
  257. Noh Y, McQuinn M. 2014. MNRAS 444:503–14
    [Google Scholar]
  258. Oppenheimer BD. 2018. MNRAS 480:2963–75
    [Google Scholar]
  259. Oppenheimer BD, Davé R, Kereš D et al. 2010. MNRAS 406:2325–38
    [Google Scholar]
  260. Padnos D, Mandelker N, Birnboim Y et al. 2018. MNRAS 477:3293–328
    [Google Scholar]
  261. Pakmor R, Pfrommer C, Simpson CM, Springel V. 2016. Ap. J. Lett. 824:L30
    [Google Scholar]
  262. Peebles PJE. 1969. Ap. J. 155:393–401
    [Google Scholar]
  263. Peeples M, Behroozi P, Bordoloi R et al. 2019a. Bull. Am. Astron. Soc. 51:368
    [Google Scholar]
  264. Peeples MS, Corlies L, Tumlinson J et al. 2019b. Ap. J. 873:129
    [Google Scholar]
  265. Péroux C, Howk JC. 2020. Annu. Rev. Astron. Astrophys. 58:363–406
    [Google Scholar]
  266. Peterson JR, Fabian AC. 2006. Phys. Rep. 427:1–39
    [Google Scholar]
  267. Pfrommer C. 2013. Ap. J. 779:10
    [Google Scholar]
  268. Piacitelli DR, Solhaug E, Faerman Y, McQuinn M. 2022. MNRAS 516:23049–67
    [Google Scholar]
  269. Pinzke A, Pfrommer C. 2010. MNRAS 409:449–80
    [Google Scholar]
  270. Pittard JM, Dyson JE, Falle SAEG, Hartquist TW. 2005. MNRAS 361:1077–90
    [Google Scholar]
  271. Predehl P, Sunyaev RA, Becker W et al. 2020. Nature 588:227–31
    [Google Scholar]
  272. Press WH, Schechter P. 1974. Ap. J. 187:425–38
    [Google Scholar]
  273. Prochaska JX, Macquart JP, McQuinn M et al. 2019. Science 366:231–34
    [Google Scholar]
  274. Prochaska JX, Weiner B, Chen HW et al. 2011. Ap. J. 740:91
    [Google Scholar]
  275. Putman ME, Peek JEG, Joung MR. 2012. Annu. Rev. Astron. Astrophys. 50:491–529
    [Google Scholar]
  276. Putman ME, Saul DR, Mets E. 2011. MNRAS 418:1575–86
    [Google Scholar]
  277. Quataert E, Jiang F, Thompson TA. 2022a. MNRAS 510:920–45
    [Google Scholar]
  278. Quataert E, Thompson TA, Jiang YF. 2022b. MNRAS 510:1184–203
    [Google Scholar]
  279. Rees MJ, Ostriker JP. 1977. MNRAS 179:541–59
    [Google Scholar]
  280. Ribaudo J, Lehner N, Howk JC et al. 2011. Ap. J. 743:207
    [Google Scholar]
  281. Richings AJ, Faucher-Giguère CA. 2018a. MNRAS 474:3673–99
    [Google Scholar]
  282. Richings AJ, Faucher-Giguère CA. 2018b. MNRAS 478:3100–19
    [Google Scholar]
  283. Roberg-Clark GT, Drake JF, Reynolds CS, Swisdak M. 2016. Ap. J. Lett. 830:L9
    [Google Scholar]
  284. Robertson BE, Kravtsov AV. 2008. Ap. J. 680:1083–111
    [Google Scholar]
  285. Rodriguez-Gomez V, Genel S, Fall SM et al. 2022. MNRAS 512:5978–94
    [Google Scholar]
  286. Rohr E, Feldmann R, Bullock JS et al. 2022. MNRAS 510:3967–85
    [Google Scholar]
  287. Rosdahl J, Blaizot J. 2012. MNRAS 423:344–66
    [Google Scholar]
  288. Rudie GC, Steidel CC, Pettini M et al. 2019. Ap. J. 885:61
    [Google Scholar]
  289. Russell HR, McNamara BR, Fabian AC et al. 2016. MNRAS 458:3134–49
    [Google Scholar]
  290. Ruszkowski M, Yang HYK, Reynolds CS. 2017. Ap. J. 844:13
    [Google Scholar]
  291. Saffman P, Turner J. 1956. J. Fluid Mech. 1:16–30
    [Google Scholar]
  292. Salem M, Besla G, Bryan G et al. 2015. Ap. J. 815:77
    [Google Scholar]
  293. Salem M, Bryan GL. 2014. MNRAS 437:3312–30
