1932

Abstract

Scientists around the world have long aimed to produce miniature robots that can be controlled inside the human body to aid doctors in identifying and treating diseases. Such microrobots hold the potential to access hard-to-reach areas of the body through the natural lumina. Wireless access has the potential to overcome drawbacks of systemic therapy, as well as to enable completely new minimally invasive procedures. The aim of this review is fourfold: first, to provide a collection of valuable anatomical and physiological information on the target working environments together with engineering tools for the design of medical microrobots; second, to provide a comprehensive updated survey of the technological state of the art in relevant classes of medical microrobots; third, to analyze currently available tracking and closed-loop control strategies compatible with the in-body environment; and fourth, to explore the challenges still in place, to steer and inspire future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-081523-033131
2024-07-03
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-081523-033131.html?itemId=/content/journals/10.1146/annurev-bioeng-081523-033131&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbott JJ, Nagy Z, Beyeler F, Nelson BJ. 2007.. Robotics in the small, part I: microbotics. . IEEE Robot. Autom. Mag. 14:(2):92103
    [Crossref] [Google Scholar]
  2. 2.
    Nelson BJ, Kaliakatsos IK, Abbott JJ. 2010.. Microrobots for minimally invasive medicine. . Annu. Rev. Biomed. Eng. 12::5585
    [Crossref] [Google Scholar]
  3. 3.
    Wu Z, Troll J, Jeong H-H, Wei Q, Stang M, et al. 2023.. A swarm of slippery micropropellers penetrates the vitreous body of the eye. . Sci. Adv. 4:(11):eaat4388
    [Crossref] [Google Scholar]
  4. 4.
    Gwisai T, Mirkhani N, Christiansen MG, Nguyen TT, Ling V, Schuerle S. 2023.. Magnetic torque-driven living microrobots for increased tumor infiltration. . Sci. Robot. 7:(71):eabo0665
    [Crossref] [Google Scholar]
  5. 5.
    Barducci L, Norton JC, Sarker S, Mohammed S, Jones R, et al. 2020.. Fundamentals of the gut for capsule engineers. . Prog. Biomed. Eng. 2:(4):42002
    [Crossref] [Google Scholar]
  6. 6.
    Cheng LK. 2015.. Slow wave conduction patterns in the stomach: from Waller's foundations to current challenges. . Acta Physiol. 213:(2):38493
    [Crossref] [Google Scholar]
  7. 7.
    Miftahof RN. 2005.. The wave phenomena in smooth muscle syncytia. . In Silico Biol. 5::47998
    [Google Scholar]
  8. 8.
    Woods SP, Constandinou TG. 2013.. Wireless capsule endoscope for targeted drug delivery: mechanics and design considerations. . IEEE Trans. Biomed. Eng. 60:(4):94553
    [Crossref] [Google Scholar]
  9. 9.
    Shenoy SS, Lui F. 2022.. Neuroanatomy, Ventricular System. Treasure Island, FL:: StatPearls Publ.
    [Google Scholar]
  10. 10.
    Purdy PD, Fujimoto T, Replogle RE, Giles BP, Fujimoto H, Miller SL. 2005.. Percutaneous intraspinal navigation for access to the subarachnoid space: use of another natural conduit for neurosurgical procedures. . Neurosurg. Focus 19:(1):E11
    [Crossref] [Google Scholar]
  11. 11.
    Stan RV. 2007.. Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis. . J. Cell. Mol. Med. 11:(4):62143
    [Crossref] [Google Scholar]
  12. 12.
    Duffner F, Schiffbauer H, Glemser D, Skalej M, Freudenstein D. 2003.. Anatomy of the cerebral ventricular system for endoscopic neurosurgery: a magnetic resonance study. . Acta Neurochir. 145:(5):35968
    [Crossref] [Google Scholar]
  13. 13.
    Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S, et al. 2013.. Mobility experiments with microrobots for minimally invasive intraocular surgery. . Investig. Ophthalmol. Vis. Sci. 54:(4):285363
    [Crossref] [Google Scholar]
  14. 14.
    Risquez F, Confino E. 1993.. Transcervical tubal cannulation, past, present, and future. . Fertil. Steril. 60:(2):21126
    [Crossref] [Google Scholar]
  15. 15.
    Nauber R, Goudu SR, Goeckenjan M, Bornhäuser M, Ribeiro C, Medina-Sánchez M. 2023.. Medical microrobots in reproductive medicine from the bench to the clinic. . Nat. Commun. 14:(1):728
    [Crossref] [Google Scholar]
  16. 16.
    Eisentraut M, Sabri A, Kress H. 2023.. The spatial resolution limit of phagocytosis. . Biophys. J. 122:(5):86879
    [Crossref] [Google Scholar]
  17. 17.
