1932

Abstract

Hyaluronan (HA) plays well-recognized mechanical and biological roles in articular cartilage and synovial fluid, where it contributes to tissue structure and lubrication. An understanding of how HA contributes to the structure of other musculoskeletal tissues, including muscle, bone, tendon, and intervertebral discs, is growing. In addition, the use of HA-based therapies to restore damaged tissue is becoming more prevalent. Nevertheless, the relationship between biomechanical stimuli and HA synthesis, degradation, and signaling in musculoskeletal tissues remains understudied, limiting the utility of HA in regenerative medicine. In this review, we discuss the various roles and significance of endogenous HA in musculoskeletal tissues. We use what is known and unknown to motivate new lines of inquiry into HA biology within musculoskeletal tissues and in the mechanobiology governing HA metabolism by suggesting questions that remain regarding the relationship and interaction between biological and mechanical roles of HA in musculoskeletal health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-073123-120541
2024-07-03
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-073123-120541.html?itemId=/content/journals/10.1146/annurev-bioeng-073123-120541&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Cowman MK, Lee HG, Schwertfeger KL, McCarthy JB, Turley EA. 2015.. The content and size of hyaluronan in biological fluids and tissues. . Front. Immunol. 6::261
    [Crossref] [Google Scholar]
  2. 2.
    Kim YS, Guilak F. 2022.. Engineering hyaluronic acid for the development of new treatment strategies for osteoarthritis. . Int. J. Mol. Sci. 23::8662
    [Crossref] [Google Scholar]
  3. 3.
    Decker B, Bosch U, Gassler N, Tugtekin I, Kasperczyk W, Reale E. 1994.. Histochemical aspects of the proteoglycans of patellar tendon autografts used to replace the posterior cruciate ligament. . Matrix Biol. 14::10111
    [Crossref] [Google Scholar]
  4. 4.
    Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, et al. 2021.. Tissue-specific parameters for the design of ECM-mimetic biomaterials. . Acta Biomater. 132::83102
    [Crossref] [Google Scholar]
  5. 5.
    Bost F, Diarra-Mehrpour M, Martin JP. 1998.. Inter-α-trypsin inhibitor proteoglycan family—a group of proteins binding and stabilizing the extracellular matrix. . Eur. J. Biochem. 252::33946
    [Crossref] [Google Scholar]
  6. 6.
    Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, et al. 1999.. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. . J. Biol. Chem. 274::2508592
    [Crossref] [Google Scholar]
  7. 7.
    Itano N, Atsumi F, Sawai T, Yamada Y, Miyaishi O, et al. 2002.. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. . PNAS 99::360914
    [Crossref] [Google Scholar]
  8. 8.
    Torronen K, Nikunen K, Karna R, Tammi M, Tammi R, Rilla K. 2014.. Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. . Histochem. Cell Biol. 141::1731
    [Crossref] [Google Scholar]
  9. 9.
    Recklies AD, White C, Melching L, Roughley PJ. 2001.. Differential regulation and expression of hyaluronan synthases in human articular chondrocytes, synovial cells and osteosarcoma cells. . Biochem. J. 354::1724
    [Crossref] [Google Scholar]
  10. 10.
    Itano N, Kimata K. 2002.. Mammalian hyaluronan synthases. . IUBMB Life 54::19599
    [Crossref] [Google Scholar]
  11. 11.
    Laurent TC, Laurent UB, Fraser JR. 1996.. The structure and function of hyaluronan: an overview. . Immunol. Cell Biol. 74::A17
    [Crossref] [Google Scholar]
  12. 12.
    Saari H, Sorsa T, Konttinen YT. 1990.. Reactive oxygen species and hyaluronate in serum and synovial fluid in arthritis. . Int. J. Tissue React. 12::8189
    [Google Scholar]
  13. 13.
    Fuchs B, Schiller J. 2014.. Glycosaminoglycan degradation by selected reactive oxygen species. . Antioxid. Redox Signal. 21::104462
    [Crossref] [Google Scholar]
  14. 14.
    Stern R, Jedrzejas MJ. 2006.. Hyaluronidases: their genomics, structures, and mechanisms of action. . Chem. Rev. 106::81839
    [Crossref] [Google Scholar]
  15. 15.
    Csoka AB, Frost GI, Stern R. 2001.. The six hyaluronidase-like genes in the human and mouse genomes. . Matrix Biol. 20::499508
    [Crossref] [Google Scholar]
  16. 16.
    Lesley J, Hascall VC, Tammi M, Hyman R. 2000.. Hyaluronan binding by cell surface CD44. . J. Biol. Chem. 275::2696775
    [Crossref] [Google Scholar]
  17. 17.
    Turley EA. 1982.. Purification of a hyaluronate-binding protein fraction that modifies cell social behavior. . Biochem. Biophys. Res. Commun. 108::101624
    [Crossref] [Google Scholar]
  18. 18.
    Henderson KJ, Edwards JC, Worrall JG. 1994.. Expression of CD44 in normal and rheumatoid synovium and cultured synovial fibroblasts. . Ann. Rheum. Dis. 53::72934
    [Crossref] [Google Scholar]
  19. 19.
    Nakamura H, Kenmotsu S, Sakai H, Ozawa H. 1995.. Localization of CD44, the hyaluronate receptor, on the plasma membrane of osteocytes and osteoclasts in rat tibiae. . Cell Tissue Res. 280::22533
    [Google Scholar]
  20. 20.
    Noonan KJ, Stevens JW, Tammi R, Tammi M, Hernandez JA, Midura RJ. 1996.. Spatial distribution of CD44 and hyaluronan in the proximal tibia of the growing rat. . J. Orthop. Res. 14::57381
    [Crossref] [Google Scholar]
  21. 21.
    Suzuki A, Nozawa-Inoue K, Amizuka N, Ono K, Maeda T. 2006.. Localization of CD44 and hyaluronan in the synovial membrane of the rat temporomandibular joint. . Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288::64652
    [Crossref] [Google Scholar]
  22. 22.
    Knudson CB. 2003.. Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. . Birth Defects Res. C Embryo Today 69::17496
    [Crossref] [Google Scholar]
  23. 23.
    Messam BJ, Tolg C, McCarthy JB, Nelson AC, Turley EA. 2021.. RHAMM is a multifunctional protein that regulates cancer progression. . Int. J. Mol. Sci. 22::10313
    [Crossref] [Google Scholar]
  24. 24.
    Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I. 2018.. Osteoarthritis as a disease of the cartilage pericellular matrix. . Matrix Biol. 71–72::4050
    [Crossref] [Google Scholar]
  25. 25.
    Barland P, Novikoff AB, Hamerman D. 1962.. Electron microscopy of the human synovial membrane. . J. Cell Biol. 14::20720
    [Crossref] [Google Scholar]
  26. 26.
