1932

Abstract

Cell traction force plays a critical role in directing cellular functions, such as proliferation, migration, and differentiation. Current understanding of cell traction force is largely derived from 2D measurements where cells are plated on 2D substrates. However, 2D measurements do not recapitulate a vital aspect of living systems; that is, cells actively remodel their surrounding extracellular matrix (ECM), and the remodeled ECM, in return, can have a profound impact on cell phenotype and traction force generation. This reciprocal adaptivity of living systems is encoded in the material properties of biological gels. In this review, we summarize recent progress in measuring cell traction force for cells embedded within 3D biological gels, with an emphasis on cell–ECM cross talk. We also provide perspectives on tools and techniques that could be adapted to measure cell traction force in complex biochemical and biophysical environments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-103122-031130
2024-07-03
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-103122-031130.html?itemId=/content/journals/10.1146/annurev-bioeng-103122-031130&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Huxley H, Hanson J. 1954.. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. . Nature 173::97376
    [Crossref] [Google Scholar]
  2. 2.
    Huxley AF. 1957.. Muscle structure and theories of contraction. . Prog. Biophys. Mol. Biol. 7::255318
    [Google Scholar]
  3. 3.
    Al-Rekabi Z, Pelling AE. 2013.. Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics. . Phys. Biol. 10::066003
    [Crossref] [Google Scholar]
  4. 4.
    Fournier MF, Sauser R, Ambrosi D, Meister JJ, Verkhovsky AB. 2010.. Force transmission in migrating cells. . J. Cell Biol. 188::28797
    [Crossref] [Google Scholar]
  5. 5.
    Gov NS. 2009.. Traction forces during collective cell motion. . HFSP J. 3::22327
    [Crossref] [Google Scholar]
  6. 6.
    Poellmann MJ, Estrada JB, Boudou T, Berent ZT, Franck C, Johnson AJW. 2015.. Differences in morphology and traction generation of cell lines representing different stages of osteogenesis. . J. Biomech. Eng. 137::124503
    [Crossref] [Google Scholar]
  7. 7.
    Rape AD, Guo WH, Wang YL. 2011.. The regulation of traction force in relation to cell shape and focal adhesions. . Biomaterials 32::204351
    [Crossref] [Google Scholar]
  8. 8.
    Umeshima H, Nomura K, Yoshikawa S, Horning M, Tanaka M, et al. 2019.. Local traction force in the proximal leading process triggers nuclear translocation during neuronal migration. . Neurosci. Res. 142::3848
    [Crossref] [Google Scholar]
  9. 9.
    Chen GB, Lv YG, Guo P, Lin CW, Zhang XM, et al. 2013.. Matrix mechanics and fluid shear stress control stem cells fate in three dimensional microenvironment. . Curr. Stem Cell Res. Ther. 8::31323
    [Crossref] [Google Scholar]
  10. 10.
    Gillespie PG, Muller U. 2009.. Mechanotransduction by hair cells: models, molecules, and mechanisms. . Cell 139::3344
    [Crossref] [Google Scholar]
  11. 11.
    Shellard A, Mayor R. 2021.. Collective durotaxis along a self-generated stiffness gradient in vivo. . Nature 600::69094
    [Crossref] [Google Scholar]
  12. 12.
    Ehrbar M, Sala A, Lienemann P, Ranga A, Mosiewicz K, et al. 2011.. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. . Biophys. J. 100::28493
    [Crossref] [Google Scholar]
  13. 13.
    Fraley SI, Wu PH, He LJ, Feng YF, Krisnamurthy R, et al. 2015.. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions. . Sci. Rep. 5::14580
    [Crossref] [Google Scholar]
  14. 14.
    Rens EG, Merks RMH. 2017.. Cell contractility facilitates alignment of cells and tissues to static uniaxial stretch. . Biophys. J. 112::75566
    [Crossref] [Google Scholar]
  15. 15.
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, et al. 2005.. Tensional homeostasis and the malignant phenotype. . Cancer Cell 8::24154
    [Crossref] [Google Scholar]
  16. 16.
