1932

Abstract

The emergence of the COVID-19 pandemic has starkly exposed our significantly limited ability to promptly identify and respond to emergent biological threats. Consequently, there is an urgent need to advance biotechnological methods for addressing both known and unforeseen biological hazards. Recently, the CRISPR/Cas system has revolutionized genetic engineering, enabling precise and efficient synthetic biology applications. Therefore, this review aims to provide a comprehensive introduction to the fundamental principles underlying the CRISPR/Cas system and assess the advantages and limitations of various CRISPR/Cas-based techniques applicable to the detection of, defense against, and treatment of viral infections. These techniques include viral diagnostics, the development of antiviral vaccines, B cell engineering for antibody production, viral activation/interference, and epigenetic modifications. Furthermore, this review delves into the challenges and bioethical considerations associated with use of the CRISPR/Cas system. With the continuous evolution of technology, the CRISPR/Cas system holds considerable promise for addressing both existing and unforeseen biological threats.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-081723-013033
2024-07-03
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-081723-013033.html?itemId=/content/journals/10.1146/annurev-bioeng-081723-013033&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, et al. 2023.. The evolution of SARS-CoV-2. . Nat. Rev. Microbiol. 21::36179
    [Crossref] [Google Scholar]
  2. 2.
    Lino A, Cardoso MA, Gonçalves HMR, Martins-Lopes P. 2022.. SARS-CoV-2 detection methods. . Chemosensors 10::221
    [Crossref] [Google Scholar]
  3. 3.
    Solanki R, Shankar A, Modi U, Patel S. 2023.. New insights from nanotechnology in SARS-CoV-2 detection, treatment strategy, and prevention. . Mater. Today Chem. 29::101478
    [Crossref] [Google Scholar]
  4. 4.
    David F, Davis AM, Gossing M, Hayes MA, Romero E, et al. 2021.. A perspective on synthetic biology in drug discovery and development—current impact and future opportunities. . SLAS Discov. 26::581603
    [Crossref] [Google Scholar]
  5. 5.
    Abdeen AA, Cosgrove BD, Gersbach CA, Saha K. 2021.. Integrating biomaterials and genome editing approaches to advance biomedical science. . Annu. Rev. Biomed. Eng. 23::493516
    [Crossref] [Google Scholar]
  6. 6.
    Black JB, Perez-Pinera P, Gersbach CA. 2017.. Mammalian synthetic biology: engineering biological systems. . Annu. Rev. Biomed. Eng. 19::24977
    [Crossref] [Google Scholar]
  7. 7.
    Zhu HC, Li C, Gao CX. 2020.. Applications of CRISPR-Cas in agriculture and plant biotechnology. . Nat. Rev. Mol. Cell Biol. 21::66177
    [Crossref] [Google Scholar]
  8. 8.
    Yin H, Xue W, Anderson DG. 2019.. CRISPR-Cas: a tool for cancer research and therapeutics. . Nat. Rev. Clin. Oncol 16::28195
    [Crossref] [Google Scholar]
  9. 9.
    Hendriks D, Clevers H, Artegiani B. 2020.. CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. . Cell Stem Cell 27::70531
    [Crossref] [Google Scholar]
  10. 10.
    Demirer GS, Silva TN, Jackson CT, Thomas JB, Ehrhardt DW, et al. 2021.. Nanotechnology to advance CRISPR-Cas genetic engineering of plants. . Nat. Nanotechnol. 16::24350
    [Crossref] [Google Scholar]
  11. 11.
    Nat. Inst. Educ. 2017.. CRISPR: history of discovery. Video, Nat. Inst. Educ., Singapore:. https://video.nie.edu.sg/media/CRISPRA+History+of+Discovery/0_1lhusoib
    [Google Scholar]
  12. 12.
    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987.. Nucleotide sequence of the iap gene, responsible for alkaline-phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. . J. Bacteriol. 169::542933
    [Crossref] [Google Scholar]
  13. 13.
    Hille F, Richter H, Wong SP, Bratovic M, Ressel S, Charpentier E. 2018.. The biology of CRISPR-Cas: backward and forward. . Cell 172::123959
    [Crossref] [Google Scholar]
  14. 14.
