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Abstract

Genome-wide association studies (GWAS) revolutionized our understand-
ing of common genetic variation and its impact on common human
disease and traits. Developed and adopted in the mid-2000s, GWAS led to
searchable genotype–phenotype catalogs and genome-wide datasets avail-
able for further data mining and analysis for the eventual development
of translational applications. The GWAS revolution was swift and spe-
cific, including almost exclusively populations of European descent, to the
neglect of the majority of the world’s genetic diversity. In this narrative
review, we recount the GWAS landscape of the early years that established a
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genotype–phenotype catalog that is now universally understood to be inadequate for a complete
understanding of complex human genetics. We then describe approaches taken to augment the
genotype–phenotype catalog, including the study populations, collaborative consortia, and study
design approaches aimed to generalize and then ultimately discover genome-wide associations
in non-European descent populations. The collaborations and data resources established in the
efforts to diversify genomic findings undoubtedly provide the foundations of the next chapters of
genetic association studies with the advent of budget-friendly whole-genome sequencing.

INTRODUCTION

In recent years, genetic association studies have uncovered information on the genetic basis of
disease for thousands of phenotypes (1). While early genetic studies consisted of smaller sample
sizes and focused on a single phenotype, efforts soon after the first genome-wide association stud-
ies (GWAS) focused on aggregating genotype and phenotype data from hundreds of thousands
of study participants via large consortia (Figure 1). These analyses focused on larger samples to
ensure sufficient statistical power to detect genetic associations. As a result of past (2–11) and on-
going (12–14) genomic discovery efforts, genetic associations continue to be identified even for
the most well-studied phenotypes (Figure 2), revealing the underlying genetic architecture of and
estimated heritabilities for important human clinical outcomes and traits.

From their inception, GWAS have consisted of predominantly European-descent individuals.
A consistent lack of diverse ancestral representation in these studies has led to an incomplete un-
derstanding of the genetic architecture of phenotypes, resulting in limited opportunities to apply
these data to at-risk individuals of non-European ancestry (15). This disparate representation in
genome-wide studies has the potential to exacerbate health care inequities for historically under-
represented groups in human genetics and genomics research. It has been well demonstrated that
ancestrally diverse GWAS expand gene discovery (16) and improve risk estimation via polygenic
risk scores (17, 18), which leads to better cross-population utility of results (19). Increased ge-
netic diversity allows for better characterization of the underlying genetic architecture of complex
polygenic traits beyond the group in which genetic architecture is examined (20).

The objective of conducting GWAS is to identify genetic variants associated with a phenotype
of interest (21). For complex polygenic traits such as height or blood pressure, GWAS may re-
turn many statistically significant associations for genetic variants with varying effect sizes. Larger
sample sizes enable identification of genetic associations with small effect sizes, offering finer gran-
ularity in the understanding of all the genetic variants relevant for the outcome or trait of interest.
This is especially important in the context of complex polygenic diseases, as many genetic loci with
varying effect sizes are involved in the risk of disease development and progression.AsGWAS typ-
ically generate hypotheses, results are then further explored in subsequent fine-mapping analyses
and functional in silico or in vivo studies to better define causal variants and the biological and
molecular processes that they impact. Compared to linkage approaches, whose sample sizes range
from a large multigenerational extended family to smaller families or affected sibpairs (22), typical,
contemporaryGWAS,whether case–control studies or studies of quantitative traits, are conducted
by analyzing DNA samples from thousands of unrelated individuals. While GWAS can be con-
ducted using a parent–offspring study design, it is more difficult to ascertain sufficient numbers
of trios compared with the easier enrollment of unrelated individuals drawn from a general or
clinical population. Additionally, GWAS conducted in trios require that more study participants
be genotyped or sequenced compared with the study design using unrelated individuals.
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Figure 1