    Yasa IC, Ceylan H, Bozuyuk U, Wild A-M, Sitti M. 2020.. Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. . Sci. Robot. 5:(43):eaaz3867
    [Crossref] [Google Scholar]
  18. 18.
    Champion JA, Walker A, Mitragotri S. 2008.. Role of particle size in phagocytosis of polymeric microspheres. . Pharm. Res. 25:(8):181521
    [Crossref] [Google Scholar]
  19. 19.
    Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. 2015.. Nanoparticle uptake: the phagocyte problem. . Nano Today 10:(4):487510
    [Crossref] [Google Scholar]
  20. 20.
    Greish K. 2010.. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. . In Cancer Nanotechnology: Methods and Protocols, ed. SR Grobmyer, BM Moudgil , pp. 2537. Totowa, NJ:: Humana Press
    [Google Scholar]
  21. 21.
    Rogers DF. 2004.. Airway mucus hypersecretion in asthma: an undervalued pathology?. Curr. Opin. Pharmacol. 4:(3):24150
    [Crossref] [Google Scholar]
  22. 22.
    Meyerholz DK, Stoltz DA, Pezzulo AA, Welsh MJ. 2010.. Pathology of gastrointestinal organs in a porcine model of cystic fibrosis. . Am. J. Pathol. 176:(3):137789
    [Crossref] [Google Scholar]
  23. 23.
    Fang J, Wang H, Xue Z, Cheng Y, Zhang X. 2021.. PPARγ: the central mucus barrier coordinator in ulcerative colitis. . Inflamm. Bowel Dis. 27:(5):73241
    [Crossref] [Google Scholar]
  24. 24.
    Wong A, Ye M, Levy A, Rothstein J, Bergles D, Searson P. 2013.. The blood-brain barrier: an engineering perspective. . Front. Neuroeng. 6::7
    [Crossref] [Google Scholar]
  25. 25.
    Konofagou EE, Tunga Y-S, Choia J, Deffieuxa T, Baseria B, Vlachosa F. 2012.. Ultrasound-induced blood-brain barrier opening. . Curr. Pharm. Biotechnol. 13:(7):133245
    [Crossref] [Google Scholar]
  26. 26.
    Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. 2016.. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. . J. Control. Release 235::3447
    [Crossref] [Google Scholar]
  27. 27.
    Ballestín A, Malzone G, Menichini G, Lucattelli E, Innocenti M. 2022.. New robotic system with wristed microinstruments allows precise reconstructive microsurgery: preclinical study. . Ann. Surg. Oncol. 29:(12):785967
    [Crossref] [Google Scholar]
  28. 28.
    Cianchetti M, Ranzani T, Gerboni G, Nanayakkara T, Althoefer K, et al. 2014.. Soft robotics technologies to address shortcomings in today's minimally invasive surgery: the STIFF-FLOP approach. . Soft Robot. 1:(2):12231
    [Crossref] [Google Scholar]
  29. 29.
    Abbott JJ, Diller E, Petruska AJ. 2020.. Magnetic methods in robotics. . Annu. Rev. Control Robot. Auton. Syst. 3::5790
    [Crossref] [Google Scholar]
  30. 30.
    Wang B, Chan KF, Yuan K, Wang Q, Xia X, et al. 2022.. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. . Sci. Robot. 6:(52):eabd2813
    [Crossref] [Google Scholar]
  31. 31.
    Yu J, Jin D, Chan KF, Wang Q, Yuan K, Zhang L. 2019.. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. . Nat. Commun. 10:(1):5631
    [Crossref] [Google Scholar]
  32. 32.
    Ishiyama K, Arai KI, Sendoh M, Yamazaki A. 2000.. Spiral-type micro-machine for medical applications. . In Proceedings of 2000 International Symposium on Micromechatronics and Human Science (MHS2000), Nagoya, Japan, pp. 6569. New York:: IEEE
    [Google Scholar]
  33. 33.
    Petruska AJ, Nelson BJ. 2015.. Minimum bounds on the number of electromagnets required for remote magnetic manipulation. . IEEE Trans. Robot. 31:(3):71422
    [Crossref] [Google Scholar]
  34. 34.
    Yang L, Zhang M, Yang Z, Yang H, Zhang L. 2022.. Mobile ultrasound tracking and magnetic control for long-distance endovascular navigation of untethered miniature robots against pulsatile flow. . Adv. Intell. Syst. 4:(3):2100144
    [Crossref] [Google Scholar]
  35. 35.
    Heunis CM, Silva B, Sereni G, Lam MCW, Belakhal B, et al. 2023.. The flux one magnetic navigation system: a preliminary assessment for stent implantation. . IEEE Robot. Autom. Lett. 8:(9):564047
    [Crossref] [Google Scholar]
  36. 36.
    Ryan P, Diller E. 2017.. Magnetic actuation for full dexterity microrobotic control using rotating permanent magnets. . IEEE Trans. Robot. 33:(6):1398409
    [Crossref] [Google Scholar]
  37. 37.