    Edwards JC. 1994.. The nature and origins of synovium: experimental approaches to the study of synoviocyte differentiation. . J. Anat. 184:(Part 3):493501
    [Google Scholar]
  27. 27.
    Smith MD. 2011.. The normal synovium. . Open Rheumatol. J. 5::1006
    [Crossref] [Google Scholar]
  28. 28.
    Balazs EA, Watson D, Duff IF, Roseman S. 1967.. Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritis human fluids. . Arthritis Rheum. 10::35776
    [Crossref] [Google Scholar]
  29. 29.
    Dahl LB, Dahl IM, Engstrom-Laurent A, Granath K. 1985.. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. . Ann. Rheum. Dis. 44::81722
    [Crossref] [Google Scholar]
  30. 30.
    Temple-Wong MM, Ren S, Quach P, Hansen BC, Chen AC, et al. 2016.. Hyaluronan concentration and size distribution in human knee synovial fluid: variations with age and cartilage degeneration. . Arthritis Res. Ther. 18::18
    [Crossref] [Google Scholar]
  31. 31.
    Schmidt TA, Gastelum NS, Nguyen QT, Schumacher BL, Sah RL. 2007.. Boundary lubrication of articular cartilage: role of synovial fluid constituents. . Arthritis Rheum. 56::88291
    [Crossref] [Google Scholar]
  32. 32.
    Coleman PJ, Scott D, Ray J, Mason RM, Levick JR. 1997.. Hyaluronan secretion into the synovial cavity of rabbit knees and comparison with albumin turnover. . J. Physiol. 503:(Part 3):64556
    [Crossref] [Google Scholar]
  33. 33.
    Sabaratnam S, Arunan V, Coleman PJ, Mason RM, Levick JR. 2005.. Size selectivity of hyaluronan molecular sieving by extracellular matrix in rabbit synovial joints. . J. Physiol. 567::56981
    [Crossref] [Google Scholar]
  34. 34.
    Yanagida-Suekawa T, Tanimoto K, Tanne Y, Mitsuyoshi T, Hirose N, et al. 2013.. Synthesis of hyaluronan and superficial zone protein in synovial membrane cells modulated by fluid flow. . Eur. J. Oral Sci. 121::56672
    [Crossref] [Google Scholar]
  35. 35.
    Schumacher BL, Block JA, Schmid TM, Aydelotte MB, Kuettner KE. 1994.. A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. . Arch. Biochem. Biophys. 311::14452
    [Crossref] [Google Scholar]
  36. 36.
    Greene GW, Banquy X, Lee DW, Lowrey DD, Yu J, Israelachvili JN. 2011.. Adaptive mechanically controlled lubrication mechanism found in articular joints. . PNAS 108::525559
    [Crossref] [Google Scholar]
  37. 37.
    Bonnevie ED, Galesso D, Secchieri C, Cohen I, Bonassar LJ. 2015.. Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. . PLOS ONE 10::e0143415
    [Crossref] [Google Scholar]
  38. 38.
    Chang DP, Abu-Lail NI, Coles JM, Guilak F, Jay GD, Zauscher S. 2009.. Friction force microscopy of lubricin and hyaluronic acid between hydrophobic and hydrophilic surfaces. . Soft Matter 5::343845
    [Crossref] [Google Scholar]
  39. 39.
    Chang DP, Abu-Lail NI, Guilak F, Jay GD, Zauscher S. 2008.. Conformational mechanics, adsorption, and normal force interactions of lubricin and hyaluronic acid on model surfaces. . Langmuir 24::118393
    [Crossref] [Google Scholar]
  40. 40.
    Ludwig TE, Cowman MK, Jay GD, Schmidt TA. 2014.. Effects of concentration and structure on proteoglycan 4 rheology and interaction with hyaluronan. . Biorheology 51::40922
    [Crossref] [Google Scholar]
  41. 41.
    Lin W, Liu Z, Kampf N, Klein J. 2020.. The role of hyaluronic acid in cartilage boundary lubrication. . Cells 9::1606
    [Crossref] [Google Scholar]
  42. 42.
    Tanimoto K, Ohno S, Fujimoto K, Honda K, Ijuin C, et al. 2001.. Proinflammatory cytokines regulate the gene expression of hyaluronic acid synthetase in cultured rabbit synovial membrane cells. . Connect. Tissue Res. 42::18795
    [Crossref] [Google Scholar]
  43. 43.
    Uitterlinden EJ, Koevoet JL, Verkoelen CF, Bierma-Zeinstra SM, Jahr H, et al. 2008.. Glucosamine increases hyaluronic acid production in human osteoarthritic synovium explants. . BMC Musculoskelet. Disord. 9::120
    [Crossref] [Google Scholar]
  44. 44.
    Mustonen AM, Nieminen P, Joukainen A, Jaroma A, Kaariainen T, et al. 2016.. First in vivo detection and characterization of hyaluronan-coated extracellular vesicles in human synovial fluid. . J. Orthop. Res. 34::196068
    [Crossref] [Google Scholar]
  45. 45.
    Brown TJ, Laurent UB, Fraser JR. 1991.. Turnover of hyaluronan in synovial joints: elimination of labelled hyaluronan from the knee joint of the rabbit. . Exp. Physiol. 76::12534
    [Crossref] [Google Scholar]
  46. 46.
    Lindenhayn K, Heilmann HH, Niederhausen T, Walther HU, Pohlenz K. 1997.. Elimination of tritium-labelled hyaluronic acid from normal and osteoarthritic rabbit knee joints. . Eur. J. Clin. Chem. Clin. Biochem. 35::35563
    [Google Scholar]
  47. 47.
    Kitamura R, Tanimoto K, Tanne Y, Kamiya T, Huang YC, et al. 2010.. Effects of mechanical load on the expression and activity of hyaluronidase in cultured synovial membrane cells. . J. Biomed. Mater. Res. A 92::8793
    [Crossref] [Google Scholar]
  48. 48.
    Wu J, Qu Y, Zhang YP, Deng JX, Yu QH. 2018.. RHAMM induces progression of rheumatoid arthritis by enhancing the functions of fibroblast-like synoviocytes. . BMC Musculoskelet. Disord. 19::455
    [Crossref] [Google Scholar]
  49. 49.
    Dunn S, Kolomytkin OV, Waddell DD, Marino AA. 2009.. Hyaluronan-binding receptors: possible involvement in osteoarthritis. . Mod. Rheumatol. 19::15155
    [Crossref] [Google Scholar]
  50. 50.
    Band PA, Heeter J, Wisniewski HG, Liublinska V, Pattanayak CW, et al. 2015.. Hyaluronan molecular weight distribution is associated with the risk of knee osteoarthritis progression. . Osteoarthritis Cartilage 23::7076
    [Crossref] [Google Scholar]
  51. 51.