    Ban E, Franklin JM, Nam S, Smith LR, Wang HL, et al. 2018.. Mechanisms of plastic deformation in collagen networks induced by cellular forces. . Biophys. J. 114::45061
    [Crossref] [Google Scholar]
  17. 17.
    Hall MS, Alisafaei F, Ban E, Feng XZ, Hui CY, et al. 2016.. Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. . PNAS 113::1404348
    [Crossref] [Google Scholar]
  18. 18.
    Motte S, Kaufman LJ. 2013.. Strain stiffening in collagen I networks. . Biopolymers 99::3546
    [Crossref] [Google Scholar]
  19. 19.
    Nam S, Hu KH, Butte MJ, Chaudhuri O. 2016.. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. . PNAS 113::549297
    [Crossref] [Google Scholar]
  20. 20.
    Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. 2020.. Effects of extracellular matrix viscoelasticity on cellular behaviour. . Nature 584::53546
    [Crossref] [Google Scholar]
  21. 21.
    Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, et al. 2016.. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. . Nat. Mater. 15::32634
    [Crossref] [Google Scholar]
  22. 22.
    Zhao HG, Ma L, Zhou J, Mao ZW, Gao CY, Shen JC. 2008.. Fabrication and physical and biological properties of fibrin gel derived from human plasma. . Biomed. Mater. 3::015001
    [Crossref] [Google Scholar]
  23. 23.
    Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. 2019.. Overview of natural hydrogels for regenerative medicine applications. . J. Mater. Sci. Mater. Med. 30:(10):115
    [Crossref] [Google Scholar]
  24. 24.
    Yuan HB, Liu KZ, Condor M, Barrasa-Fano J, Louis B, et al. 2023.. Synthetic fibrous hydrogels as a platform to decipher cell-matrix mechanical interactions. . PNAS 120::e2216934120
    [Crossref] [Google Scholar]
  25. 25.
    Li YF, Kumacheva E. 2018.. Hydrogel microenvironments for cancer spheroid growth and drug screening. . Sci. Adv. 4::eaas8998
    [Crossref] [Google Scholar]
  26. 26.
    Wang Y, Kankala RK, Ou CW, Chen AZ, Yang ZL. 2022.. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. . Bioact. Mater. 9::198220
    [Google Scholar]
  27. 27.
    Liang YP, He JH, Guo BL. 2021.. Functional hydrogels as wound dressing to enhance wound healing. . Acs Nano 15::12687722
    [Crossref] [Google Scholar]
  28. 28.
    Polacheck WJ, Chen CS. 2016.. Measuring cell-generated forces: a guide to the available tools. . Nat. Methods 13::41523
    [Crossref] [Google Scholar]
  29. 29.
    Roca-Cusachs P, Conte V, Trepat X. 2017.. Quantifying forces in cell biology. . Nat. Cell Biol. 19::74251
    [Crossref] [Google Scholar]
  30. 30.
    Lekka M, Gnanachandran K, Kubiak A, Zielinski T, Zemla J. 2021.. Traction force microscopy—measuring the forces exerted by cells. . Micron 150::103138
    [Crossref] [Google Scholar]
  31. 31.
    Zancla A, Mozetic P, Orsini M, Forte G, Rainer A. 2022.. A primer to traction force microscopy. . J. Biol. Chem. 298::101867
    [Crossref] [Google Scholar]
  32. 32.
    Nerger BA, Siedlik MJ, Nelson CM. 2017.. Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis. . Cell. Mol. Life Sci. 74::181934
    [Crossref] [Google Scholar]
  33. 33.
    Dominguez R, Holmes KC. 2011.. Actin structure and function. . Annu. Rev. Biophys. 40::16986
    [Crossref] [Google Scholar]
  34. 34.
    Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. 2014.. Actin dynamics, architecture, and mechanics in cell motility. . Physiol. Rev. 94::23563
    [Crossref] [Google Scholar]
  35. 35.
    Seetharaman S, Vianay B, Roca V, Farrugia AJ, De Pascalis C, et al. 2022.. Microtubules tune mechanosensitive cell responses. . Nat. Mater. 21::36677
    [Crossref] [Google Scholar]
  36. 36.