    Mahoney AW, Abbott JJ. 2015.. Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy. . Int. J. Robot. Res. 35:(1–3):12947
    [Google Scholar]
  38. 38.
    Pittiglio G, Brockdorff M, da Veiga T, Davy J, Chandler JH, Valdastri P. 2023.. Collaborative magnetic manipulation via two robotically actuated permanent magnets. . IEEE Trans. Robot. 39:(2):140718
    [Crossref] [Google Scholar]
  39. 39.
    Carpi F, Pappone C. 2009.. Stereotaxis Niobe® magnetic navigation system for endocardial catheter ablation and gastrointestinal capsule endoscopy. . Expert Rev. Med. Devices 6:(5):48798
    [Crossref] [Google Scholar]
  40. 40.
    Petruska AJ, Edelmann J, Nelson BJ. 2017.. Model-based calibration for magnetic manipulation. . IEEE Trans. Magn. 53:(7):16
    [Crossref] [Google Scholar]
  41. 41.
    Xiang Y, Zhang J. 2023.. A theoretical investigation of the ability of magnetic miniature robots to exert forces and torques for biomedical functionalities. . IEEE Robot. Autom. Lett. 8:(3):177177
    [Crossref] [Google Scholar]
  42. 42.
    Ahmed D, Lu M, Nourhani A, Lammert PE, Stratton Z, et al. 2015.. Selectively manipulable acoustic-powered microswimmers. . Sci. Rep. 5:(1):9744
    [Crossref] [Google Scholar]
  43. 43.
    Ren L, Nama N, McNeill JM, Soto F, Yan Z, et al. 2023.. 3D steerable, acoustically powered microswimmers for single-particle manipulation. . Sci. Adv. 5:(10):eaax3084
    [Crossref] [Google Scholar]
  44. 44.
    Wang W, Castro LA, Hoyos M, Mallouk TE. 2012.. Autonomous motion of metallic microrods propelled by ultrasound. . ACS Nano 6:(7):612232
    [Crossref] [Google Scholar]
  45. 45.
    Ahmed D, Baasch T, Jang B, Pane S, Dual J, Nelson BJ. 2016.. Artificial swimmers propelled by acoustically activated flagella. . Nano Lett. 16:(8):496874
    [Crossref] [Google Scholar]
  46. 46.
    Bertin N, Spelman TA, Stephan O, Gredy L, Bouriau M, et al. 2015.. Propulsion of bubble-based acoustic microswimmers. . Phys. Rev. Appl. 4:(6):64012
    [Crossref] [Google Scholar]
  47. 47.
    Aghakhani A, Yasa O, Wrede P, Sitti M. 2020.. Acoustically powered surface-slipping mobile microrobots. . PNAS 117:(7):346977
    [Crossref] [Google Scholar]
  48. 48.
    Ahmed D, Dillinger C, Hong A, Nelson BJ. 2017.. Artificial acousto-magnetic soft microswimmers. . Adv. Mater. Technol. 2:(7):15
    [Crossref] [Google Scholar]
  49. 49.
    Gao Q, Yang Z, Zhu R, Wang J, Xu P, et al. 2023.. Ultrasonic steering wheels: turning micromotors by localized acoustic microstreaming. . ACS Nano 17:(5):472939
    [Crossref] [Google Scholar]
  50. 50.
    Fonseca ADC, Kohler T, Ahmed D. 2022.. Ultrasound-controlled swarmbots under physiological flow conditions. . Adv. Mater. Interfaces 9:(26):2200877
    [Crossref] [Google Scholar]
  51. 51.
    Schrage M, Medany M, Ahmed D. 2023.. Ultrasound microrobots with reinforcement learning. . Adv. Mater. Technol. 8:(10):2201702
    [Crossref] [Google Scholar]
  52. 52.
    Ghanem MA, Maxwell AD, Wang Y-N, Cunitz BW, Khokhlova VA, et al. 2020.. Noninvasive acoustic manipulation of objects in a living body. . PNAS 117:(29):1684855
    [Crossref] [Google Scholar]
  53. 53.
    Lo W-C, Fan C-H, Ho Y-J, Lin C-W, Yeh C-K. 2021.. Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. . PNAS 118:(4):e2023188118
    [Crossref] [Google Scholar]
  54. 54.
    Zeng H, Wasylczyk P, Wiersma DS, Priimagi A. 2018.. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. . Adv. Mater. 30:(24):1703554
    [Crossref] [Google Scholar]
  55. 55.
    Ashkin A. 1997.. Optical trapping and manipulation of neutral particles usinglasers. . PNAS 94:(10):485360
    [Crossref] [Google Scholar]
  56. 56.