    Peal BT, Gagliardi R, Su J, Fortier LA, Delco ML, et al. 2020.. Synovial fluid lubricin and hyaluronan are altered in equine osteochondral fragmentation, cartilage impact injury, and full-thickness cartilage defect models. . J. Orthop. Res. 38::182635
    [Crossref] [Google Scholar]
  52. 52.
    McCarty WJ, Cheng JC, Hansen BC, Yamaguchi T, Firestein GS, et al. 2012.. The biophysical mechanisms of altered hyaluronan concentration in synovial fluid after anterior cruciate ligament transection. . Arthritis Rheum. 64::39934003
    [Crossref] [Google Scholar]
  53. 53.
    Ludwig TE, McAllister JR, Lun V, Wiley JP, Schmidt TA. 2012.. Diminished cartilage-lubricating ability of human osteoarthritic synovial fluid deficient in proteoglycan 4: restoration through proteoglycan 4 supplementation. . Arthritis Rheum. 64::396371
    [Crossref] [Google Scholar]
  54. 54.
    Lambert C, Dubuc JE, Montell E, Verges J, Munaut C, et al. 2014.. Gene expression pattern of cells from inflamed and normal areas of osteoarthritis synovial membrane. . Arthritis Rheumatol. 66::96068
    [Crossref] [Google Scholar]
  55. 55.
    Nagaya H, Ymagata T, Ymagata S, Iyoda K, Ito H, et al. 1999.. Examination of synovial fluid and serum hyaluronidase activity as a joint marker in rheumatoid arthritis and osteoarthritis patients (by zymography). . Ann. Rheum. Dis. 58::18688
    [Crossref] [Google Scholar]
  56. 56.
    Yoshida M, Sai S, Marumo K, Tanaka T, Itano N, et al. 2004.. Expression analysis of three isoforms of hyaluronan synthase and hyaluronidase in the synovium of knees in osteoarthritis and rheumatoid arthritis by quantitative real-time reverse transcriptase polymerase chain reaction. . Arthritis Res. Ther. 6::R51420
    [Crossref] [Google Scholar]
  57. 57.
    Shiozawa J, de Vega S, Cilek MZ, Yoshinaga C, Nakamura T, et al. 2020.. Implication of HYBID (hyaluronan-binding protein involved in hyaluronan depolymerization) in hyaluronan degradation by synovial fibroblasts in patients with knee osteoarthritis. . Am. J. Pathol. 190::104658
    [Crossref] [Google Scholar]
  58. 58.
    Deroyer C, Poulet C, Paulissen G, Ciregia F, Malaise O, et al. 2022.. CEMIP (KIAA1199) regulates inflammation, hyperplasia and fibrosis in osteoarthritis synovial membrane. . Cell. Mol. Life Sci. 79::260
    [Crossref] [Google Scholar]
  59. 59.
    Atarod M, Ludwig TE, Frank CB, Schmidt TA, Shrive NG. 2015.. Cartilage boundary lubrication of ovine synovial fluid following anterior cruciate ligament transection: a longitudinal study. . Osteoarthritis Cartilage 23::6407
    [Crossref] [Google Scholar]
  60. 60.
    Poole CA. 1997.. Articular cartilage chondrons: form, function and failure. . J. Anat. 191:(Part 1):113
    [Crossref] [Google Scholar]
  61. 61.
    Knudson W, Ishizuka S, Terabe K, Askew EB, Knudson CB. 2019.. The pericellular hyaluronan of articular chondrocytes. . Matrix Biol. 78–79::3246
    [Crossref] [Google Scholar]
  62. 62.
    Lai WM, Hou JS, Mow VC. 1991.. A triphasic theory for the swelling and deformation behaviors of articular cartilage. . J. Biomech. Eng. 113::24558
    [Crossref] [Google Scholar]
  63. 63.
    Buschmann MD, Grodzinsky AJ. 1995.. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. . J. Biomech. Eng. 117::17992
    [Crossref] [Google Scholar]
  64. 64.
    Ateshian GA. 2009.. The role of interstitial fluid pressurization in articular cartilage lubrication. . J. Biomech. 42::116376
    [Crossref] [Google Scholar]
  65. 65.
    Ohtsuki T, Asano K, Inagaki J, Shinaoka A, Kumagishi-Shinaoka K, et al. 2018.. High molecular weight hyaluronan protects cartilage from degradation by inhibiting aggrecanase expression. . J. Orthop. Res. 36::324755
    [Crossref] [Google Scholar]
  66. 66.
    Plaas A, Osborn B, Yoshihara Y, Bai Y, Bloom T, et al. 2007.. Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterization of ADAMTS5-hyaluronan complexes in articular cartilages. . Osteoarthritis Cartilage 15::71934
    [Crossref] [Google Scholar]
  67. 67.
    Kataoka Y, Ariyoshi W, Okinaga T, Kaneuji T, Mitsugi S, et al. 2013.. Mechanisms involved in suppression of ADAMTS4 expression in synoviocytes by high molecular weight hyaluronic acid. . Biochem. Biophys. Res. Commun. 432::58085
    [Crossref] [Google Scholar]
  68. 68.
    Huang Y, Askew EB, Knudson CB, Knudson W. 2016.. CRISPR/Cas9 knockout of HAS2 in rat chondrosarcoma chondrocytes demonstrates the requirement of hyaluronan for aggrecan retention. . Matrix Biol. 56::7494
    [Crossref] [Google Scholar]
  69. 69.
    Hiscock DR, Caterson B, Flannery CR. 2000.. Expression of hyaluronan synthases in articular cartilage. . Osteoarthritis Cartilage 8::12026
    [Crossref] [Google Scholar]
  70. 70.
    Nishida Y, Knudson CB, Nietfeld JJ, Margulis A, Knudson W. 1999.. Antisense inhibition of hyaluronan synthase-2 in human articular chondrocytes inhibits proteoglycan retention and matrix assembly. . J. Biol. Chem. 274::2189399
    [Crossref] [Google Scholar]
  71. 71.
    Ohno S, Tanimoto K, Fujimoto K, Ijuin C, Honda K, et al. 2001.. Molecular cloning of rabbit hyaluronic acid synthases and their expression patterns in synovial membrane and articular cartilage. . Biochim. Biophys. Acta Gene Struct. Expr. 1520::7178
    [Crossref] [Google Scholar]
  72. 72.
    Albrecht C, Schlegel W, Eckl P, Jagersberger T, Sadeghi K, et al. 2009.. Alterations in CD44 isoforms and HAS expression in human articular chondrocytes during the de- and re-differentiation processes. . Int. J. Mol. Med. 23::25359
    [Google Scholar]
  73. 73.