    Infante E, Etienne-Manneville S. 2022.. Intermediate filaments: integration of cell mechanical properties during migration. . Front. Cell Dev. Biol. 10::951816
    [Crossref] [Google Scholar]
  37. 37.
    Schwartz MA. 2010.. Integrins and extracellular matrix in mechanotransduction. . Cold Spring Harb. Perspect. Biol. 2::a005066
    [Crossref] [Google Scholar]
  38. 38.
    Takada Y, Ye XJ, Simon S. 2007.. The integrins. . Genome Biol. 8::215
    [Crossref] [Google Scholar]
  39. 39.
    Wu CY. 2007.. Focal adhesion: a focal point in current cell biology and molecular medicine. . Cell Adh. Migr. 1::1318
    [Google Scholar]
  40. 40.
    Martino F, Perestrelo AR, Vinarsky V, Pagliari S, Forte G. 2018.. Cellular mechanotransduction: from tension to function. . Front. Physiol. 9::824
    [Crossref] [Google Scholar]
  41. 41.
    Mitra SK, Hanson DA, Schlaepfer DD. 2005.. Focal adhesion kinase: in command and control of cell motility. . Nat. Rev. Mol. Cell Biol. 6::5668
    [Crossref] [Google Scholar]
  42. 42.
    Vakhrusheva AV, Murashko AV, Trifonova ES, Efremov YM, Timashev PS, Sokolova OS. 2022.. Role of actin-binding proteins in the regulation of cellular mechanics. . Eur. J. Cell Biol. 101::151241
    [Crossref] [Google Scholar]
  43. 43.
    Leggett SE, Sim JY, Rubins JE, Neronha ZJ, Williams EK, Wong IY. 2016.. Morphological single cell profiling of the epithelial-mesenchymal transition. . Integr. Biol. 8::113344
    [Crossref] [Google Scholar]
  44. 44.
    Leggett SE, Hruska AM, Guo M, Wong IY. 2021.. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. . Cell Commun. Signal. 19::32
    [Crossref] [Google Scholar]
  45. 45.
    Yamada KM, Sixt M. 2019.. Mechanisms of 3D cell migration. . Nat. Rev. Mol. Cell Biol. 20::73852
    [Crossref] [Google Scholar]
  46. 46.
    Janmey PA, Georges PC, Hvidt S. 2007.. Basic rheology for biologists. . In Cell Mechanics, ed. YL Wang, DE Discher , pp. 327. San Diego:: Elsevier Academic
    [Google Scholar]
  47. 47.
    Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA. 2005.. Nonlinear elasticity in biological gels. . Nature 435::19194
    [Crossref] [Google Scholar]
  48. 48.
    Chen XY, Chen DN, Ban E, Toussaint KC, Janmey PA, et al. 2022.. Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. . PNAS 119::e2116718119
    [Crossref] [Google Scholar]
  49. 49.
    Gong Z, Szczesny SE, Caliari SR, Charrier EE, Chaudhuri O, et al. 2018.. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. . PNAS 115::E268695
    [Google Scholar]
  50. 50.
    Han YL, Ronceray P, Xu GQ, Malandrino A, Kamm RD, et al. 2018.. Cell contraction induces long-ranged stress stiffening in the extracellular matrix. . PNAS 115::407580
    [Crossref] [Google Scholar]
  51. 51.
    Lin YC, Leartprapun N, Luo JC, Adie SG. 2022.. Light-sheet photonic force optical coherence elastography for high-throughput quantitative 3D micromechanical imaging. . Nat. Commun. 13::3465
    [Crossref] [Google Scholar]
  52. 52.
    Malandrino A, Mak M, Kamm RD, Moeendarbary E. 2018.. Complex mechanics of the heterogeneous extracellular matrix in cancer. . Extreme Mech. Lett. 21::2534
    [Crossref] [Google Scholar]
  53. 53.
    Provenzano PP, Inman DR, Eliceiri KW, Trier SM, Keely PJ. 2008.. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. . Biophys. J. 95::537484
    [Crossref] [Google Scholar]
  54. 54.
    Conklin MW, Eickoff JC, Riching KM, Pehlke CA, Eliceiri KW, et al. 2011.. Aligned collagen is a prognostic signature for survival in human breast carcinoma. . Am. J. Pathol. 178::122132
    [Crossref] [Google Scholar]
  55. 55.