    Hou Y, Wang H, Fu R, Wang X, Yu J, et al. 2023.. A review on microrobots driven by optical and magnetic fields. . Lab Chip 23:(5):84868
    [Crossref] [Google Scholar]
  57. 57.
    Sitti M, Wiersma DS. 2020.. Pros and cons: magnetic versus optical microrobots. . Adv. Mater. 32:(20):1906766
    [Crossref] [Google Scholar]
  58. 58.
    Kohlmeyer RR, Chen J. 2013.. Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. . Angew. Chemie Int. Ed. 52:(35):923437
    [Crossref] [Google Scholar]
  59. 59.
    Martella D, Paoli P, Pioner JM, Sacconi L, Coppini R, et al. 2017.. Liquid crystalline networks toward regenerative medicine and tissue repair. . Small 13:(46):1702677
    [Crossref] [Google Scholar]
  60. 60.
    Hoang MC, Le VH, Nguyen KT, Nguyen VD, Kim J, et al. 2020.. A robotic biopsy endoscope with magnetic 5-DOF locomotion and a retractable biopsy punch. . Micromachines 11::98
    [Crossref] [Google Scholar]
  61. 61.
    Lim A, Schonewille A, Forbrigger C, Looi T, Drake J, Diller E. 2021.. Design and comparison of magnetically-actuated dexterous forceps instruments for neuroendoscopy. . IEEE Trans. Biomed. Eng. 68:(3):84656
    [Crossref] [Google Scholar]
  62. 62.
    Hu X, Yasa IC, Ren Z, Goudu SR, Ceylan H, et al. 2023.. Magnetic soft micromachines made of linked microactuator networks. . Sci. Adv. 7:(23):eabe8436
    [Crossref] [Google Scholar]
  63. 63.
    Hong C, Ren Z, Wang C, Li M, Wu Y, et al. 2023.. Magnetically actuated gearbox for the wireless control of millimeter-scale robots. . Sci. Robot. 7:(69):eabo4401
    [Crossref] [Google Scholar]
  64. 64.
    Nica M, Forbrigger C, Diller E. 2022.. A novel magnetic transmission for powerful miniature surgical robots. . IEEE/ASME Trans. Mechatronics 27:(6):554150
    [Crossref] [Google Scholar]
  65. 65.
    Attanasio A, Scaglioni B, De Momi E, Fiorini P, Valdastri P. 2021.. Autonomy in surgical robotics. . Annu. Rev. Control Robot. Auton. Syst. 4::65179
    [Crossref] [Google Scholar]
  66. 66.
    Elfring R, de la Fuente M, Radermacher K. 2010.. Assessment of optical localizer accuracy for computer aided surgery systems. . Comput. Aided Surg. 15:(1–3):112
    [Crossref] [Google Scholar]
  67. 67.
    Sorriento A, Porfido MB, Mazzoleni S, Calvosa G, Tenucci M, et al. 2020.. Optical and electromagnetic tracking systems for biomedical applications: a critical review on potentialities and limitations. . IEEE Rev. Biomed. Eng. 13::21232
    [Crossref] [Google Scholar]
  68. 68.
    Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L. 2014.. Electromagnetic tracking in medicine—a review of technology, validation, and applications. . IEEE Trans. Med. Imaging 33:(8):170225
    [Crossref] [Google Scholar]
  69. 69.
    Dam HJW. 1896.. The new marvel in photography. . McClure's Mag. 6:(5):40215
    [Google Scholar]
  70. 70.
    Flower MA. 2012.. Webb's Physics of Medical Imaging. Boca Raton, FL:: CRC Press
    [Google Scholar]
  71. 71.
    Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, et al. 2020.. Medical imaging of microrobots: toward in vivo applications. . ACS Nano 14:(9):1086593
    [Crossref] [Google Scholar]
  72. 72.
    Pane S, Zhang M, Iacovacci V, Zhang L, Menciassi A. 2022.. Contrast-enhanced ultrasound tracking of helical propellers with acoustic phase analysis and comparison with color Doppler. . APL Bioeng. 6:(3):36102
    [Crossref] [Google Scholar]
  73. 73.
    Tiryaki ME, Sitti M. 2022.. Magnetic resonance imaging-based tracking and navigation of submillimeter-scale wireless magnetic robots. . Adv. Intell. Syst. 4:(4):2100178
    [Crossref] [Google Scholar]
  74. 74.
    Bakenecker AC, von Gladiss A, Schwenke H, Behrends A, Friedrich T, et al. 2021.. Navigation of a magnetic micro-robot through a cerebral aneurysm phantom with magnetic particle imaging. . Sci. Rep. 11:(1):14082
    [Crossref] [Google Scholar]
  75. 75.
    Hwang J, Jeon S, Kim B, Kim J, Jin C, et al. 2022.. An electromagnetically controllable microrobotic interventional system for targeted, real-time cardiovascular intervention. . Adv. Healthc. Mater. 11:(11):2102529
    [Crossref] [Google Scholar]
  76. 76.