A timeline of the complicated evolution of GWAS consortia. This timeline is a snapshot of the formation of (a) select consortia that
serve as the foundation of many contemporary GWAS and (b) newer large, prospective studies with genome-wide data that are fueling
the next generation of GWAS consortia. The years on the x-axis represent a 20-year time frame within which we highlight some of the
major pre-GWAS accomplishments that enabled the first and now commonplace GWAS. (a) The faded arrows pointing retrospectively
represent studies within consortia that recruited participants or collected data prior to the years on the timeline (i.e., the 1958 British
Birth Cohort). While WTCCC is no longer aggregating new data from study investigators, we present this consortium as active since
this dataset is one of many in the largest currently active consortium. Unlike WTCCC, GIANT and CHARGE are actively acquiring
data to increase diversity and sample size. As such the forward arrows represent both the inclusion of new data and the use of these data
in present-day GWAS. Similar to the forward pointing arrows in panel a, those in panel b also represent both data that are used in
GWAS today and studies that are actively recruiting or collecting data. Abbreviations: CHARGE, Cohorts for Heart and Aging
Research in Genomic Epidemiology; eMERGE, Electronic Medical Records and Genomics; GIANT, Genetic Investigation of
Anthropometric Traits; GWAS, genome-wide association study; MVP, Million Veteran Program; PAGE, Population Architecture using
Genomics and Epidemiology; WTCCC,Wellcome Trust Case Control Consortium.

While modern mega GWAS statistically allow for inclusion of individuals from diverse ge-
ographic and ancestral backgrounds in both discovery and fine-mapping efforts, resources to
enable these study designs have often been insufficient. As early as the dawn of GWAS (23), the
reliance on existing cohorts with biospecimens had the effect of passively excluding groups histor-
ically underrepresented in biomedical research. Now, GWAS and genomic discovery in general
remain dominated by DNA samples and genetic variation from European-descent participants
(20) (Figure 3). Given this landscape, this review focuses on two scientific approaches designed
to address persistent inequities in human genetics and genomics research, neither of which is
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Genome-wide association study (GWAS) consortia population distribution from the early 2000s to the 2020s. Historically, GWAS have
been made up of an overwhelming majority of individuals of European ancestry. Therefore, it is unsurprising that the early consortia-
powered GWAS lack ancestral diversity. While recent efforts to purposely oversample populations historically underrepresented in
research are underway, equitable healthcare can only be achieved if these efforts are more widespread. A 2019 commentary summarized
the ancestral distribution of GWAS studies and individuals within studies, finding that while approximately half (48%) of research
studies contain data from non-European participants, nearly 79% of the study samples are participants of European ancestry, 10% are
Asian, 2% are African, and 1% are Hispanic or Latin American (20). This lack of diverse representation exacerbates health disparities
and hinders our understanding of the role of genetic ancestry in disease etiology.

exclusive of the other. We first describe approaches designed to generalize GWAS-identified
variants in existing ancestrally diverse populations, noting historic European-only GWAS, ma-
jor milestones, and lessons learned, including the need to develop more diverse study cohorts
for genomic discovery. We next summarize ongoing efforts to build diverse, inclusive cohorts to
amplify representation in genetic studies.

LARGE GWAS WERE (AND ARE) CONDUCTED PRIMARILY
IN EUROPEAN-DESCENT POPULATIONS

Historic GWAS laid the foundation for the study design, quality control, and now rote statis-
tical methods for future discovery efforts. These early GWAS also generated data and findings
that prompted the first observations that the study of homogeneous populations would not be
sufficient. As mentioned above, nearly 20 years ago at its inception (see the sidebar titled The
Early History of GWAS), large GWAS were (and to some extent still are) primarily conducted in
European-descent populations (20). As an example, established in 2005, theWellcome Trust Case
Control Consortium (WTCCC) is one of the earliest collaborative efforts designed to understand
genetic variation of human disease with the intent of providing opportunity for large-scale GWAS
(24). The initial major WTCCC GWAS included 2,000 cases, each for seven human diseases/
outcomes, and 3,000 shared controls drawn from the 1958 British Birth Cohort (24). This and
other early WTCCC GWAS identified thousands of putative candidate loci for breast cancer
(25), coronary artery disease (24), multiple sclerosis (25), malaria (26), and tuberculosis (27).