    Vader D, Kabla A, Weitz D, Mahadevan L. 2009.. Strain-induced alignment in collagen gels. . PLOS ONE 4::e5902
    [Crossref] [Google Scholar]
  56. 56.
    Bissell MJ, Hall HG, Parry G. 1982.. How does the extracellular-matrix direct gene-expression?. J. Theor. Biol. 99::3168
    [Crossref] [Google Scholar]
  57. 57.
    Holle AW, Young JL, Van Vliet KJ, Kamm RD, Discher D, et al. 2018.. Cell-extracellular matrix mechanobiology: forceful tools and emerging needs for basic and translational research. . Nano Lett. 18::18
    [Crossref] [Google Scholar]
  58. 58.
    Sarrigiannidis SO, Rey JM, Dobre O, Gonzalez-Garcia C, Dalby MJ, Salmeron-Sanchez M. 2021.. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. . Mater. Today Bio 10::100098
    [Crossref] [Google Scholar]
  59. 59.
    Levental KR, Yu HM, Kass L, Lakins JN, Egeblad M, et al. 2009.. Matrix crosslinking forces tumor progression by enhancing integrin signaling. . Cell 139::891906
    [Crossref] [Google Scholar]
  60. 60.
    Suh YJ, Hall MS, Huang YL, Moon SY, Song W, et al. 2019.. Glycation of collagen matrices promotes breast tumor cell invasion. . Integr. Biol. 11::10917
    [Crossref] [Google Scholar]
  61. 61.
    Cheung BCH, Chen X, Davis HJ, Toth J, Segall E, et al. 2023.. CD44 and β1-integrin are both engaged in cell traction force generation in hyaluronic acid-rich extracellular matrices. . bioRxiv 2023.10.24.563860 . https://doi.org/10.1101/2023.10.24.563860
  62. 62.
    Borries M, Barooji YF, Yennek S, Grapin-Botton A, Berg-Sorensen K, Oddershede LB. 2020.. Quantification of visco-elastic properties of a matrigel for organoid development as a function of polymer concentration. . Front. Phys. 8::579168
    [Crossref] [Google Scholar]
  63. 63.
    Rockwood DN, Preda RC, Yucel T, Wang XQ, Lovett ML, Kaplan DL. 2011.. Materials fabrication from Bombyx mori silk fibroin. . Nat. Protoc. 6::161231
    [Crossref] [Google Scholar]
  64. 64.
    Tran HA, Hoang TT, Maraldo A, Do TN, Kaplan DL, et al. 2023.. Emerging silk fibroin materials and their applications: new functionality arising from innovations in silk crosslinking. . Mater. Today 65::24459
    [Crossref] [Google Scholar]
  65. 65.
    Khoo AS, Valentin TM, Leggett SE, Bhaskar D, Bye EM, et al. 2019.. Breast cancer cells transition from mesenchymal to amoeboid migration in tunable three-dimensional silk-collagen hydrogels. . ACS Biomater. Sci. Eng. 5::434154
    [Crossref] [Google Scholar]
  66. 66.
    Nam S, Chaudhuri O. 2018.. Mitotic cells generate protrusive extracellular forces to divide in three-dimensional microenvironments. . Nat. Phys. 14::62128
    [Crossref] [Google Scholar]
  67. 67.
    Nam S, Stowers R, Lou JZ, Xia Y, Chaudhuri O. 2019.. Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies. . Biomaterials 200::1524
    [Crossref] [Google Scholar]
  68. 68.
    Afthinos A, Bera K, Chen JJ, Ozcelikkale A, Amitrano A, et al. 2022.. Migration and 3D traction force measurements inside compliant microchannels. . Nano Lett. 22::731827
    [Crossref] [Google Scholar]
  69. 69.
    Toyjanova J, Bar-Kochba E, Lopez-Fagundo C, Reichner J, Hoffman-Kim D, Franck C. 2014.. High resolution, large deformation 3D traction force microscopy. . PLOS ONE 9::e90976
    [Crossref] [Google Scholar]
  70. 70.