    Go G, Yoo A, Nguyen KT, Nan M, Darmawan BA, et al. 2023.. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. . Sci. Adv. 8:(46):eabq8545
    [Crossref] [Google Scholar]
  77. 77.
    Aziz A, Holthof J, Meyer S, Schmidt OG, Medina-Sánchez M. 2021.. Dual ultrasound and photoacoustic tracking of magnetically driven micromotors: from in vitro to in vivo. . Adv. Healthc. Mater. 10:(22):2101077
    [Crossref] [Google Scholar]
  78. 78.
    Jin D, Wang Q, Chan KF, Xia N, Yang H, et al. 2023.. Swarming self-adhesive microgels enabled aneurysm on-demand embolization in physiological blood flow. . Sci. Adv. 9:(19):eadf9278
    [Crossref] [Google Scholar]
  79. 79.
    Pané S, Puigmartí-Luis J, Bergeles C, Chen X-Z, Pellicer E, et al. 2019.. Imaging technologies for biomedical micro- and nanoswimmers. . Adv. Mater. Technol. 4:(4):1800575
    [Crossref] [Google Scholar]
  80. 80.
    Khalil ISM, Ferreira P, Eleutério R, De Korte CL, Misra S. 2014.. Magnetic-based closed-loop control of paramagnetic microparticles using ultrasound feedback. . In Proceedings of 2014 IEEE International Conference on Robotics and Automation, Hong Kong, pp. 380712. New York:: IEEE
    [Google Scholar]
  81. 81.
    Šuligoj F, Heunis CM, Mohanty S, Misra S. 2022.. Intravascular tracking of micro-agents using medical ultrasound: towards clinical applications. . IEEE Trans. Biomed. Eng. 69:(12):373947
    [Crossref] [Google Scholar]
  82. 82.
    Du X, Wang Q, Jin D, Chiu PWY, Pang CP, et al. 2022.. Real-time navigation of an untethered miniature robot using mobile ultrasound imaging and magnetic actuation systems. . IEEE Robot. Autom. Lett. 7:(3):766875
    [Crossref] [Google Scholar]
  83. 83.
    Heunis CM, Wotte YP, Sikorski J, Furtado GP, Misra S. 2020.. The ARMM system—autonomous steering of magnetically-actuated catheters: towards endovascular applications. . IEEE Robot. Autom. Lett. 5:(2):70512
    [Crossref] [Google Scholar]
  84. 84.
    Wang Q, Jin D, Wang B, Xia N, Ko H, et al. 2022.. Reconfigurable magnetic microswarm for accelerating tPA-mediated thrombolysis under ultrasound imaging. . IEEE/ASME Trans. Mechatron. 27:(4):226777
    [Crossref] [Google Scholar]
  85. 85.
    Faoro G, Maglio S, Pane S, Iacovacci V, Menciassi A. 2023.. An artificial intelligence-aided robotic platform for ultrasound-guided transcarotid revascularization. . IEEE Robot. Autom. Lett. 8:(4):234956
    [Crossref] [Google Scholar]
  86. 86.
    Botros K, Alkhatib M, Folio D, Ferreira A. 2022.. Fully automatic and real-time microrobot detection and tracking based on ultrasound imaging using deep learning. . In Proceedings 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, pp. 976368. New York:: IEEE
    [Google Scholar]
  87. 87.
    Botros K, Alkhatib M, Folio D, Ferreira A. 2023.. USMicroMagSet: using deep learning analysis to benchmark the performance of microrobots in ultrasound images. . IEEE Robot. Autom. Lett. 8:(6):325461
    [Crossref] [Google Scholar]
  88. 88.
    Versluis M, Stride E, Lajoinie G, Dollet B, Segers T. 2020.. Ultrasound contrast agent modeling: a review. . Ultrasound Med. Biol. 46:(9):211744
    [Crossref] [Google Scholar]
  89. 89.
    Fronheiser MP, Wolf PD, Idriss SF, Nelson RC, Lee W, Smith SW. 2004.. Real-time 3D color flow Doppler for guidance of vibrating interventional devices. . Ultrason. Imaging. 26:(3):17384
    [Crossref] [Google Scholar]
  90. 90.
    Fronheiser MP, Idriss SF, Wolf PD, Smith SW. 2008.. Vibrating interventional device detection using real-time 3-D color Doppler. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55:(6):135562
    [Crossref] [Google Scholar]
  91. 91.
    Singh AV, Ansari MHD, Dayan CB, Giltinan J, Wang S, et al. 2019.. Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. . Biomaterials 219::119394
    [Crossref] [Google Scholar]
  92. 92.
    Wang Q, Chan KF, Schweizer K, Du X, Jin D, et al. 2023.. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. . Sci. Adv. 7:(9):eabe5914
    [Crossref] [Google Scholar]
  93. 93.