    Mustafa MI, Makhawi AM. 2021.. SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases. . J. Clin. Microbiol. 59::e00745-20
    [Crossref] [Google Scholar]
  15. 15.
    Pickar-Oliver A, Gersbach CA. 2019.. The next generation of CRISPR-Cas technologies and applications. . Nat. Rev. Mol. Cell Biol. 20::490507
    [Crossref] [Google Scholar]
  16. 16.
    Kumar P, Malik YS, Ganesh B, Rahangdale S, Saurabh S, et al. 2020.. CRISPR-Cas system: an approach with potentials for COVID-19 diagnosis and therapeutics. . Front. Cell. Infect. Microbiol. 10::576875
    [Crossref] [Google Scholar]
  17. 17.
    Weng ZY, You Z, Yang J, Mohammad N, Lin MS, et al. 2023.. CRISPR-Cas biochemistry and CRISPR-based molecular diagnostics. . Angew. Chem. Int. Ed. 62::e202214987
    [Crossref] [Google Scholar]
  18. 18.
    Ghouneimy A, Mahas A, Marsic T, Aman R, Mahfouz M. 2023.. CRISPR-based diagnostics: challenges and potential solutions toward point-of-care applications. . ACS Synth. Biol. 12::116
    [Crossref] [Google Scholar]
  19. 19.
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, et al. 2020.. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. . Nat. Rev. Microbiol. 18::6783
    [Crossref] [Google Scholar]
  20. 20.
    Adli M. 2018.. The CRISPR tool kit for genome editing and beyond. . Nat. Commun. 9::1911
    [Crossref] [Google Scholar]
  21. 21.
    Sander JD, Joung JK. 2014.. CRISPR-Cas systems for editing, regulating and targeting genomes. . Nat. Biotechnol. 32::34755
    [Crossref] [Google Scholar]
  22. 22.
    Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, et al. 2016.. Rapid, low-cost detection of Zika virus using programmable biomolecular components. . Cell 165::125566
    [Crossref] [Google Scholar]
  23. 23.
    Singh M, Bindal G, Misra CS, Rath D. 2022.. The era of Cas12 and Cas13 CRISPR-based disease diagnosis. . Crit. Rev. Microbiol. 48::71429
    [Crossref] [Google Scholar]
  24. 24.
    Garcia-Doval C, Jinek M. 2017.. Molecular architectures and mechanisms of class 2 CRISPR–associated nucleases. . Curr. Opin. Struct. Biol. 47::15766
    [Crossref] [Google Scholar]
  25. 25.
    Kim H, Lee WJ, Oh Y, Kang SH, Hur JK, et al. 2020.. Enhancement of target specificity of CRISPR-Cas12a by using a chimeric DNA-RNA guide. . Nucleic Acids Res. 48::860116
    [Crossref] [Google Scholar]
  26. 26.
    Swarts DC, van der Oost J, Jinek M. 2017.. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. . Mol. Cell 66::22133
    [Crossref] [Google Scholar]
  27. 27.
    Jeon Y, Choi YH, Jang Y, Yu J, Goo J, et al. 2018.. Direct observation of DNA target searching and cleavage by CRISPR-Cas12a. . Nat. Commun. 9::2777
    [Crossref] [Google Scholar]
  28. 28.
    Broughton JP, Deng XD, Yu GX, Fasching CL, Servellita V, et al. 2020.. CRISPR-Cas12-based detection of SARS-CoV-2. . Nat. Biotechnol. 38::87074
    [Crossref] [Google Scholar]
  29. 29.
    Ma L, Yin LJ, Li XY, Chen S, Peng L, et al. 2022.. A smartphone-based visual biosensor for CRISPR-Cas powered SARS-CoV-2 diagnostics. . Biosens. Bioelectron. 195::113646
    [Crossref] [Google Scholar]
  30. 30.
    Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, et al. 2017.. Nucleic acid detection with CRISPR-Cas13a/C2c2. . Science 356::43842
    [Crossref] [Google Scholar]
  31. 31.
    Nai YH, Doeven EH, Guijt RM. 2022.. An improved nucleic acid sequence–based amplification method mediated by T4 gene 32 protein. . PLOS ONE 17::e0265391
    [Crossref] [Google Scholar]
  32. 32.