    Legant WR, Miller JS, Blakely BL, Cohen DM, Genin GM, Chen CS. 2010.. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. . Nat. Methods 7::96971
    [Crossref] [Google Scholar]
  71. 71.
    Legant WR, Choi CK, Miller JS, Shao L, Gao L, et al. 2013.. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. . PNAS 110::88186
    [Crossref] [Google Scholar]
  72. 72.
    Brockman JM, Blanchard AT, Ma VPY, Derricotte WD, Zhang Y, et al. 2018.. Mapping the 3D orientation of piconewton integrin traction forces. . Nat. Methods 15::11518
    [Crossref] [Google Scholar]
  73. 73.
    Steinwachs J, Metzner C, Skodzek K, Lang N, Thievessen I, et al. 2016.. Three-dimensional force microscopy of cells in biopolymer networks. . Nat. Methods 13::17176
    [Crossref] [Google Scholar]
  74. 74.
    Patel M, Leggett SE, Landauer AK, Wong IY, Franck C. 2018.. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields. . Sci. Rep. 8::5581
    [Crossref] [Google Scholar]
  75. 75.
    Small A, Stahlheber S. 2014.. Fluorophore localization algorithms for super-resolution microscopy. . Nat. Methods 11::26779
    [Crossref] [Google Scholar]
  76. 76.
    Zhang B, Zerubia J, Olivo-Marin JC. 2007.. Gaussian approximations of fluorescence microscope point-spread function models. . Appl. Opt. 46::181929
    [Crossref] [Google Scholar]
  77. 77.
    Cheezum MK, Walker WF, Guilford WH. 2001.. Quantitative comparison of algorithms for tracking single fluorescent particles. . Biophys. J. 81::237888
    [Crossref] [Google Scholar]
  78. 78.
    Korobchevskaya K, Colin-York H, Barbieri L, Fritzsche M. 2021.. Extended mechanical force measurements using structured illumination microscopy. . Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379::20200151
    [Crossref] [Google Scholar]
  79. 79.
    Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffie J, et al. 2021.. Single-molecule localization microscopy. . Nat. Rev. Method. Prim. 1::39
    [Crossref] [Google Scholar]
  80. 80.
    Haam SJ, Brodkey RS. 2000.. Motions of dispersed beads obtained by particle tracking velocimetry measurements—part II. . Int. J. Multiph. Flow 26::141938
    [Crossref] [Google Scholar]
  81. 81.
    Pereira F, Stuer H, Graff EC, Gharib M. 2006.. Two-frame 3D particle tracking. . Meas. Sci. Technol. 17::168092
    [Crossref] [Google Scholar]
  82. 82.
    Koch TM, Münster S, Bonakdar N, Butler JP, Fabry B. 2012.. 3D traction forces in cancer cell invasion. . PLOS ONE 7::e33476
    [Crossref] [Google Scholar]
  83. 83.
    Hall MS, Long R, Feng XZ, Huang YL, Hui CY, Wu MM. 2013.. Toward single cell traction microscopy within 3D collagen matrices. . Exp. Cell Res. 319::2396408
    [Crossref] [Google Scholar]
  84. 84.
    Feng XZ, Hall MS, Wu MM, Hui CY. 2014.. An adaptive algorithm for tracking 3D bead displacements: application in biological experiments. . Meas. Sci. Technol. 25::055701
    [Crossref] [Google Scholar]
  85. 85.
    Hazlett L, Landauer AK, Patel M, Witt HA, Yang J, et al. 2020.. Epifluorescence-based three-dimensional traction force microscopy. . Sci. Rep. 10::16599
    [Crossref] [Google Scholar]
  86. 86.
    Leggett SE, Patel M, Valentin TM, Gamboa L, Khoo AS, et al. 2020.. Mechanophenotyping of 3D multicellular clusters using displacement arrays of rendered tractions. . PNAS 117::565563
    [Crossref] [Google Scholar]
  87. 87.
    Ji L, Danuser G. 2005.. Tracking quasi-stationary flow of weak fluorescent signals by adaptive multi-frame correlation. . J. Microsc. 220::15067
    [Crossref] [Google Scholar]
  88. 88.