    Ono Y, Sakai T, Hiraiwa H, Hamada T, Omachi T, et al. 2013.. Chondrogenic capacity and alterations in hyaluronan synthesis of cultured human osteoarthritic chondrocytes. . Biochem. Biophys. Res. Commun. 435::73339
    [Crossref] [Google Scholar]
  74. 74.
    Chow G, Knudson CB, Knudson W. 2006.. Human hyaluronidase-2 is localized intracellularly in articular chondrocytes and other cultured cell lines. . Osteoarthritis Cartilage 14::131214
    [Crossref] [Google Scholar]
  75. 75.
    Tanimoto K, Suzuki A, Ohno S, Honda K, Tanaka N, et al. 2004.. Hyaluronidase expression in cultured growth plate chondrocytes during differentiation. . Cell Tissue Res. 318::33542
    [Crossref] [Google Scholar]
  76. 76.
    Shimoda M, Yoshida H, Mizuno S, Hirozane T, Horiuchi K, et al. 2017.. Hyaluronan-binding protein involved in hyaluronan depolymerization controls endochondral ossification through hyaluronan metabolism. . Am. J. Pathol. 187::116276
    [Crossref] [Google Scholar]
  77. 77.
    Higuchi Y, Nishida Y, Kozawa E, Zhuo L, Arai E, et al. 2017.. Conditional knockdown of hyaluronidase 2 in articular cartilage stimulates osteoarthritic progression in a mice model. . Sci. Rep. 7::7028
    [Crossref] [Google Scholar]
  78. 78.
    Chow G, Knudson CB, Knudson W. 2006.. Expression and cellular localization of human hyaluronidase-2 in articular chondrocytes and cultured cell lines. . Osteoarthritis Cartilage 14::84958
    [Crossref] [Google Scholar]
  79. 79.
    Miller AD, Vigdorovich V, Strong RK, Fernandes RJ, Lerman MI. 2006.. Hyal2, where are you?. Osteoarthritis Cartilage 14::131517
    [Crossref] [Google Scholar]
  80. 80.
    Hida D, Danielson BT, Knudson CB, Knudson W. 2015.. CD44 knock-down in bovine and human chondrocytes results in release of bound HYAL2. . Matrix Biol. 48::4254
    [Crossref] [Google Scholar]
  81. 81.
    Iacob S, Knudson CB. 2006.. Hyaluronan fragments activate nitric oxide synthase and the production of nitric oxide by articular chondrocytes. . Int. J. Biochem. Cell Biol. 38::12333
    [Crossref] [Google Scholar]
  82. 82.
    Knudson CB. 1993.. Hyaluronan receptor-directed assembly of chondrocyte pericellular matrix. . J. Cell Biol. 120::82534
    [Crossref] [Google Scholar]
  83. 83.
    Knudson W, Casey B, Nishida Y, Eger W, Kuettner KE, Knudson CB. 2000.. Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. . Arthritis Rheum. 43::116574
    [Crossref] [Google Scholar]
  84. 84.
    Ishida O, Tanaka Y, Morimoto I, Takigawa M, Eto S. 1997.. Chondrocytes are regulated by cellular adhesion through CD44 and hyaluronic acid pathway. . J. Bone Miner Res. 12::165763
    [Crossref] [Google Scholar]
  85. 85.
    Ding QH, Qi YY, Li XM, Chen WP, Wang XH, Ji XW. 2019.. Knockdown of KIAA1199 suppresses IL-1β-induced cartilage degradation and inflammatory responses in human chondrocytes through the Wnt/β-catenin signalling pathway. . Int. Immunopharmacol. 73::20311
    [Crossref] [Google Scholar]
  86. 86.
    Deroyer C, Charlier E, Neuville S, Malaise O, Gillet P, et al. 2019.. CEMIP (KIAA1199) induces a fibrosis-like process in osteoarthritic chondrocytes. . Cell Death Dis. 10::103
    [Crossref] [Google Scholar]
  87. 87.
    Shimizu H, Shimoda M, Mochizuki S, Miyamae Y, Abe H, et al. 2018.. Hyaluronan-binding protein involved in hyaluronan depolymerization is up-regulated and involved in hyaluronan degradation in human osteoarthritic cartilage. . Am. J. Pathol. 188::210919
    [Crossref] [Google Scholar]
  88. 88.
    Shiozawa J, de Vega S, Yoshinaga C, Ji X, Negishi Y, et al. 2022.. Expression and regulation of recently discovered hyaluronidases, HYBID and TMEM2, in chondrocytes from knee osteoarthritic cartilage. . Sci. Rep. 12::17242
    [Crossref] [Google Scholar]
  89. 89.
    Boskey AL. 2013.. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. . Bonekey Rep. 2::447
    [Crossref] [Google Scholar]
  90. 90.
    Bastow ER, Byers S, Golub SB, Clarkin CE, Pitsillides AA, Fosang AJ. 2008.. Hyaluronan synthesis and degradation in cartilage and bone. . Cell. Mol. Life Sci. 65::395413
    [Crossref] [Google Scholar]
  91. 91.
    Pavasant P, Shizari T, Underhill CB. 1996.. Hyaluronan contributes to the enlargement of hypertrophic lacunae in the growth plate. . J. Cell Sci. 109:(Part 2):32734
    [Crossref] [Google Scholar]
  92. 92.
    Moffatt P, Lee ER, St-Jacques B, Matsumoto K, Yamaguchi Y, Roughley PJ. 2011.. Hyaluronan production by means of Has2 gene expression in chondrocytes is essential for long bone development. . Dev. Dyn. 240::40412
    [Crossref] [Google Scholar]
  93. 93.
    Takada Y, Sakiyama H, Kuriiwa K, Masuda R, Inoue N, et al. 1999.. Metabolic activities of partially degenerated hypertrophic chondrocytes: gene expression of hyaluronan synthases. . Cell Tissue Res. 298::31725
    [Crossref] [Google Scholar]
  94. 94.
    Pendyala M, Stephen SJ, Vashishth D, Blaber EA, Chan DD. 2023.. Loss of hyaluronan synthases impacts bone morphology, quality, and mechanical properties. . Bone 172::116779
    [Crossref] [Google Scholar]
  95. 95.
    Oohira A, Nogami H. 1989.. Elevated accumulation of hyaluronate in the tubular bones of osteogenesis imperfecta. . Bone 10::40913
    [Crossref] [Google Scholar]
  96. 96.
    Imbert L, Auregan JC, Pernelle K, Hoc T. 2014.. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level. . Bone 65::1824
    [Crossref] [Google Scholar]
  97. 97.
    Adams JR, Sander G, Byers S. 2006.. Expression of hyaluronan synthases and hyaluronidases in the MG63 osteoblast cell line. . Matrix Biol. 25::4046
    [Crossref] [Google Scholar]
  98. 98.