Following the establishment and success of the WTCCC, other cohort study collaborations
arose exploring additional polygenic traits in European-descent populations. Phenotype-driven
consortia such as the GIANT (Genetic Investigation of Anthropometric Traits) consortium fo-
cused on common human traits measured in most epidemiologic studies or data resources such
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The phenotypes in this figure represent commonly measured phenotypes in the described genome-wide
association study consortia. The larger circles represent those phenotypes for which data have been collected
for a large number of participants (sample sizes in the hundreds of thousands to millions). These include
body mass index, cardiovascular/inflammatory biomarkers (C-reactive protein and erythrocyte
sedimentation rate), height, and serum lipids (LDL-C, HDL-C, triglycerides, and total cholesterol). Data for
these phenotypes come from a majority of the studies described in this narrative review (e.g., GIANT,
CHARGE, PAGE, eMERGE, and WTCCC). Compared to the larger circles, the smaller circles represent
those phenotypes that are well described in comparatively smaller consortia (sample sizes range from
thousands to tens of thousands), such as ADGC, PRACTICAL, eMERGE, and DIAGRAM. These include
type 2 diabetes, Alzheimer’s disease, cancer (breast and prostate), kidney failure, cataracts, and
electrocardiographic traits. Abbreviations: ADGC, Alzheimer’s Disease Genetics Consortium; CHARGE,
Cohorts for Heart and Aging Research in Genomic Epidemiology; DIAGRAM, Diabetes Genetics
Replication and Meta-Analysis Consortium; eMERGE, Electronic Medical Records and Genomics;
GIANT, Genetic Investigation of Anthropometric Traits; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; PAGE, Population Architecture using Genomics and
Epidemiology; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer Associated
Alterations in the Genome; WTCCC,Wellcome Trust Case Control Consortium.

as body mass index (BMI) (28, 29), height (30–33), and obesity (28). The GIANT consortium
began as modest collaborations accessing study populations from Finland and Sardinia (30), later
expanding to add other European epidemiologic studies with DNA samples linked to anthropo-
metric traits of interest such as the KORA (Cooperative Health Research in the Region Augsburg)
cohort study (28, 31). Starting with an initial sample size of∼6,600, the incorporation of additional
collaborative studies over approximately four to five years quickly resulted in the largest GWAS
sample size at the time, with ∼250,000 participants (33) (Figure 4).
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THE EARLY HISTORY OF GWAS

In 2003, the initial iteration of the 13-year Human Genome Project was announced (116). While monumental,
data from the Human Genome Project alone were not sufficient for the understanding of how sequence varia-
tion impacts complex human diseases. Genotype–phenotype studies for common human diseases would require
large prospective cohorts, as advocated for by the then-director of the NIH’s (National Institutes of Health) Na-
tional Human Genome Research Institute, Francis Collins, in 2004 (117). Also required would be a catalog of
genetic variation and an understanding of the patterns of variation and linkage disequilibrium in human popula-
tions. To supply these data, the International HapMap Project was formed in late 2002, and in 2005 the project
published data in three ancestral populations from phase I, making large-scale human genotype patterns widely
available for the first time (5). Also in 2005, an early GWAS was published for age-related macular degeneration
describing a significant association between common variation in CFH with what is now recognized to be an un-
usually large genetic effect (57). In 2006, recruitment started for the UK Biobank. While the WTCCC data were
first released in 2005, it was not until 2007 that the GWAS from this effort was published. The 2007 WTCCC
GWAS set the precedent for future GWAS by modeling the importance of nontrivial components such as large
sample size, discovery, and replication cohorts, as well as multiple-testing correction (24). The same year, phase
II of the HapMap project was published characterizing over 3.1 million SNPs (single-nucleotide polymorphisms)
(6). By 2010, phase III of the HapMap project was finished (7), while the pilot phase of the 1000 Genomes Project
was first published, describing genetic variation yields from the newer next-generation sequencing technologies
(8). Although recruitment for the UK Biobank was completed in 2010, early data in the form of surveys were
not released until two years later in 2012. By this point, recruitment for the Million Veteran Program had al-
ready been underway for a year. The 1000 Genomes Project was completed in 2015 characterizing over 88 million
SNPs across 26 ancestral populations (10). Three years later, recruitment began for the NIH’s All of Us research
program.
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The GIANT (Genetic Investigation of Anthropometric Traits) consortium of consortia is arguably the largest consortium to date. The
current iteration of GIANT is a conglomeration of more than 200 distinct studies or cohorts, which, with the recent incorporation of
data from 23andMe, Million Veteran Program (MVP), and UK Biobank, has increased in sample size to over 5.3 million participants.
A genome-wide study with this sample size has identified more than 12,000 SNPs (single-nucleotide polymorphisms) associated with
height (46). As GIANT continues to grow, we expect that other larger cohorts will also be incorporated in the future as it moves toward
completing the genetic map for human height.
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Like the anthropometric traits in the GIANT consortium, other commonly measured quan-
titative traits such as lipid traits, low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), triglycerides, and total cholesterol enjoyed early GWAS suc-
cess and subsequent consortium branding to amass large data resources for genomic discovery.
In 2008, a GWAS meta-analysis of nearly 12,000 European-descent individuals revealed several
genetic variants strongly associated with lipid traits (34). Two years later, that sample size grew
exponentially to more than 100,000 European-descent individuals, resulting in nearly 100 signifi-
cantly associated loci after genome-wide multiple testing correction (35). These early consortium
efforts were formalized into what is now known as the Global Lipids Genetics Consortium (35).