    [Google Scholar]
  294. Sampson ML, Beattie JR, Krumholz MR et al. 2023. MNRAS 519:1503–25
    [Google Scholar]
  295. Savage BD, Kim TS, Wakker BP et al. 2014. Ap. J. Suppl. 212:8
    [Google Scholar]
  296. Scannapieco E. 2017. Ap. J. 837:28
    [Google Scholar]
  297. Scannapieco E, Brüggen M. 2015. Ap. J. 805:158
    [Google Scholar]
  298. Schaan E, Ferraro S, Amodeo S et al. 2021. Phys. Rev. D 103:063513
    [Google Scholar]
  299. Schaye J, Crain RA, Bower RG et al. 2015. MNRAS 446:521–54
    [Google Scholar]
  300. Schmidt W, Niemeyer JC, Hillebrandt W. 2006. Astron. Astrophys. 450:265–81
    [Google Scholar]
  301. Schneider EE, Ostriker EC, Robertson BE, Thompson TA. 2020. Ap. J. 895:43
    [Google Scholar]
  302. Schneider EE, Robertson BE. 2015. Ap. J. Suppl. 217:24
    [Google Scholar]
  303. Schneider EE, Robertson BE. 2017. Ap. J. 834:144
    [Google Scholar]
  304. Schneider EE, Robertson BE, Thompson TA. 2018. Ap. J. 862:56
    [Google Scholar]
  305. Sharma P, Colella P, Martin DF. 2010. SIAM J. Sci. Comp. 32:3564–83
    [Google Scholar]
  306. Sharma P, McCourt M, Parrish IJ, Quataert E. 2012a. MNRAS 427:21219–28
    [Google Scholar]
  307. Sharma P, McCourt M, Quataert E, Parrish IJ. 2012b. MNRAS 420:3174–94
    [Google Scholar]
  308. Shlosman I, Frank J, Begelman MC. 1989. Nature 338:45–47
    [Google Scholar]
  309. Sijacki D, Vogelsberger M, Kereš D et al. 2012. MNRAS 424:2999–3027
    [Google Scholar]
  310. Silich S, Tenorio-Tagle G, Rodrguez-González A. 2004. Ap. J. 610:226–32
    [Google Scholar]
  311. Silk J. 1977. Ap. J. 211:638–48
    [Google Scholar]
  312. Simons RC, Peeples MS, Tumlinson J et al. 2020. Ap. J. 905:2167
    [Google Scholar]
  313. Skilling J. 1971. Ap. J. 170:265–73
    [Google Scholar]
  314. Slavin JD, Shull JM, Begelman MC. 1993. Ap. J. 407:83–99
    [Google Scholar]
  315. Sobacchi E, Sormani MC. 2019. MNRAS 486:205–14
    [Google Scholar]
  316. Socrates A, Davis SW, Ramirez-Ruiz E. 2008. Ap. J. 687:202–15
    [Google Scholar]
  317. Somerville RS, Behroozi P, Pandya V et al. 2018. MNRAS 473:2714–36
    [Google Scholar]
  318. Somerville RS, Davé R. 2015. Annu. Rev. Astron. Astrophys. 53:51–113
    [Google Scholar]
  319. Somerville RS, Primack JR. 1999. MNRAS 310:1087–110
    [Google Scholar]
  320. Sparre M, Pfrommer C, Ehlert K. 2020. MNRAS 499:4261–81
    [Google Scholar]
  321. Sparre M, Pfrommer C, Vogelsberger M. 2019. MNRAS 482:5401–21
    [Google Scholar]
  322. Springel V. 2010. MNRAS 401:791–851
    [Google Scholar]
  323. Springel V, Pakmor R, Pillepich A et al. 2018. MNRAS 475:676–98
    [Google Scholar]
  324. Squire J, Hopkins PF, Quataert E, Kempski P. 2021. MNRAS 502:2630–44
    [Google Scholar]
  325. Sravan N, Faucher-Giguère CA, van de Voort F et al. 2016. MNRAS 463:120–33
    [Google Scholar]
  326. Sreenivasan KR. 2019. PNAS 116:18175–83
    [Google Scholar]
  327. Stanimirović S, Zweibel EG 2018. Annu. Rev. Astron. Astrophys. 56:489–540
    [Google Scholar]
  328. Steidel CC, Adelberger KL, Shapley AE et al. 2000. Ap. J. 532:170–82
    [Google Scholar]
  329. Steidel CC, Bogosavljević M, Shapley AE et al. 2011. Ap. J. 736:160