    Huang L, Cheng YY, Koo PL, Lee KM, Qin L, et al. 2003.. The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. . J. Biomed. Mater. Res. A 66::88084
    [Crossref] [Google Scholar]
  99. 99.
    Luben RA, Cohn DV. 1976.. Effects of parathormone and calcitonin on citrate and hyaluronate metabolism in cultured bone. . Endocrinology 98::41319
    [Crossref] [Google Scholar]
  100. 100.
    Luben RA, Goggins JF, Raisz LG. 1974.. Stimulation by parathyroid hormone of bone hyaluronate synthesis in organ culture. . Endocrinology 94::73745
    [Crossref] [Google Scholar]
  101. 101.
    Severson AR. 1979.. Colchicine stimulation of hyaluronate synthesis and secretion in bone organ culture. . J. Cell. Physiol. 101::34148
    [Crossref] [Google Scholar]
  102. 102.
    Prince CW. 2004.. Roles of hyaluronan in bone resorption. . BMC Musculoskelet. Disord. 5::12
    [Crossref] [Google Scholar]
  103. 103.
    Chen L, Shi K, Andersen TL, Qiu W, Kassem M. 2019.. KIAA1199 is a secreted molecule that enhances osteoblastic stem cell migration and recruitment. . Cell Death Dis. 10::126
    [Crossref] [Google Scholar]
  104. 104.
    Chen L, Shi K, Ditzel N, Qiu W, Figeac F, et al. 2023.. KIAA1199 deficiency enhances skeletal stem cell differentiation to osteoblasts and promotes bone regeneration. . Nat. Commun. 14::2016
    [Crossref] [Google Scholar]
  105. 105.
    Puissant E, Gilis F, Tevel V, Vandeweerd JM, Flamion B, et al. 2022.. Hyaluronidase 1 deficiency decreases bone mineral density in mice. . Sci. Rep. 12::10142
    [Crossref] [Google Scholar]
  106. 106.
    Spessotto P, Rossi FM, Degan M, Di Francia R, Perris R, et al. 2002.. Hyaluronan-CD44 interaction hampers migration of osteoclast-like cells by down-regulating MMP-9. . J. Cell Biol. 158::113344
    [Crossref] [Google Scholar]
  107. 107.
    Chang EJ, Kim HJ, Ha J, Kim HJ, Ryu J, et al. 2007.. Hyaluronan inhibits osteoclast differentiation via Toll-like receptor 4. . J. Cell Sci. 120::16676
    [Crossref] [Google Scholar]
  108. 108.
    Cao JJ, Singleton PA, Majumdar S, Boudignon B, Burghardt A, et al. 2005.. Hyaluronan increases RANKL expression in bone marrow stromal cells through CD44. . J. Bone Miner. Res. 20::3040
    [Crossref] [Google Scholar]
  109. 109.
    Ariyoshi W, Takahashi T, Kanno T, Ichimiya H, Takano H, et al. 2005.. Mechanisms involved in enhancement of osteoclast formation and function by low molecular weight hyaluronic acid. . J. Biol. Chem. 280::1896772
    [Crossref] [Google Scholar]
  110. 110.
    Nakao Y, Hikiji H, Okinaga T, Takeuchi J, Habu M, et al. 2019.. Accumulation of hyaluronic acid in stromal cells modulates osteoclast formation by regulation of receptor activator of nuclear factor kappa-B ligand expression. . Biochem. Biophys. Res. Commun. 512::53743
    [Crossref] [Google Scholar]
  111. 111.
    Vogel KG, Peters JA. 2005.. Histochemistry defines a proteoglycan-rich layer in bovine flexor tendon subjected to bending. . J. Musculoskelet. Neuronal Interact. 5::6469
    [Google Scholar]
  112. 112.
    Gillard GC, Reilly HC, Bell-Booth PG, Flint MH. 1979.. The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. . Connect. Tissue Res. 7::3746
    [Crossref] [Google Scholar]
  113. 113.
    Scott JE, Orford CR, Hughes EW. 1981.. Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. . Biochem. J. 195::57381
    [Crossref] [Google Scholar]
  114. 114.
    Watanabe M, Nojima M, Shibata T, Hamada M. 1994.. Maturation-related biochemical changes in swine anterior cruciate ligament and tibialis posterior tendon. . J. Orthop. Res. 12::67282
    [Crossref] [Google Scholar]
  115. 115.
    Parry DA, Flint MH, Gillard GC, Craig AS. 1982.. A role for glycosaminoglycans in the development of collagen fibrils. . FEBS Lett. 149::17
    [Crossref] [Google Scholar]
  116. 116.
    Scott JE, Hughes EW. 1986.. Proteoglycan-collagen relationships in developing chick and bovine tendons. Influence of the physiological environment. . Connect. Tissue Res. 14::26778
    [Crossref] [Google Scholar]
  117. 117.
    Miescher I, Wolint P, Opelz C, Snedeker JG, Giovanoli P, et al. 2022.. Impact of high-molecular-weight hyaluronic acid on gene expression in rabbit achilles tenocytes in vitro. . Int. J. Mol. Sci. 23::7926
    [Crossref] [Google Scholar]
  118. 118.
    Wiig M, Abrahamsson SO. 2000.. Hyaluronic acid modulates cell proliferation unequally in intrasynovial and extrasynovial rabbit tendons in vitro. . J. Hand. Surg. Br. 25::18387
    [Crossref] [Google Scholar]
  119. 119.
    Yamada T, Gotoh M, Nakama K, Mitsui Y, Higuchi F, Nagata K. 2007.. Effects of hyaluronan on cell proliferation and mRNA expression of procollagens α1 (I) and α1 (III) in tendon-derived fibroblasts from patients with rotator cuff disease: an in vitro study. . Am. J. Sports Med. 35::187076
    [Crossref] [Google Scholar]
  120. 120.
    Yagi M, Sato N, Mitsui Y, Gotoh M, Hamada T, Nagata K. 2010.. Hyaluronan modulates proliferation and migration of rabbit fibroblasts derived from flexor tendon epitenon and endotenon. . J. Hand Surg. 35::79196
    [Crossref] [Google Scholar]
  121. 121.
    Gallorini M, Berardi AC, Berardocco M, Gissi C, Maffulli N, et al. 2017.. Hyaluronic acid increases tendon derived cell viability and proliferation in vitro: comparative study of two different hyaluronic acid preparations by molecular weight. . Muscles Ligaments Tendons J. 7::20814
    [Crossref] [Google Scholar]
  122. 122.
    Sikes KJ, Renner K, Li J, Grande-Allen KJ, Connell JP, et al. 2018.. Knockout of hyaluronan synthase 1, but not 3, impairs formation of the retrocalcaneal bursa. . J. Orthop. Res. 36::262232
    [Crossref] [Google Scholar]
  123. 123.