Another well-studied common quantitative and polygenic trait is blood pressure. In 2009, two
GWAS for blood pressure conducted in 25,000 European-descent participants each identified
13 associated genetic variants (36, 37). Within two years with now 200,000 European-descent
participants, The International Consortium for Blood Pressure GWAS added an additional
16 associated loci (38).

In comparison to quantitative traits, very large GWAS for diseases of interest such as type 2
diabetes (T2D) were slower to organize since these phenotypes requiremore effort tomeasure and
consequently are less ubiquitous in data resources linked to DNA samples. T2D GWAS debuted
in 2007 with a genome-wide study in ∼1,100 Finish cases and controls (34), followed relatively
quickly with a genome-wide meta-analysis of more than 10,000 individuals of European descent
(35).The efforts to assemble datasets for the meta-analysis led to the formation ofMAGIC (Meta-
Analyses of Glucose and Insulin-related traits Consortium) and DIAGRAM (Diabetes Genetics
Replication and Meta-analysis Consortium) (39). By 2017, DIAGRAM amassed almost 27,000
T2D cases of European descent, culminating in 128 statistically significant genetic associations
involving 113 loci (40).

MANY EUROPEAN-DESCENT COHORTS WITH GENOME-WIDE DATA
ARE AVAILABLE AND USED IN VARIOUS GWAS

The WTCCC and early GWAS of anthropometric traits, lipid traits, blood pressure, and T2D
capitalized on the availability of existing cohorts or case–control studies, the majority of which
were limited to European-descent populations. This trend continued after GWAS was widely
adopted as the study design of choice, leading to the genotyping and incorporation of many
European-descent cohorts into meta-analyses or consortium-style genome-wide analyses. Exam-
ples of these cohorts include the FraminghamHeart Study (FHS) (41), the Helsinki Birth Cohort
Study (42), the Nurses’ Health Study (43), the Rotterdam Study (44), and the 1958National Child
Development Study (45) (also known as the 1958 British Birth Cohort). While adequately pow-
eredGWAS became possible with the availability of these data, their inclusion in the ever-growing
GWAS cohort sample sizes created a genotype–phenotype catalog almost exclusively containing
data from European-descent populations.

CONTEMPORARY GWAS AND CONSORTIA ARE MORE DIVERSE BUT
STILL DOMINATED BY EUROPEAN-DESCENT DATA

More recent consortia like GIANT (46), the Global Lipids Genetics Consortium (47), and
DIAGRAM (48) tout larger sample sizes but have made little improvement in proportional di-
versity, as most consortia now include the genome-wide data available in the UK Biobank (49,
50). The UK Biobank is a large, prospective cohort of ∼500,000 adults of 40–69 years of age at
the time of ascertainment (50). This large prospective cohort collects health, lifestyle, and behav-
ior data through a variety of mechanisms including direct measurement, questionnaires or surveys,
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and linkage to electronic health records. While most participants are of “white British ancestry,”
roughly 78,000 individuals are of “nonwhite British ancestry.” Global ancestry estimates suggest
that themajority of “nonwhite British ancestry” participants are of European descent (n= 50,685),
with the remaining being of African (n = 6,653), South Asian (n = 2,782), and East Asian (n =
2,364) descent (51). The UK Biobank also has genome-wide genotype data available and is now
generating and releasing whole-exome and whole-genome sequencing data. The UK Biobank
is somewhat unique in its ease of access for research (52), making this mostly European-descent
data resource an attractive and realistic cohort to include in any ongoing genome-wide consortium
effort.