    Wang Q, Du X, Jin D, Zhang L. 2022.. Real-time ultrasound Doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. . ACS Nano 16:(1):60416
    [Crossref] [Google Scholar]
  94. 94.
    Pane S, Faoro G, Sinibaldi E, Iacovacci V, Menciassi A. 2022.. Ultrasound acoustic phase analysis enables robotic visual-servoing of magnetic microrobots. . IEEE Trans. Robot. 38:(3):157182
    [Crossref] [Google Scholar]
  95. 95.
    Pane S, Iacovacci V, Sinibaldi E, Menciassi A. 2021.. Real-time imaging and tracking of microrobots in tissues using ultrasound phase analysis. . Appl. Phys. Lett. 118:(1):14102
    [Crossref] [Google Scholar]
  96. 96.
    Pane S, Iacovacci V, Ansari MHD, Menciassi A. 2021.. Ultrasound-guided navigation of a magnetic microrobot using acoustic phase analysis. . Sci. Rep. 11::23239
    [Crossref] [Google Scholar]
  97. 97.
    Jensen EC. 2014.. Technical review, types of imaging, part 4—magnetic resonance imaging. . Anat. Rec. 297:(6):97378
    [Crossref] [Google Scholar]
  98. 98.
    Wu LC, Zhang Y, Steinberg G, Qu H, Huang S, et al. 2019.. A review of magnetic particle imaging and perspectives on neuroimaging. . Am. J. Neuroradiol. 40:(2):20612
    [Crossref] [Google Scholar]
  99. 99.
    Tiryaki ME, Demir SO, Sitti M. 2022.. Deep learning-based 3D magnetic microrobot tracking using 2D MR images. . IEEE Robot. Autom. Lett. 7:(3):698289
    [Crossref] [Google Scholar]
  100. 100.
    Bozuyuk U, Suadiye E, Aghakhani A, Dogan NO, Lazovic J, et al. 2022.. High-performance magnetic FePt (L10) surface microrollers towards medical imaging-guided endovascular delivery applications. . Adv. Funct. Mater. 32:(8):2109741
    [Crossref] [Google Scholar]
  101. 101.
    Nothnagel N, Rahmer J, Gleich B, Halkola A, Buzug TM, Borgert J. 2016.. Steering of magnetic devices with a magnetic particle imaging system. . IEEE Trans. Biomed. Eng. 63:(11):228693
    [Crossref] [Google Scholar]
  102. 102.
    Bruker Corp. 2023.. Preclinical magnetic particle imaging (MPI) scanner. . https://www.bruker.com/it/products-and-solutions/preclinical-imaging/mpi.html
  103. 103.
    Rahmer J, Stehning C, Gleich B. 2018.. Remote magnetic actuation using a clinical scale system. . PLOS ONE 13:(3):e0193546
    [Crossref] [Google Scholar]
  104. 104.
    Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, et al. 2016.. Analysis of nanoparticle delivery to tumours. . Nat. Rev. Mater. 1:(5):16014
    [Crossref] [Google Scholar]
  105. 105.
    Schuerle S, Soleimany AP, Yeh T, Anand GM, Häberli M, et al. 2019.. Synthetic and living micropropellers for convection-enhanced nanoparticle transport. . Sci. Adv. 5:(4):eaav4803
    [Crossref] [Google Scholar]
  106. 106.
    Xin C, Jin D, Hu Y, Yang L, Li R, et al. 2021.. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. . ACS Nano 15:(11):1804859
    [Crossref] [Google Scholar]
  107. 107.
    Alapan Y, Bozuyuk U, Erkoc P, Karacakol AC, Sitti M. 2020.. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. . Sci. Robot. 5:(42):eaba5726
    [Crossref] [Google Scholar]
  108. 108.
    Miki K, Clapham DE. 2013.. Rheotaxis guides mammalian sperm. . Curr. Biol. 23:(6):44352
    [Crossref] [Google Scholar]
  109. 109.
    Kaupp UB, Strünker T. 2017.. Signaling in sperm: more different than similar. . Trends Cell Biol. 27:(2):1019
    [Crossref] [Google Scholar]
  110. 110.
    Ahmed D, Baasch T, Blondel N, Läubli N, Dual J, Nelson BJ. 2017.. Neutrophil-inspired propulsion in a combined acoustic and magnetic field. . Nat. Commun. 8:(1):770
    [Crossref] [Google Scholar]
  111. 111.
    Ahmed D, Sukhov A, Hauri D, et al. 2021.. Bioinspired acousto-magnetic microswarm robots with upstream motility. . Nat. Mach. Intell. 3::116124
    [Crossref] [Google Scholar]
  112. 112.