    [Google Scholar]
  330. Steidel CC, Erb DK, Shapley AE et al. 2010. Ap. J. 717:289–322
    [Google Scholar]
  331. Stern J, Faucher-Giguère CA, Fielding D et al. 2021a. Ap. J. 911:88
    [Google Scholar]
  332. Stern J, Fielding D, Faucher-Giguère CA, Quataert E. 2019. MNRAS 488:2549–72
    [Google Scholar]
  333. Stern J, Fielding D, Faucher-Giguère CA, Quataert E. 2020. MNRAS 492:6042–58
    [Google Scholar]
  334. Stern J, Hennawi JF, Prochaska JX, Werk JK. 2016. Ap. J. 830:87
    [Google Scholar]
  335. Stern J, Sternberg A, Faucher-Giguère CA et al. 2021b. MNRAS 507:2869–84
    [Google Scholar]
  336. Stewart KR, Brooks AM, Bullock JS et al. 2013. Ap. J. 769:74
    [Google Scholar]
  337. Stewart KR, Kaufmann T, Bullock JS et al. 2011. Ap. J. 738:39
    [Google Scholar]
  338. Stewart KR, Maller AH, Oñorbe J et al. 2017. Ap. J. 843:47
    [Google Scholar]
  339. Strickland DK, Heckman TM. 2009. Ap. J. 697:2030–56
    [Google Scholar]
  340. Su KY, Hopkins PF, Hayward CC et al. 2019. MNRAS 487:4393–408
    [Google Scholar]
  341. Su M, Slatyer TR, Finkbeiner DP. 2010. Ap. J. 724:1044–82
    [Google Scholar]
  342. Suresh J, Nelson D, Genel S et al. 2019. MNRAS 483:4040–59
    [Google Scholar]
  343. Tan B, Oh SP. 2021. MNRAS 508:L37–42
    [Google Scholar]
  344. Tan B, Oh SP, Gronke M. 2021. MNRAS 502:3179–99
    [Google Scholar]
  345. Tan B, Oh SP, Gronke M. 2023. MNRAS 520:2571–92
    [Google Scholar]
  346. Taniguchi Y, Shioya Y. 2000. Ap. J. Lett. 532:L13–16
    [Google Scholar]
  347. Tepper-García T, Bland-Hawthorn J, Pawlowski MS, Fritz TK. 2019. MNRAS 488:918–38
    [Google Scholar]
  348. Teyssier R. 2002. Astron. Astrophys. 385:337–64
    [Google Scholar]
  349. Thomas T, Pfrommer C. 2019. MNRAS 485:2977–3008
    [Google Scholar]
  350. Thomas T, Pfrommer C, Enßlin T. 2020. Ap. J. Lett. 890:L18
    [Google Scholar]
  351. Thompson TA, Quataert E, Zhang D, Weinberg DH. 2016. MNRAS 455:1830–44
    [Google Scholar]
  352. Tiley AL, Gillman S, Cortese L et al. 2021. MNRAS 506:323–42
    [Google Scholar]
  353. Tollet É, Cattaneo A, Macciò AV et al. 2019. MNRAS 485:2511–31
    [Google Scholar]
  354. Tonnesen S, Bryan GL, van Gorkom JH. 2007. Ap. J. 671:1434–45
    [Google Scholar]
  355. Tripp TM, Sembach KR, Bowen DV et al. 2008. Ap. J. Suppl. 177:39–102
    [Google Scholar]
  356. Trotta R, Jóhannesson G, Moskalenko IV et al. 2011. Ap. J. 729:106
    [Google Scholar]
  357. Tsung THN, Oh SP, Bustard C 2023. arXiv:2305.14432
  358. Tsung THN, Oh SP, Jiang YF. 2022. MNRAS 513:4464–93
    [Google Scholar]
  359. Tumlinson J, Peeples MS, Werk JK. 2017. Annu. Rev. Astron. Astrophys. 55:389–432
    [Google Scholar]
  360. Tumlinson J, Thom C, Werk JK et al. 2011. Science 334:948–52
    [Google Scholar]
  361. Uhlig M, Pfrommer C, Sharma M et al. 2012. MNRAS 423:2374–96
    [Google Scholar]
  362. van de Voort F, Bieri R, Pakmor R et al. 2021. MNRAS 501:4888–902
    [Google Scholar]
  363. van de Voort F, Schaye J, Altay G, Theuns T. 2012. MNRAS 421:2809–19
    [Google Scholar]
  364. van de Voort F, Schaye J, Booth CM et al. 2011. MNRAS 414:2458–78