    Sabass B, Gardel ML, Waterman CM, Schwarz US. 2008.. High resolution traction force microscopy based on experimental and computational advances. . Biophys. J. 94::20720
    [Crossref] [Google Scholar]
  89. 89.
    Huang JY, Pan XC, Peng XL, Zhu T, Qin L, et al. 2010.. High-efficiency cell-substrate displacement acquisition via digital image correlation method using basis functions. . Opt. Lasers Eng. 48::105866
    [Crossref] [Google Scholar]
  90. 90.
    Schrijer FFJ, Scarano F. 2008.. Effect of predictor-corrector filtering on the stability and spatial resolution of iterative PIV interrogation. . Exp. Fluids 45::92741
    [Crossref] [Google Scholar]
  91. 91.
    Dembo M, Wang YL. 1999.. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. . Biophys. J. 76::230716
    [Crossref] [Google Scholar]
  92. 92.
    Schwarz US, Soine JRD. 2015.. Traction force microscopy on soft elastic substrates: a guide to recent computational advances. . Biochim. Biophys. Acta Mol. Cell Res. 1853::3095104
    [Crossref] [Google Scholar]
  93. 93.
    Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ. 2002.. Traction fields, moments, and strain energy that cells exert on their surroundings. . Am. J. Physiol. Cell Physiol. 282::C595605
    [Crossref] [Google Scholar]
  94. 94.
    Wang HL, Abhilash AS, Chen CS, Wells RG, Shenoy VB. 2014.. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. . Biophys. J. 107::2592603
    [Crossref] [Google Scholar]
  95. 95.
    Barrasa-Fano J, Shapeti A, Jorge-Penas A, Barzegari M, Sanz-Herrera JA, Van Oosterwyck H. 2021.. TFMLAB: a MATLAB toolbox for 4D traction force microscopy. . SoftwareX 15::100723
    [Crossref] [Google Scholar]
  96. 96.
    Hervas-Raluy S, Gomez-Benito MJ, Borau-Zamora C, Condor M, Garcia-Aznar JM. 2021.. A new 3D finite element-based approach for computing cell surface tractions assuming nonlinear conditions. . PLOS ONE 16::e0249018
    [Crossref] [Google Scholar]
  97. 97.
    Mark C, Grundy TJ, Strissel PL, Bohringer D, Grummel N, et al. 2020.. Collective forces of tumor spheroids in three-dimensional biopolymer networks. . eLife 9::e51912
    [Crossref] [Google Scholar]
  98. 98.
    Böhringer D, Cóndor M, Bischof L, Czerwinski T, Bauer A, et al. 2022.. Dynamic traction force measurements of migrating immune cells in 3D matrices. . bioRxiv 2022.11.16.516758 . https://doi.org/10.1101/2022.11.16.516758
  99. 99.
    Pielawski N, Hu JJ, Stromblad S, Wahlby C. 2020.. In silico prediction of cell traction forces. . In Proc. IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, 2020, pp. 87781. New York:: IEEE
    [Google Scholar]
  100. 100.
    Wang YL, Lin YC. 2021.. Traction force microscopy by deep learning. . Biophys. J. 120::307990
    [Crossref] [Google Scholar]
  101. 101.
    Duan XC, Huang JY. 2022.. Deep-learning-based 3D cellular force reconstruction directly from volumetric images. . Biophys. J. 121::218092
    [Crossref] [Google Scholar]
  102. 102.
    Li HH, Matsunaga D, Matsui TS, Aosaki H, Kinoshita G, et al. 2022.. Wrinkle force microscopy: a machine learning based approach to predict cell mechanics from images. . Commun. Biol. 5::361
    [Crossref] [Google Scholar]
  103. 103.
    Kopanska KS, Alcheikh Y, Staneva R, Vignjevic D, Betz T. 2016.. Tensile forces originating from cancer spheroids facilitate tumor invasion. . PLOS ONE 11::e0156442
    [Crossref] [Google Scholar]
  104. 104.
    Leggett SE, Khoo AS, Wong IY. 2017.. Multicellular tumor invasion and plasticity in biomimetic materials. . Biomater. Sci. 8::146079
    [Crossref] [Google Scholar]
  105. 105.