    Bozuyuk U, Alapan Y, Aghakhani A, Yunusa M, Sitti M. 2021.. Shape anisotropy-governed locomotion of surface microrollers on vessel-like microtopographies against physiological flows. . PNAS 118:(13):e2022090118
    [Crossref] [Google Scholar]
  113. 113.
    Del Campo Fonseca A, Glück C, Droux J, Ferry Y, Frei C, et al. 2023.. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. . Nat. Commun. 14:(1):5889
    [Crossref] [Google Scholar]
  114. 114.
    Pancaldi L, Dirix P, Fanelli A, Lima AM, Stergiopulos N, et al. 2020.. Flow driven robotic navigation of microengineered endovascular probes. . Nat. Commun. 11:(1):6356
    [Crossref] [Google Scholar]
  115. 115.
    Kim Y, Genevriere E, Harker P, Choe J, Balicki M, et al. 2022.. Telerobotic neurovascular interventions with magnetic manipulation. . Sci. Robot. 7:(65):eabg9907
    [Crossref] [Google Scholar]
  116. 116.
    Rivkin B, Becker C, Singh B, Aziz A, Akbar F, et al. 2023.. Electronically integrated microcatheters based on self-assembling polymer films. . Sci. Adv. 7:(51):eabl5408
    [Crossref] [Google Scholar]
  117. 117.
    Gopesh T, Wen JH, Santiago-Dieppa D, Yan B, Pannell JS, et al. 2021.. Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders. . Sci. Robot. 6:(57):eabf0601
    [Crossref] [Google Scholar]
  118. 118.
    Leber A, Dong C, Laperrousaz S, Banerjee H, Abdelaziz MEMK, et al. 2023.. Highly integrated multi-material fibers for soft robotics. . Adv. Sci. 10:(2):2204016
    [Crossref] [Google Scholar]
  119. 119.
    Ciuti G, Skonieczna-Żydecka K, Marlicz W, Iacovacci V, Liu H, et al. 2020.. Frontiers of robotic colonoscopy: a comprehensive review of robotic colonoscopes and technologies. . J. Clin. Med. 9:(6):1648
    [Crossref] [Google Scholar]
  120. 120.
    Li S, Liu D, Hu Y, Su Z, Zhang X, et al. 2022.. Soft magnetic microrobot doped with porous silica for stability-enhanced multimodal locomotion in a nonideal environment. . ACS Appl. Mater. Interfaces 14:(8):1085674
    [Crossref] [Google Scholar]
  121. 121.
    Wang C, Mzyk A, Schirhagl R, Misra S, Venkiteswaran VK. 2023.. Biocompatible film-coating of magnetic soft robots for mucoadhesive locomotion. . Adv. Mater. Technol. 8:(12):2201813
    [Crossref] [Google Scholar]
  122. 122.
    Wu Y, Dong X, Kim J, Wang C, Sitti M. 2023.. Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. . Sci. Adv. 8:(21):eabn3431
    [Crossref] [Google Scholar]
  123. 123.
    Abramson A, Caffarel-Salvador E, Khang M, Dellal D, Silverstein D, et al. 2019.. An ingestible self-orienting system for oral delivery of macromolecules. . Science 363:(6427):61115
    [Crossref] [Google Scholar]
  124. 124.
    Qin Y, Cai Z, Han J. 2023.. Design and control of a magnetically-actuated anti-interference microrobot for targeted therapeutic delivery. . IEEE Robot. Autom. Lett. 8:(9):567279
    [Crossref] [Google Scholar]
  125. 125.
    Yang Q, Tang S, Lu D, Li Y, Wan F, et al. 2022.. Pollen typhae-based magnetic-powered microrobots toward acute gastric bleeding treatment. . ACS Appl. Bio Mater. 5:(9):442534
    [Crossref] [Google Scholar]
  126. 126.
    Huang C, Lai Z, Wu X, Xu T. 2022.. Multimodal locomotion and cargo transportation of magnetically actuated quadruped soft microrobots. . Cyborg Bionic Syst. 2022::0004
    [Crossref] [Google Scholar]
  127. 127.
    Wang C, Wu Y, Dong X, Armacki M, Sitti M. 2023.. In situ sensing physiological properties of biological tissues using wireless miniature soft robots. . Sci. Adv. 9:(23):eadg3988
    [Crossref] [Google Scholar]
  128. 128.
    Zhang C, Pan C, Chan KF, Gao J, Yang Z, et al. 2023.. Wirelessly powered deformable electronic stent for noninvasive electrical stimulation of lower esophageal sphincter. . Sci. Adv. 9:(10):eade8622
    [Crossref] [Google Scholar]
  129. 129.
    Soon RH, Yin Z, Dogan MA, Dogan NO, Tiryaki ME, et al. 2023.. Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications. . Nat. Commun. 14:(1):3320
    [Crossref] [Google Scholar]
  130. 130.