DIVERSE COHORTS WITH GENOME-WIDE DATA ARE A
RECOGNIZED NEED BUT ARE STILL COMPARATIVELY SMALL

The demand to fuel continuing consortia growth for genomic discovery has highlighted the need
for additional independent genotype–phenotype data not yet subsumed by past consortia analy-
ses. The demand coupled with the recognized need for diversity has also led to an appreciation
for already established cohorts and the establishment of new data resources, including biobanks
in clinical populations linked to electronic health records. Examples of already established but
now greatly appreciated cohorts include the Multiethnic Cohort (MEC) (53), Women’s Health
Initiative (WHI) (54), and the JacksonHeart Study (55).These cohorts have sizable African Amer-
ican/Black andNativeHawaiian/Pacific Islander subgroups with genome-wide data.TheHispanic
Community Health Study/Study of Latinos (HCHS/SOL), which has 16,000 adult participants
representing several groups under the broad umbrella term “Hispanic” (56), is an example of a
newer cohort specifically established to fill the underrepresentation void for this heterogeneous
and highly admixed sample in biomedical research.

Prospective cohort studies are the gold-standard study design for GWAS because they mini-
mize biases and establish causality between a suspected risk factor or exposure and the outcome
of interest (57). However, cohorts with sufficient sample sizes for genome-wide studies can take
years to decades to assemble. To accelerate the availability of data resources for research, several
medical centers have established biobanks that leverage patient biospecimens and the real-world
clinical data collected in outpatient settings.Today, various biobanks are linked to electronic health
records available in diverse clinical populations, such as Mount Sinai’s BioMe (58), Vanderbilt
University Medical Center’s BioVU (59), Northwestern University’s NUGene (60), Kaiser Per-
manente’s Resource for Genetic Epidemiology Research on Aging (61), and the University of
Pennsylvania’s Penn Medicine BioBank (62). Although outside the scope of this review, it should
be noted that studies using health data linked to biobanks are associated with many challenges and
limitations compared with studies using a traditional cohort design (55). The extent of bias and
data missingness will vary depending on the patient population sampled (63).

GENERALIZING GENOTYPE–PHENOTYPE ASSOCIATIONS
FROM EUROPEAN TO DIVERSE POPULATIONS

Despite the emergence of new, independent, and diverse data resources for genome-wide studies,
individually, sample sizes of these newer studies remain small compared to previous large,
European-descent sample sizes represented in consortia-based studies. As we describe above,
GWAS began with cohorts and case–control studies drawn from populations of Europeans and
built upon their initial success with additional populations of European descent. Existing cohorts
from non-European participants were comparatively smaller and fewer, and new cohorts have
been slower to mobilize to contribute to genomic discovery. In parallel to cohort and resource
building to deliver diversity to GWAS, there has been increased interest in cataloging the
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replication or generalization of associations identified in GWAS with cohorts of European
descent as meaningful data for non-European-descent populations.

Generalization studies hypothesize that a genetic variant identified as associated with a phe-
notype of interest in European populations is also associated, with similar effect sizes and in the
same direction, with the phenotype in non-European populations. To maximize power, rather
than genotyping and testing millions of SNPs (single-nucleotide polymorphisms) for associations,
a generalization study tests associations between the outcome of interest and a limited list of ge-
netic variants based on an in-depth literature review and a search for previously associated variants
in the GWAS Catalog (https://www.ebi.ac.uk/gwas/). An advantage of this more focused study
design is that fewer statistical tests are conducted, ultimately allowing for less stringent signif-
icance thresholds. In this context, moderately sized cohorts or data resources that characterize
most non-European datasets have sufficient power to distinguish between genetic associations
that are population specific and those that are universal.

PAGE I

One of the earliest examples of generalization of GWAS-identified variants is the PAGE (Pop-
ulation Architecture using Genomics and Epidemiology) study. Started in 2008, PAGE was a
collaborative effort funded by the National Human Genome Research Institute (NHGRI) to in-
vestigate the association between genetic variants and complex diseases using ancestrally diverse
populations (64). The first phase of the PAGE study (PAGE I) consisted of four research groups
or consortia accessing diverse population-based cohorts or cross-sectional studies: the EAGLE
(Epidemiological Architecture for Genes Linked to Environment) study, accessing the National
Health and Nutrition Examination Surveys (55); MEC (53); WHI (54); and CALiCo (Causal
Variants Across the Life Course), which is itself a consortium of cardiovascular disease cohort
studies, including the Strong Heart Study (65, 66), the Cardiovascular Health Study (CHS) (67),
the Atherosclerosis Risk in Communities Study (ARIC) (68), the Coronary Artery Risk Develop-
ment in Young Adults (CARDIA) study (69), and HCHS/SOL (70). Of the more than 120,000
participants in PAGE I, less than half (47%) were of European descent. The majority (53%) of
participants represented five self-identified non-European groups from the United States: African
Americans, Hispanics, East Asians, Native Hawaiians, and American Indians.