    Lobato IM, O'Sullivan CK. 2018.. Recombinase polymerase amplification: basics, applications and recent advances. . Trends Anal. Chem. 98::1935
    [Crossref] [Google Scholar]
  33. 33.
    Daher RK, Stewart G, Boissinot M, Bergeron MG. 2016.. Recombinase polymerase amplification for diagnostic applications. . Clin. Chem. 62::94758
    [Crossref] [Google Scholar]
  34. 34.
    Augustine R, Hasan A, Das S, Ahmed R, Mori Y, et al. 2020.. Loop-mediated isothermal amplification (LAMP): a rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. . Biology 9::182
    [Crossref] [Google Scholar]
  35. 35.
    Lamb LE, Bartolone SN, Ward E, Chancellor MB. 2020.. Rapid detection of novel coronavirus/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification. . PLOS ONE 15::e0234682
    [Crossref] [Google Scholar]
  36. 36.
    Yu L, Wu S, Hao X, Dong X, Mao L, et al. 2020.. Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop–mediated isothermal amplification (RT-LAMP) diagnostic platform. . Clin. Chem. 66::97577
    [Crossref] [Google Scholar]
  37. 37.
    Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. 2018.. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. . Science 360::43944
    [Crossref] [Google Scholar]
  38. 38.
    Chen JS, Ma EB, Harrington LB, Da Costa M, Tian XR, et al. 2018.. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. . Science 360::43639
    [Crossref] [Google Scholar]
  39. 39.
    Li LX, Li SY, Wu N, Wu JC, Wang G, et al. 2019.. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. . ACS Synth. Biol. 8::222837
    [Crossref] [Google Scholar]
  40. 40.
    Su GX, Zhu M, Li DY, Xu MT, Zhu YD, et al. 2022.. Multiplexed lateral flow assay integrated with orthogonal CRISPR-Cas system for SARS-CoV-2 detection. . Sens. Actuators B 371::132537
    [Crossref] [Google Scholar]
  41. 41.
    Ali Z, Sanchez E, Tehseen M, Mahas A, Marsic T, et al. 2022.. Bio-SCAN: a CRISPR/dCas9-based lateral flow assay for rapid, specific, and sensitive detection of SARS-CoV-2. . ACS Synth. Biol. 11::40619
    [Crossref] [Google Scholar]
  42. 42.
    van der Veer HJ, van Aalen EA, Michielsen CMS, Hanckmann ETL, Deckers J, et al. 2023.. Glow-in-the-dark infectious disease diagnostics using CRISPR-Cas9-based split luciferase complementation. . ACS Cent. Sci. 9::65767
    [Crossref] [Google Scholar]
  43. 43.
    Fozouni P, Son SM, Derby MDD, Knott GJ, Gray CN, et al. 2021.. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. . Cell 184::32333
    [Crossref] [Google Scholar]
  44. 44.
    Liu TY, Knott GJ, Smock DCJ, Desmarais JJ, Son S, et al. 2021.. Accelerated RNA detection using tandem CRISPR nucleases. . Nat. Chem. Biol. 17::98288
    [Crossref] [Google Scholar]
  45. 45.
    Yue HH, Shu BW, Tian T, Xiong EH, Huang MQ, et al. 2021.. Droplet Cas12a assay enables DNA quantification from unamplified samples at the single-molecule level. . Nano Lett. 21::464353
    [Crossref] [Google Scholar]
  46. 46.
    Yu T, Zhang SW, Matei R, Marx W, Beisel CL, Wei QS. 2021.. Coupling smartphone and CRISPR-Cas12a for digital and multiplexed nucleic acid detection. . AIChE J. 67::e17365
    [Crossref] [Google Scholar]
  47. 47.
    Dai YF, Somoza RA, Wang L, Welter JF, Li Y, et al. 2019.. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. . Angew. Chem. Int. Ed. 58::17399405
    [Crossref] [Google Scholar]
  48. 48.
    Zhang DC, Yan YR, Que HY, Yang TT, Cheng XX, et al. 2020.. CRISPR/Cas12a-mediated interfacial cleaving of hairpin DNA reporter for electrochemical nucleic acid sensing. . ACS Sensors 5::55762
    [Crossref] [Google Scholar]
  49. 49.
    Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, et al. 2019.. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. . Adv. Mater. 31::1905311
    [Crossref] [Google Scholar]
  50. 50.
    Hajian R, Balderston S, Tran T, DeBoer T, Etienne J, et al. 2019.. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. . Nat. Biomed. Eng. 3::42737
    [Crossref] [Google Scholar]
  51. 51.
    Li HJ, Yang J, Wu GF, Weng ZY, Song Y, et al. 2022.. Amplification-free detection of SARS-CoV-2 and respiratory syncytial virus using CRISPR Cas13a and graphene field-effect transistors. . Angew. Chem. Int. Ed. 61::e2022038
    [Google Scholar]
  52. 52.
    Xu X, Fan S, Zhou J, Zhang Y, Che Y, et al. 2016.. The mutated tegument protein UL7 attenuates the virulence of herpes simplex virus 1 by reducing the modulation of α-4 gene transcription. . Virol J. 13::152
    [Crossref] [Google Scholar]
  53. 53.
    Azhagiri MKK, Babu P, Venkatesan V, Thangavel S. 2021.. Homology-directed gene-editing approaches for hematopoietic stem and progenitor cell gene therapy. . Stem Cell Res. Ther. 12::500
    [Crossref] [Google Scholar]
  54. 54.
    Liu MJ, Rehman S, Tang XD, Gu K, Fan QL, et al. 2019.. Methodologies for improving HDR efficiency. . Front. Genet. 9::691
    [Crossref] [Google Scholar]
  55. 55.
    Aksoy YA, Nguyen DT, Chow S, Chung RS, Guillemin GJ, et al. 2019.. Chemical reprogramming enhances homology-directed genome editing in zebrafish embryos. . Commun. Biol. 2::198
    [Crossref] [Google Scholar]
  56. 56.
    Devkota S. 2018.. The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. . BMB Rep. 51::43743
    [Crossref] [Google Scholar]
  57. 57.
    Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. 2014.. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. . Genome Res. 24::14253
    [Crossref] [Google Scholar]
  58. 58.
    He XJ, Tan CL, Wang F, Wang YF, Zhou R, et al. 2016.. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. . Nucleic Acids Res. 44::e85
    [Crossref] [Google Scholar]
  59. 59.
    Tang N, Zhang YY, Pedrera M, Chang PX, Baigent S, et al. 2018.. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system. . Vaccine 36::71622
    [Crossref] [Google Scholar]
  60. 60.
    Moffett HF, Harms CK, Fitzpatrick KS, Tooley MR, Boonyaratanakornkit J, Taylor JJ. 2019.. B cells engineered to express pathogen-specific antibodies protect against infection. . Sci. Immunol. 4::eaax0644
    [Crossref] [Google Scholar]
  61. 61.
    Ebina H, Misawa N, Kanemura Y, Koyanagi Y. 2013.. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. . Sci. Rep. 3::2510
    [Crossref] [Google Scholar]
  62. 62.
    Seeger C, Sohn JA. 2014.. Targeting hepatitis B virus with CRISPR/Cas9. . Mol. Ther. Nucleic Acids 3::e216
    [Crossref] [Google Scholar]
  63. 63.
    Abbott TR, Dhamdhere G, Liu YX, Lin XQ, Goudy L, et al. 2020.. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. . Cell 181::86576
    [Crossref] [Google Scholar]
  64. 64.
    Limsirichai P, Gaj T, Schaffer DV. 2016.. CRISPR-mediated activation of latent HIV-1 expression. . Mol. Ther. 24::499507
    [Crossref] [Google Scholar]
  65. 65.
    Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, et al. 2015.. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. . Nature 517::58388
    [Crossref] [Google Scholar]
  66. 66.
    Olson A, Basukala B, Lee S, Gagne M, Wong WW, Henderson AJ. 2020.. Targeted chromatinization and repression of HIV-1 provirus transcription with repurposed CRISPR/Cas9. . Viruses 12::1154
    [Crossref] [Google Scholar]
  67. 67.