    Berglund M, Hart DA, Wiig M. 2007.. The inflammatory response and hyaluronan synthases in the rabbit flexor tendon and tendon sheath following injury. . J. Hand. Surg. Eur. Vol. 32::58187
    [Crossref] [Google Scholar]
  124. 124.
    Muljadi PM, Andarawis-Puri N. 2023.. Glycosaminoglycans modulate microscale mechanics and viscoelasticity in fatigue injured tendons. . J. Biomech. 152::111584
    [Crossref] [Google Scholar]
  125. 125.
    Riley GP, Harrall RL, Constant CR, Chard MD, Cawston TE, Hazleman BL. 1994.. Glycosaminoglycans of human rotator cuff tendons: changes with age and in chronic rotator cuff tendinitis. . Ann. Rheum. Dis. 53::36776
    [Crossref] [Google Scholar]
  126. 126.
    Mello ML, de Campos Vidal B. 2003.. Experimental tendon repair: glycosaminoglycan arrangement in newly synthesized collagen fibers. . Cell. Mol. Biol. 49::57985
    [Google Scholar]
  127. 127.
    Favata M, Beredjiklian PK, Zgonis MH, Beason DP, Crombleholme TM, et al. 2006.. Regenerative properties of fetal sheep tendon are not adversely affected by transplantation into an adult environment. . J. Orthop. Res. 24::212432
    [Crossref] [Google Scholar]
  128. 128.
    Ansorge HL, Beredjiklian PK, Soslowsky LJ. 2009.. CD44 deficiency improves healing tendon mechanics and increases matrix and cytokine expression in a mouse patellar tendon injury model. . J. Orthop. Res. 27::138691
    [Crossref] [Google Scholar]
  129. 129.
    Wu PT, Su WR, Li CL, Hsieh JL, Ma CH, et al. 2019.. Inhibition of CD44 induces apoptosis, inflammation, and matrix metalloproteinase expression in tendinopathy. . J. Biol. Chem. 294::2017784
    [Crossref] [Google Scholar]
  130. 130.
    Yuda Y, Kasashima Y, Kuwano A, Sato K, Hattori S, Arai K. 2013.. Active hyaluronidase 2 expression in the granulation tissue formed in the healing process of equine superficial digital flexor tendonitis. . J. Vet. Med. Sci. 75::21923
    [Crossref] [Google Scholar]
  131. 131.
    Goody MF, Sher RB, Henry CA. 2015.. Hanging on for the ride: adhesion to the extracellular matrix mediates cellular responses in skeletal muscle morphogenesis and disease. . Dev. Biol. 401::7591
    [Crossref] [Google Scholar]
  132. 132.
    Calve S, Isaac J, Gumucio JP, Mendias CL. 2012.. Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy. . Am. J. Physiol. Cell Physiol. 303::C57788
    [Crossref] [Google Scholar]
  133. 133.
    Hunt LC, Gorman C, Kintakas C, McCulloch DR, Mackie EJ, White JD. 2013.. Hyaluronan synthesis and myogenesis: a requirement for hyaluronan synthesis during myogenic differentiation independent of pericellular matrix formation. . J. Biol. Chem. 288::1300621
    [Crossref] [Google Scholar]
  134. 134.
    Calve S, Odelberg SJ, Simon HG. 2010.. A transitional extracellular matrix instructs cell behavior during muscle regeneration. . Dev. Biol. 344::25971
    [Crossref] [Google Scholar]
  135. 135.
    Silva Garcia JM, Panitch A, Calve S. 2019.. Functionalization of hyaluronic acid hydrogels with ECM-derived peptides to control myoblast behavior. . Acta Biomater. 84::16979
    [Crossref] [Google Scholar]
  136. 136.
    Leng Y, Abdullah A, Wendt MK, Calve S. 2019.. Hyaluronic acid, CD44 and RHAMM regulate myoblast behavior during embryogenesis. . Matrix Biol. 78–79::23654
    [Crossref] [Google Scholar]
  137. 137.
    Mylona E, Jones KA, Mills ST, Pavlath GK. 2006.. CD44 regulates myoblast migration and differentiation. . J. Cell. Physiol. 209::31421
    [Crossref] [Google Scholar]
  138. 138.
    Ori M, Nardini M, Casini P, Perris R, Nardi I. 2006.. XHas2 activity is required during somitogenesis and precursor cell migration in Xenopus development. . Development 133::63140
    [Crossref] [Google Scholar]
  139. 139.
    Nakka K, Hachmer S, Mokhtari Z, Kovac R, Bandukwala H, et al. 2022.. JMJD3 activated hyaluronan synthesis drives muscle regeneration in an inflammatory environment. . Science 377::66669
    [Crossref] [Google Scholar]
  140. 140.
    Krenn V, Brand-Saberi B, Wachtler F. 1991.. Hyaluronic acid influences the migration of myoblasts within the avian embryonic wing bud. . Am. J. Anat. 192::4006
    [Crossref] [Google Scholar]
  141. 141.
    Orkin RW, Knudson W, Toole BP. 1985.. Loss of hyaluronate-dependent coat during myoblast fusion. . Dev. Biol. 107::52730
    [Crossref] [Google Scholar]
  142. 142.
    Elson HF, Ingwall JS. 1980.. The cell substratum modulates skeletal muscle differentiation. . J. Supramol. Struct. 14::31328
    [Crossref] [Google Scholar]
  143. 143.
    Kujawa MJ, Pechak DG, Fiszman MY, Caplan AI. 1986.. Hyaluronic acid bonded to cell culture surfaces inhibits the program of myogenesis. . Dev. Biol. 113::1016
    [Crossref] [Google Scholar]
  144. 144.
    Kujawa MJ, Tepperman K. 1983.. Culturing chick muscle cells on glycosaminoglycan substrates: attachment and differentiation. . Dev. Biol. 99::27786
    [Crossref] [Google Scholar]
  145. 145.
    Yoshimura M. 1985.. Change of hyaluronic acid synthesis during differentiation of myogenic cells and its relation to transformation of myoblasts by Rous sarcoma virus. . Cell Differ. 16::17585
    [Crossref] [Google Scholar]
  146. 146.
    Kang L, Lantier L, Kennedy A, Bonner JS, Mayes WH, et al. 2013.. Hyaluronan accumulates with high-fat feeding and contributes to insulin resistance. . Diabetes 62::188896
    [Crossref] [Google Scholar]
  147. 147.
    Hasib A, Hennayake CK, Bracy DP, Bugler-Lamb AR, Lantier L, et al. 2019.. CD44 contributes to hyaluronan-mediated insulin resistance in skeletal muscle of high-fat-fed C57BL/6 mice. . Am. J. Physiol. Endocrinol. Metab. 317::E97383
    [Crossref] [Google Scholar]
  148. 148.