The PAGE I study conducted several notable generalization studies for a variety of pheno-
types from European-descent GWAS (70–74). In one such study, PAGE I investigators examined
variants previously found in European-descent GWAS to be associated with age-related macular
degeneration (AMD) in their diverse populations, including the highly significant missense mu-
tation CFH rs1061170, which is presumably the causal variant in linkage disequilibrium with the
original genome-wide finding among participants self-described as non-Hispanic White (75). Of
the genetic variants tested, none were significantly associated with AMD in African Americans
or Mexican Americans in PAGE I, despite sufficient statistical power to detect associations with
large effect sizes, contrary to what would be expected based on European-descent results for CFH
rs1061170 and AMD. These data demonstrate that population differences such as linkage dise-
quilibrium and population-specific associations can affect even the most well-studied phenotypes
of early European-descent GWAS such as AMD,whose association with CFH rs1061170 is one of
the strongest and most replicable in European-descent GWAS genotype–phenotype associations
for complex human diseases apart from Alzheimer’s disease and the gene APOE (76).

The inability to generalize or replicateGWAS-identified variants fromEuropean-descent pop-
ulations was a theme of PAGE I. Similar to the AMD example, in a PAGE I EAGLE substudy,
none of the tested MYH9 variants were associated with chronic kidney disease in non-Hispanic
Blacks (73). Furthermore, none of theMYH9 variants showed consistent direction of effect across
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the three groups tested, which included non-HispanicWhites, non-Hispanic Blacks, andMexican
Americans (73).The lack of associations was surprising given that theMYH9 variants are in strong
linkage disequilibriumwithAPOL1 variants (77), both of which have been strongly associated with
kidney diseases in African-descent participants but not European-descent participants (78). The
lack of association could be due to the combination of heterogeneous kidney diseases in the tested
populations, misspecification of genetic models, and differences in effect sizes compared with the
original literature. In support of the different effect size explanation, a PAGE I reexamination
of generalization study results for five common diseases and traits including BMI, T2D, and lipid
levels demonstrated that althoughmany of the variants tested were associated regardless of signifi-
cance threshold in the same direction, the effect sizes varied when comparing European Americans
to non-European Americans, especially in African Americans, where the effect sizes were smaller
compared with European-descent populations in PAGE I (79). The dilution or heterogeneity of
effect sizes may be due to differences in linkage disequilibrium, where the tested variant tags the
causal variant in Europeans but does so imperfectly or not at all in other populations (79).

FROM GENERALIZATION TO DISCOVERY IN CONSORTIA
WITH DIVERSE POPULATIONS

The PAGE study was one of the largest consortia at the time focused on generalization of GWAS-
identified variants; it subsequently shifted its focus to discovery efforts using the Metabochip
(80) and then other genome-wide array data as part of PAGE II (81). Other consortia con-
temporary to PAGE I also contributed to knowledge of generalization and population-specific
associations and conducted some of the first albeit underpowered GWAS for several outcomes
and traits in non-European-descent populations. One such consortium is the eMERGE (Elec-
tronic Medical Records and Genomics) network, formed and supported in 2007 by the NHGRI
(58, 60, 82). Now in its fourth iteration, the eMERGE network was initially a consortium of
five biobanks, each focused on an outcome or clinical trait of interest for GWAS. The first two
cycles of the eMERGE network examined the extent to which variants associated with electro-
cardiographic traits in European-descent GWAS were generalizable to non-European-descent
populations (83). In parallel, the eMERGE network conducted GWAS in African American par-
ticipants and patients for red blood cell traits (84), lipid levels (HDL-C and LDL-C) (85, 86),
atrioventricular conduction (87), and resistant hypertension (88), among other traits. While the
majority of these African-descent GWAS were statistically underpowered, these data were used in
subsequent GWAS and meta-analysis as part of larger consortia of consortia (89), demonstrating
the usefulness of generating these data that are often left out of studies due to lack of statistical
power (90).