    Xu Z, Wu Z, Yuan M, Chen H, Ge W, Xu Q. 2023.. Multiple cilia-like swarms enable efficient microrobot deployment and execution. . Cell Rep. Phys. Sci. 4:(3):101329
    [Crossref] [Google Scholar]
  131. 131.
    Jeon S, Kim S, Ha S, Lee S, Kim E, et al. 2019.. Magnetically actuated microrobots as a platform for stem cell transplantation. . Sci. Robot. 4:(30):eaav4317
    [Crossref] [Google Scholar]
  132. 132.
    Forbrigger C, Fredin E, Diller E. 2023.. Evaluating the feasibility of magnetic tools for the minimum dynamic requirements of microneurosurgery. . In 2023 IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, pp. 47039. New York:: IEEE
    [Google Scholar]
  133. 133.
    Dogangil G, Ergeneman O, Abbott JJ, Pane S, Hall H, et al. 2008.. Toward targeted retinal drug delivery with wireless magnetic microrobots. . In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 192126. New York:: IEEE
    [Google Scholar]
  134. 134.
    Kim M-S, Lee H-T, Ahn S-H. 2019.. Laser controlled 65 micrometer long microrobot made of Ni-Ti shape memory alloy. . Adv. Mater. Technol. 4:(12):1900583
    [Crossref] [Google Scholar]
  135. 135.
    Charreyron SL, Boehler Q, Danun AN, Mesot A, Becker M, Nelson BJ. 2021.. A magnetically navigated microcannula for subretinal injections. . IEEE Trans. Biomed. Eng. 68:(1):11929
    [Crossref] [Google Scholar]
  136. 136.
    Pittiglio G, Lloyd P, da Veiga T, Onaizah O, Pompili C, et al. 2022.. Patient-specific magnetic catheters for atraumatic autonomous endoscopy. . Soft Robot. 9:(6):112033
    [Crossref] [Google Scholar]
  137. 137.
    Phelan MF III, Tiryaki ME, Lazovic J, Gilbert H, Sitti M. 2022.. Heat-mitigated design and Lorentz force-based steering of an MRI-driven microcatheter toward minimally invasive surgery. . Adv. Sci. 9:(10):2105352
    [Crossref] [Google Scholar]
  138. 138.
    Wang Q, Yu J, Yuan K, Yang L, Jin D, Zhang L. 2020.. Disassembly and spreading of magnetic nanoparticle clusters on uneven surfaces. . Appl. Mater. Today 18::100489
    [Crossref] [Google Scholar]
  139. 139.
    Casagrande G, Ibrahimi M, Semproni F, Iacovacci V, Menciassi A. 2022.. Hydraulic detrusor for artificial bladder active voiding. . Soft Robot. 10:(2):26979
    [Crossref] [Google Scholar]
  140. 140.
    Rajabasadi F, Moreno S, Fichna K, Aziz A, Appelhans D, et al. 2022.. Multifunctional 4D-printed sperm-hybrid microcarriers for assisted reproduction. . Adv. Mater. 34:(50):2204257
    [Crossref] [Google Scholar]
  141. 141.
    Schwarz L, Karnaushenko DD, Hebenstreit F, Naumann R, Schmidt OG, Medina-Sánchez M. 2020.. A rotating spiral micromotor for noninvasive zygote transfer. . Adv. Sci. 7:(18):2000843
    [Crossref] [Google Scholar]
  142. 142.
    Llacer-Wintle J, Rivas-Dapena A, Chen X-Z, Pellicer E, Nelson BJ, et al. 2021.. Biodegradable small-scale swimmers for biomedical applications. . Adv. Mater. 33:(42):2102049
    [Crossref] [Google Scholar]
  143. 143.
    Iacovacci V, Ricotti L, Sinibaldi E, Signore G, Vistoli F, Menciassi A. 2018.. An intravascular magnetic catheter enables the retrieval of nanoagents from the bloodstream. . Adv. Sci. 5:(9):1800807
    [Crossref] [Google Scholar]
  144. 144.
    Faoro G, Iacovacci V, Menciassi A. 2024.. Optical flow and acoustic phase analysis comparison in ultrasound-based microrobot tracking. . IEEE Robot. Autom. Lett. 9:(2):198592
    [Crossref] [Google Scholar]
  145. 145.
    Yip M, Salcudean S, Goldberg K, Althoefer K, Menciassi A, et al. 2023.. Artificial intelligence meets medical robotics. . Science 381:(6654):14146
    [Crossref] [Google Scholar]
  146. 146.
    Pore A, Li Z, Dall'Alba D, Hernansanz A, De Momi E, et al. 2023.. Autonomous navigation for robot-assisted intraluminal and endovascular procedures: a systematic review. . IEEE Trans. Robot. 39:(4):252948
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-081523-033131
Loading
/content/journals/10.1146/annurev-bioeng-081523-033131
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error