    [Google Scholar]
  365. van de Voort F, Springel V, Mandelker N et al. 2019. MNRAS Lett 482:L85–89
    [Google Scholar]
  366. Vedantham HK, Phinney ES. 2019. MNRAS 483:971–84
    [Google Scholar]
  367. Veilleux S, Maiolino R, Bolatto AD, Aalto S. 2020. Astron. Astrophys. Rev. 28:2
    [Google Scholar]
  368. Vitvitska M, Klypin AA, Kravtsov AV et al. 2002. Ap. J. 581:799–809
    [Google Scholar]
  369. Vogelsberger M, Genel S, Springel V et al. 2014. MNRAS 444:1518–47
    [Google Scholar]
  370. Vogelsberger M, Marinacci F, Torrey P, Puchwein E. 2020. Nat. Rev. Phys. 2:42–66
    [Google Scholar]
  371. Voit GM. 2018. Ap. J. 868:102
    [Google Scholar]
  372. Voit GM. 2021. Ap. J. Lett. 908:L16
    [Google Scholar]
  373. Voit GM, Bryan GL, O'Shea BW, Donahue M 2015. Ap. J. Lett. 808:L30
    [Google Scholar]
  374. Voit GM, Meece G, Li Y et al. 2017. Ap. J. 845:80
    [Google Scholar]
  375. Wakker BP, Savage BD, Fox AJ et al. 2012. Ap. J. 749:157
    [Google Scholar]
  376. Wang B. 1995. Ap. J. 444:590–609
    [Google Scholar]
  377. Waters T, Proga D. 2019a. Ap. J. 875:158
    [Google Scholar]
  378. Waters T, Proga D. 2019b. Ap. J. 876:L3
    [Google Scholar]
  379. Weinberger R, Hernquist L. 2023. MNRAS 519:23011–26
    [Google Scholar]
  380. Wentzel DG. 1974. Annu. Rev. Astron. Astrophys. 12:71–96
    [Google Scholar]
  381. Werk JK, Prochaska JX, Tumlinson J et al. 2014. Ap. J. 792:8
    [Google Scholar]
  382. White SDM. 1984. Ap. J. 286:38–41
    [Google Scholar]
  383. White SDM, Frenk CS. 1991. Ap. J. 379:52–79
    [Google Scholar]
  384. White SDM, Rees MJ. 1978. MNRAS 183:341–58
    [Google Scholar]
  385. Wiener J, Oh SP, Guo F. 2013. MNRAS 434:2209–28
    [Google Scholar]
  386. Wiener J, Oh SP, Zweibel EG. 2017a. MNRAS 467:646–60
    [Google Scholar]
  387. Wiener J, Pfrommer C, Oh SP. 2017b. MNRAS 467:906–21
    [Google Scholar]
  388. Wiener J, Zweibel EG, Ruszkowski M. 2019. MNRAS 489:205–23
    [Google Scholar]
  389. Wiersma RPC, Schaye J, Smith BD. 2009. MNRAS 393:99–107
    [Google Scholar]
  390. Wijers NA, Schaye J, Oppenheimer BD. 2020. MNRAS 498:574–98
    [Google Scholar]
  391. Yan H, Lazarian A. 2004. Ap. J. 614:757–69
    [Google Scholar]
  392. Yang Y, Ji S 2023. MNRAS 520:2148–62
    [Google Scholar]
  393. Zahedy FS, Chen HW, Johnson SD et al. 2019. MNRAS 484:2257–80
    [Google Scholar]
  394. Zeldovich YB, Barenblatt GI, Librovich VB, Makhviladze GM. 1985. The Mathematical Theory of Combustion and Explosions New York: Consult. Bur.
    [Google Scholar]
  395. Zel'Dovich YB, Pikel'Ner SB. 1969. Sov. J. Exp. Theor. Phys. 29:170–73
    [Google Scholar]
  396. Zhang D, Thompson TA, Quataert E, Murray N. 2017. MNRAS 468:4801–14
    [Google Scholar]
  397. Zheng Z, Miralda-Escudé J. 2002. Ap. J. Lett. 568:L71–74
    [Google Scholar]
  398. Zjupa J, Springel V. 2017. MNRAS 466:1625–47
    [Google Scholar]
  399. Zweibel EG. 2017. Phys. Plasmas 24:055402
    [Google Scholar]
/content/journals/10.1146/annurev-astro-052920-125203
Loading
/content/journals/10.1146/annurev-astro-052920-125203
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error