Like the PAGE study and the eMERGE network, the CHARGE (Cohorts for Heart and
Aging Research in Genomic Epidemiology) consortium (91), which comprised ten prospective
cohorts, began conducting genome-wide studies in multiple populations. CHARGE included the
AGES (Age,Gene/Environment Susceptibility)–Reykjavik study (92), ARIC (68), CHS (67), FHS
(offspring and Gen3) (41), the Rotterdam Study (44), CARDIA (69), the HABC (Health, Ag-
ing, and Body Composition) study, and the MESA (Multi-Ethnic Study of Atherosclerosis) study
(93). While these studies mainly consist of European-descent individuals, the consortium was
able to capture information from a large number of African-descent individuals. As a result of
this diverse, multicohort collaboration, a GWAS for an electrocardiographic trait (QRS duration)
was conducted in African Americans (94), resulting in two novel loci associated with QRS width.
CHARGE investigators also described the transferability or generalization of previously identified
loci from the European-descent cohorts to the African American cohorts.
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LIMITATIONS OF GENERALIZING GWAS-IDENTIFIED VARIANTS
TO DIVERSE POPULATIONS

While restricting tests of association to variants or genes/gene regions identified in previous
European-descent GWAS preserves statistical power for small and moderately sized diverse co-
horts, this approach has some notable limitations. A major limitation is the assumption that the
GWAS-identified variant, also known as the index variant, is either the causal variant or in link-
age disequilibrium with the causal variant. Differences in linkage disequilibrium and the impact
of these differences on generalization were noted soon after GWAS studies were first published
in the mid-2000s (95). GWAS-identified variants may also differ in frequency across populations,
affecting both statistical power and linkage disequilibrium. At its most extreme, observed allele
frequency differences include population-specific variants or genes like APOL1 (78), which are
common in African-descent populations but rare or absent in European-descent populations.
African-descent populations are the genomically most diverse populations in the world (96), and
genetic association studies limited to European findings can only characterize variants shared
across populations, which are much fewer than those specific to certain populations (10). Com-
plicating the variant and linkage disequilibrium landscape is admixture, a prominent feature of
genomes for many present-day populations with complex, recent migratory histories (97, 98). In
this context, alternative or adjuvant approaches toGWAS such as admixturemapping,which lever-
ages allele frequency differences between ancestral haplotypes to identify index variants associated
with the phenotype of interest (99, 100), may be of use, as described in the next section.

STATISTICALLY POWERED GENOMIC DISCOVERY
IN DIVERSE POPULATIONS

Statistically, genomic discovery depends on a well-powered genome-wide array, sequencing asso-
ciation, or admixture study. Toward the latter, based on the assumption that ancestry influences
genetic architecture, admixture mapping is a robust statistical approach for delineating genetic
risk for disease in recently (approximately 20–30 generations) admixed populations. Specifically,
in two-way admixture analysis (99, 100), regions of the genome of differing frequencies between
parental populations are chosen for further investigation. These regions are then compared based
on differential distribution among cases and controls. Index loci are then identified and further
explored for a possible role in disease etiology or tested for association with the putative causal
variant.

As described above, various cohorts and consortia were formed to conduct generalization and
replication studies of early GWAS studies, but it was not until recent years that resources were
available to conduct properly powered trans-population and non-European-specific genomic dis-
covery studies. Innovative statistical methods were first developed in early consortia-led GWAS.
This has served as a model for the subsequent development of large-scale population-specific and
trans-population GWAS (101). These methods include using summary statistics and the appli-
cation of meta-analysis approaches (for example, fixed versus random effects) (102). The use of
summary statistics as opposed to individual-level data is an attractive approach because it allows
for the inclusion of datasets subject to otherwise restricted access without the loss of statisti-
cal power (103). Meta-analysis allowing for random effects provides an opportunity to examine
heterogeneity likely observed when GWAS include multiple cohorts from diverse populations.