    Yeo NC, Chavez A, Lance-Byrne A, Chan YL, Menn D, et al. 2018.. An enhanced CRISPR repressor for targeted mammalian gene regulation. . Nat. Methods 15::61116
    [Crossref] [Google Scholar]
  68. 68.
    Gilbert LA, Larson MH, Morsut L, Liu ZR, Brar GA, et al. 2013.. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. . Cell 154::44251
    [Crossref] [Google Scholar]
  69. 69.
    Flower K, Thomas D, Heather J, Ramasubramanyan S, Jones S, Sinclair AJ. 2011.. Epigenetic control of viral life-cycle by a DNA-methylation dependent transcription factor. . PLOS ONE 6::e25922
    [Crossref] [Google Scholar]
  70. 70.
    Jain S, Chang TT, Chen ST, Boldbaatar B, Clemens A, et al. 2015.. Comprehensive DNA methylation analysis of hepatitis B virus genome in infected liver tissues. . Sci. Rep. 5::10478
    [Crossref] [Google Scholar]
  71. 71.
    Zhang DK, Guo SC, Schrodi SJ. 2021.. Mechanisms of DNA methylation in virus-host interaction in hepatitis B infection: pathogenesis and oncogenetic properties. . Int. J. Mol. Sci. 22::9858
    [Crossref] [Google Scholar]
  72. 72.
    Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, et al. 2017.. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. . Nucleic Acids Res. 45::170313
    [Crossref] [Google Scholar]
  73. 73.
    Liu XS, Wu H, Ji X, Stelzer Y, Wu XB, et al. 2016.. Editing DNA methylation in the mammalian genome. . Cell 167::23347
    [Crossref] [Google Scholar]
  74. 74.
    Vangah SJ, Katalani C, Boone HA, Hajizade A, Sijercic A, Ahmadian G. 2020.. CRISPR-based diagnosis of infectious and noninfectious diseases. . Biol. Proced. Online 22::22
    [Crossref] [Google Scholar]
  75. 75.
    Liu RM, Liang LY, Freed EF, Gill RT. 2021.. Directed evolution of CRISPR/Cas systems for precise gene editing. . Trends Biotechnol. 39::26273
    [Crossref] [Google Scholar]
  76. 76.
    Kazemian P, Yu SY, Thomson SB, Birkenshaw A, Leavitt BR, Ross CJD. 2022.. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. . Mol. Pharm. 19::166986
    [Crossref] [Google Scholar]
  77. 77.
    Yan JY, Kang DN, Dong YZ. 2021.. Harnessing lipid nanoparticles for efficient CRISPR delivery. . Biomater. Sci. 9::600111
    [Crossref] [Google Scholar]
  78. 78.
    Ashok B, Peppas NA, Wechsler ME. 2021.. Lipid- and polymer-based nanoparticle systems for the delivery of CRISPR/Cas9. . J. Drug Deliv. Sci. Technol. 65::102728
    [Crossref] [Google Scholar]
  79. 79.
    Ju EG, Li TT, da Silva SR, Gao SJ. 2019.. Gold nanocluster–mediated efficient delivery of Cas9 protein through pH-induced assembly-disassembly for inactivation of virus oncogenes. . ACS Appl. Mater. Interfaces 11::3471724
    [Crossref] [Google Scholar]
  80. 80.
    Alsaiari SK, Patil S, Alyami M, Alamoudi KO, Aleisa FA, et al. 2018.. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. . J. Am. Chem. Soc. 140::14346
    [Crossref] [Google Scholar]
  81. 81.
    Tripathi S, Khatri P, Fatima Z, Pandey RP, Hameed S. 2023.. A landscape of CRISPR/Cas technique for emerging viral disease diagnostics and therapeutics: progress and prospects. . Pathogens 12::56
    [Crossref] [Google Scholar]
  82. 82.
    Li SY, Cheng QX, Wang JM, Li XY, Zhang ZL, et al. 2018.. CRISPR-Cas12a-assisted nucleic acid detection. . Cell Discov. 4::20
    [Crossref] [Google Scholar]
  83. 83.
    Wang XS, Xiong EH, Tian T, Cheng M, Lin W, et al. 2020.. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. . ACS Nano 14::2497508
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-081723-013033
Loading
/content/journals/10.1146/annurev-bioeng-081723-013033
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error