    Menon RG, Raghavan P, Regatte RR. 2019.. Quantifying muscle glycosaminoglycan levels in patients with post-stroke muscle stiffness using T(1ρ) MRI. . Sci. Rep. 9::14513
    [Crossref] [Google Scholar]
  149. 149.
    Liu X, Krishnamoorthy D, Lin L, Xue P, Zhang F, et al. 2018.. A method for characterising human intervertebral disc glycosaminoglycan disaccharides using liquid chromatography-mass spectrometry with multiple reaction monitoring. . Eur. Cell Mater. 35::11731
    [Crossref] [Google Scholar]
  150. 150.
    Scott JE, Bosworth TR, Cribb AM, Taylor JR. 1994.. The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus. . J. Anat. 184:(Part 1):7382
    [Google Scholar]
  151. 151.
    Caldeira J, Santa C, Osorio H, Molinos M, Manadas B, et al. 2017.. Matrisome profiling during intervertebral disc development and ageing. . Sci. Rep. 7::11629
    [Crossref] [Google Scholar]
  152. 152.
    Vieira F, Kang J, Ferreira L, Mizuno S. 2021.. Hydrostatic pressure mimicking diurnal spinal movements maintains anabolic turnover in bovine nucleus pulposus cells in vitro. . Eur. Cell Mater. 42::24663
    [Crossref] [Google Scholar]
  153. 153.
    Stevens JW, Kurriger GL, Carter AS, Maynard JA. 2000.. CD44 expression in the developing and growing rat intervertebral disc. . Dev. Dyn. 219::38190
    [Crossref] [Google Scholar]
  154. 154.
    Roughley PJ, Lamplugh L, Lee ER, Matsumoto K, Yamaguchi Y. 2011.. The role of hyaluronan produced by Has2 gene expression in development of the spine. . Spine 36::E91420
    [Crossref] [Google Scholar]
  155. 155.
    Hegewald AA, Zouhair S, Endres M, Cabraja M, Woiciechowsky C, et al. 2013.. Towards biological anulus repair: TGF-β3, FGF-2 and human serum support matrix formation by human anulus fibrosus cells. . Tissue Cell 45::6876
    [Crossref] [Google Scholar]
  156. 156.
    Hegewald AA, Cluzel J, Kruger JP, Endres M, Kaps C, Thome C. 2014.. Effects of initial boost with TGF-beta 1 and grade of intervertebral disc degeneration on 3D culture of human annulus fibrosus cells. . J. Orthop. Surg. Res. 9::73
    [Crossref] [Google Scholar]
  157. 157.
    Haberstroh K, Enz A, Zenclussen ML, Hegewald AA, Neumann K, et al. 2009.. Human intervertebral disc-derived cells are recruited by human serum and form nucleus pulposus-like tissue upon stimulation with TGF-β3 or hyaluronan in vitro. . Tissue Cell 41::41420
    [Crossref] [Google Scholar]
  158. 158.
    Isa IL, Srivastava A, Tiernan D, Owens P, Rooney P, et al. 2015.. Hyaluronic acid based hydrogels attenuate inflammatory receptors and neurotrophins in interleukin-1β induced inflammation model of nucleus pulposus cells. . Biomacromolecules 16::171425
    [Crossref] [Google Scholar]
  159. 159.
    Gruber HE, Hoelscher GL, Hanley EN Jr. 2010.. Annulus cells from more degenerated human discs show modified gene expression in 3D culture compared with expression in cells from healthier discs. . Spine J. 10::72127
    [Crossref] [Google Scholar]
  160. 160.
    Yamamoto T, Suzuki S, Fujii T, Mima Y, Watanabe K, et al. 2021.. Efficacy of hyaluronic acid on intervertebral disc inflammation: an in vitro study using notochordal cell lines and human disc cells. . J. Orthop. Res. 39::2197208
    [Crossref] [Google Scholar]
  161. 161.
    Krupkova O, Greutert H, Boos N, Lemcke J, Liebscher T, Wuertz-Kozak K. 2020.. Expression and activity of hyaluronidases HYAL-1, HYAL-2 and HYAL-3 in the human intervertebral disc. . Eur. Spine J. 29::60515
    [Crossref] [Google Scholar]
  162. 162.
    Wilusz RE, Guilak F. 2014.. High resistance of the mechanical properties of the chondrocyte pericellular matrix to proteoglycan digestion by chondroitinase, aggrecanase, or hyaluronidase. . J. Mech. Behav. Biomed. Mater. 38::18397
    [Crossref] [Google Scholar]
  163. 163.
    Rilla K, Tiihonen R, Kultti A, Tammi M, Tammi R. 2008.. Pericellular hyaluronan coat visualized in live cells with a fluorescent probe is scaffolded by plasma membrane protrusions. . J. Histochem. Cytochem. 56::90110
    [Crossref] [Google Scholar]
  164. 164.
    Lewthwaite JC, Bastow ER, Lamb KJ, Blenis J, Wheeler-Jones CP, Pitsillides AA. 2006.. A specific mechanomodulatory role for p38 MAPK in embryonic joint articular surface cell MEK-ERK pathway regulation. . J. Biol. Chem. 281::1101118
    [Crossref] [Google Scholar]
  165. 165.
    Juffer P, Bakker AD, Klein-Nulend J, Jaspers RT. 2014.. Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production. . Cell Biochem. Biophys. 69::41119
    [Crossref] [Google Scholar]
  166. 166.
    Hughes DE, Salter DM, Simpson R. 1994.. CD44 expression in human bone: a novel marker of osteocytic differentiation. . J. Bone Miner. Res. 9::3944
    [Crossref] [Google Scholar]
  167. 167.
    Chopra A, Murray ME, Byfield FJ, Mendez MG, Halleluyan R, et al. 2014.. Augmentation of integrin-mediated mechanotransduction by hyaluronic acid. . Biomaterials 35::7182
    [Crossref] [Google Scholar]
  168. 168.
    Mandal K, Raz-Ben Aroush D, Graber ZT, Wu B, Park CY, et al. 2019.. Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. . ACS Nano 13::20314
    [Crossref] [Google Scholar]
  169. 169.
    Ozawa M, Nishida K, Yoshida A, Saito T, Harada R, et al. 2015.. Hyaluronan suppresses mechanical stress-induced expression of catabolic enzymes by human chondrocytes via inhibition of IL-1β production and subsequent NF-κB activation. . Inflamm. Res. 64::24352
    [Crossref] [Google Scholar]
  170. 170.
    Pitsillides AA, Skerry TM, Edwards JC. 1999.. Joint immobilization reduces synovial fluid hyaluronan concentration and is accompanied by changes in the synovial intimal cell populations. . Rheumatology 38::110812
    [Crossref] [Google Scholar]
  171. 171.