Trans-populationmeta-analyses, like the previously described earlyGWASofQRS duration by
the CHARGE consortium (94), are also now possible thanks to the establishment and continued
growth of these diverse consortia.Genome-wide consortia from several years ago included cohorts
that represented only a few countries, with the largest contributions coming from the United
States and the United Kingdom. Multicountry genomic resources such as the 1000 Genomes
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Project (10) dataset were limited to genome-wide genotyping or sequencing for population genet-
ics research but were too small and lacked phenotype data for genetic association studies. Several
cohorts and biobanks outside of the United States and the United Kingdom, such as the Biobank
Japan (104), H3Africa (Humans, Heredity, and Health in Africa) (105), and INMEGEN (Mexico
National Institute of Genomic Medicine) (106), are now being considered for worldwide con-
sortia efforts for genomic discovery. The latest iterations of consortia of consortia, like the
Global BiobankMeta-analysis Initiative (GBMI) (107, 108), leverages the availability of worldwide
biobanks. GBMI consists of 24 biobanks across the world with more than 2.2 million individuals
recruited through both population-based and hospital-based approaches.This collaboration spans
five continents including Europe, Asia, North America, Australia, and Africa. Despite the fact that
more than half of participants reside in Europe, this is a geographically and ancestrally diverse
genomic resource. Another impressive global-scale consortium is the new COVID-19 Host Ge-
netics Initiative (109). At release 6 ( June 2021), the COVID-19 Host Genetics Initiative included
data from 54 studies conducted by ∼3,000 scientists worldwide.

The global datasets of GBMI and the COVID-19Host Genetics Initiative are examples of gen-
eral approaches being taken to develop new data resources for GWAS. These new data resources
can be disease-agnostic or disease-centric consortia. Although first developed around specific out-
comes of interest, the linkage of electronic health records makes the eMERGE network disease
agnostic.Other examples of diverse disease-agnostic consortia, cohorts, or companies are PAGE II,
the Million Veteran Program (MVP) (110), and the 23andMe Research Innovation Collabora-
tions Program. MVP is a longitudinal cohort study conducted by the Department of Veterans
Affairs healthcare system.MVP participants are US veterans who consent to donate biospecimens
and their electronic health records for research. Participating veterans also take questionnaires
designed to collect data on health, lifestyle, behaviors, and exposures. MVP genome-wide data
include genome-wide array and sequencing data. The MVP currently has more than 900,000
participants, and as the name implies, the MVP intends to recruit approximately one million par-
ticipants. While the MVP is one of the largest US biobanks, 23andMe eclipses it with more than
10 million customers, 80% of whom have consented to share their genome-wide data for research
(111). Disease-centric diverse population consortia include the PRACTICAL (Prostate Cancer
Association Group to Investigate Cancer Associated Alterations in the Genome) consortium (112)
and ADGC (Alzheimer’s Diseases Genetics Consortium) (113).

Here we make special mention of the All of Us Research Program of the NIH (National
Institutes of Health) (114, 115). The United States does not have a national cohort nor does
it have a national healthcare system. The NIH established All of Us to provide the scientific
community with data resources that include US populations or groups historically underrepre-
sented in biomedical research. All of Us is reminiscent of the UK Biobank in that participants can
consent to include health data from their electronic health records as well as health data directly
measured from exams, biospecimens, or questionnaires.All of Us deviates from the UK Biobank in
oversampling by self-identified non-European race/ethnicity as well as geography, socioeconomic
status, age, disability, and other dimensions of diversity. All of Us enrolls participants primarily
through healthcare provider organizations but also allows for volunteer participants outside of
the healthcare system. Similar to the UK Biobank, All of Us promises ease of data access to better
ensure properly powered genomic discovery studies will be conducted sooner rather than later
for diverse populations.

NEXT STEPS

To better understand the underlying genetic architecture of complex disease, more effort must be
made toward global inclusion at every step of the research process, from study design to analyses.
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At the recruitment stage, more attention should be paid toward recruitment for bigger and more
ancestrally and geographically diverse cohorts. This recruitment effort will likely require expan-
sion beyond the Eurocentric recruitment methods applied to date. Along with the use of larger
sample sizes, future studies will be able to conduct whole-genome sequencing at the scale now en-
joyed by budget-friendly genome-wide arrays. As the cost of whole-genome sequencing decreases,
more population-specific variation data associated with phenotypes will be available. These data
will contribute to our complete understanding of the population-shared and population-unique
genomic basis of complex human diseases and traits, ultimately informing translational applica-
tions emerging from the currently incomplete and Eurocentric databases established almost two
decades ago.
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