    Ingram KR, Wann AK, Angel CK, Coleman PJ, Levick JR. 2008.. Cyclic movement stimulates hyaluronan secretion into the synovial cavity of rabbit joints. . J. Physiol. 586::171529
    [Crossref] [Google Scholar]
  172. 172.
    Ingram KR, Wann AK, Wingate RM, Coleman PJ, McHale N, Levick JR. 2009.. Signal pathways regulating hyaluronan secretion into static and cycled synovial joints of rabbits. . J. Physiol. 587::436176
    [Crossref] [Google Scholar]
  173. 173.
    Momberger TS, Levick JR, Mason RM. 2005.. Hyaluronan secretion by synoviocytes is mechanosensitive. . Matrix Biol. 24::51019
    [Crossref] [Google Scholar]
  174. 174.
    Momberger TS, Levick JR, Mason RM. 2006.. Mechanosensitive synoviocytes: a Ca2+–PKCα–MAP kinase pathway contributes to stretch-induced hyaluronan synthesis in vitro. . Matrix Biol. 25::30616
    [Crossref] [Google Scholar]
  175. 175.
    Uehara K, Hara M, Matsuo T, Namiki G, Watanabe M, Nomura Y. 2015.. Hyaluronic acid secretion by synoviocytes alters under cyclic compressive load in contracted collagen gels. . Cytotechnology 67::1926
    [Crossref] [Google Scholar]
  176. 176.
    Pendyala M, Woods PS, Brubaker DK, Blaber EA, Schmidt TA, Chan DD. 2022.. Endogenous production of hyaluronan, PRG4, and cytokines is sensitive to cyclic loading in synoviocytes. . PLOS ONE 17::e0267921
    [Crossref] [Google Scholar]
  177. 177.
    Skandalis SS, Karalis T, Heldin P. 2020.. Intracellular hyaluronan: importance for cellular functions. . Semin. Cancer Biol. 62::2030
    [Crossref] [Google Scholar]
  178. 178.
    Tanimoto K, Kitamura R, Tanne Y, Kamiya T, Kunimatsu R, et al. 2010.. Modulation of hyaluronan catabolism in chondrocytes by mechanical stimuli. . J. Biomed. Mater. Res. A 93::37380
    [Crossref] [Google Scholar]
  179. 179.
    Oguchi T, Ishiguro N. 2004.. Differential stimulation of three forms of hyaluronan synthase by TGF-β, IL-1β, and TNF-α. . Connect. Tissue Res. 45::197205
    [Crossref] [Google Scholar]
  180. 180.
    Rilla K, Oikari S, Jokela TA, Hyttinen JM, Karna R, et al. 2013.. Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3. . J. Biol. Chem. 288::597383
    [Crossref] [Google Scholar]
  181. 181.
    Siiskonen H, Karna R, Hyttinen JM, Tammi RH, Tammi MI, Rilla K. 2014.. Hyaluronan synthase 1 (HAS1) produces a cytokine-and glucose-inducible, CD44-dependent cell surface coat. . Exp. Cell Res. 320::15363
    [Crossref] [Google Scholar]
  182. 182.
    Chen WY, Marcellin E, Steen JA, Nielsen LK. 2014.. The role of hyaluronic acid precursor concentrations in molecular weight control in Streptococcus zooepidemicus. . Mol. Biotechnol. 56::14756
    [Crossref] [Google Scholar]
  183. 183.
    Wong BL, Kim SH, Antonacci JM, McIlwraith CW, Sah RL. 2010.. Cartilage shear dynamics during tibio-femoral articulation: effect of acute joint injury and tribosupplementation on synovial fluid lubrication. . Osteoarthritis Cartilage 18::46471
    [Crossref] [Google Scholar]
  184. 184.
    Kanazawa K, Hagiwara Y, Tsuchiya M, Yabe Y, Sonofuchi K, et al. 2015.. Preventing effects of joint contracture by high molecular weight hyaluronan injections in a rat immobilized knee model. . Int. J. Clin. Exp. Pathol. 8::342640
    [Google Scholar]
  185. 185.
    Shen Q, Li J, Chan D, Sandy JD, Takeuchi J, et al. 2019.. Effect of intra-articular hyaluronan injection on inflammation and bone remodeling in the epiphyses and metaphyses of the knee in a murine model of joint injury. . Am. J. Transl. Res. 11::3280300
    [Google Scholar]
  186. 186.
    Li J, Gorski DJ, Anemaet W, Velasco J, Takeuchi J, et al. 2012.. Hyaluronan injection in murine osteoarthritis prevents TGFbeta 1-induced synovial neovascularization and fibrosis and maintains articular cartilage integrity by a CD44-dependent mechanism. . Arthritis Res. Ther. 14::R151
    [Crossref] [Google Scholar]
  187. 187.
    Plaas A, Li J, Riesco J, Das R, Sandy JD, Harrison A. 2011.. Intraarticular injection of hyaluronan prevents cartilage erosion, periarticular fibrosis and mechanical allodynia and normalizes stance time in murine knee osteoarthritis. . Arthritis Res. Ther. 13::R46
    [Crossref] [Google Scholar]
  188. 188.
    Richardson C, Plaas A, Block JA. 2019.. Intra-articular hyaluronan therapy for symptomatic knee osteoarthritis. . Rheum. Dis. Clin. North Am. 45::43951
    [Crossref] [Google Scholar]
  189. 189.
    Zhao D, Pan JK, Yang WY, Han YH, Zeng LF, et al. 2021.. Intra-articular injections of platelet-rich plasma, adipose mesenchymal stem cells, and bone marrow mesenchymal stem cells associated with better outcomes than hyaluronic acid and saline in knee osteoarthritis: a systematic review and network meta-analysis. . Arthroscopy 37::2298314.e10
    [Crossref] [Google Scholar]
  190. 190.
    Zhao K, Wen Y, Bunpetch V, Lin J, Hu Y, et al. 2022.. Hype or hope of hyaluronic acid for osteoarthritis: integrated clinical evidence synthesis with multi-organ transcriptomics. . J. Orthop. Translat. 32::91100
    [Crossref] [Google Scholar]
  191. 191.
    Sussmann M, Sarbia M, Meyer-Kirchrath J, Nusing RM, Schror K, Fischer JW. 2004.. Induction of hyaluronic acid synthase 2 (HAS2) in human vascular smooth muscle cells by vasodilatory prostaglandins. . Circ. Res. 94::592600
    [Crossref] [Google Scholar]
  192. 192.
    Kim S, Kang BY, Cho SY, Sung DS, Chang HK, et al. 2004.. Compound K induces expression of hyaluronan synthase 2 gene in transformed human keratinocytes and increases hyaluronan in hairless mouse skin. . Biochem. Biophys. Res. Commun. 316::34855
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-073123-120541
Loading
/content/journals/10.1146/annurev-bioeng-073123-120541
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error