    Mulligan JA, Ling L, Leartprapun N, Fischbach C, Adie SG. 2021.. Computational 4D-OCM for label-free imaging of collective cell invasion and force-mediated deformations in collagen. . Sci. Rep. 11::2814
    [Crossref] [Google Scholar]
  106. 106.
    Leggett SE, Brennan MC, Martinez S, Tien J, Nelson CM. 2024.. Relatively rare populations of invasive cells drive progression of heterogeneous tumors. . Cell. Mol. Bioeng. https://doi.org/10.1007/s12195-023-00792-w
    [Google Scholar]
  107. 107.
    Gjorevski N, Piotrowski AS, Varner VD, Nelson CM. 2015.. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. . Sci. Rep. 5::11458
    [Crossref] [Google Scholar]
  108. 108.
    Gutierrez RA, Fang WQ, Kesari H, Darling EM. 2021.. Force sensors for measuring microenvironmental forces during mesenchymal condensation. . Biomaterials 270::120684
    [Crossref] [Google Scholar]
  109. 109.
    Mohagheghian E, Luo JY, Yavitt FM, Wei FX, Bhala P, et al. 2023.. Quantifying stiffness and forces of tumor colonies and embryos using a magnetic microrobot. . Sci. Robot. 8::eadc9800
    [Crossref] [Google Scholar]
  110. 110.
    Huang YL, Segall JE, Wu MM. 2017.. Microfluidic modeling of the biophysical microenvironment in tumor cell invasion. . Lab Chip 17::322133
    [Crossref] [Google Scholar]
  111. 111.
    Zhao WJ, Zhao HP, Li MX, Huang CJ. 2020.. Microfluidic devices for neutrophil chemotaxis studies. . J. Transl. Med. 18::168
    [Crossref] [Google Scholar]
  112. 112.
    Shih HC, Lee TA, Wu HM, Ko PL, Liao WH, Tung YC. 2019.. Microfluidic collective cell migration assay for study of endothelial cell proliferation and migration under combinations of oxygen gradients, tensions, and drug treatments. . Sci. Rep. 9::8234
    [Crossref] [Google Scholar]
  113. 113.
    Jang H, Kim J, Shin JH, Fredberg JJ, Park CY, Park Y. 2019.. Traction microscopy with integrated microfluidics: responses of the multi-cellular island to gradients of HGF. . Lab Chip 19::157988
    [Crossref] [Google Scholar]
  114. 114.
    Dou JX, Mao SF, Li HF, Lin JM. 2020.. Combination stiffness gradient with chemical stimulation directs glioma cell migration on a microfluidic chip. . Anal. Chem. 92::89298
    [Crossref] [Google Scholar]
  115. 115.
    Ibrahim LI, Hajal C, Offeddu GS, Gillrie MR, Kamm RD. 2022.. Omentum-on-a-chip: a multicellular, vascularized microfluidic model of the human peritoneum for the study of ovarian cancer metastases. . Biomaterials 288::121728
    [Crossref] [Google Scholar]
  116. 116.
    Wan ZP, Zhong AX, Zhang S, Pavlou G, Coughlin MF, et al. 2022.. A robust method for perfusable microvascular network formation in vitro. . Small Methods 6::e2200143
    [Crossref] [Google Scholar]
  117. 117.
    Silvestri VL, Henriet E, Linville RM, Wong AD, Searson PC, Ewald AJ. 2020.. A tissue-engineered 3D microvessel model reveals the dynamics of mosaic vessel formation in breast cancer. . Cancer Res. 80::4288301
    [Crossref] [Google Scholar]
  118. 118.
    Suh YJ, Pandey M, Segall JE, Wu MM. 2022.. Tumor spheroid invasion in epidermal growth factor gradients revealed by a 3D microfluidic device. . Phys. Biol. 19::036002
    [Crossref] [Google Scholar]
  119. 119.
    Shellard A, Mayor R. 2020.. All roads lead to directional cell migration. . Trends Cell Biol. 11::85268
    [Crossref] [Google Scholar]
  120. 120.
    Pfeffer W. 1884.. Locomotorische Richtungsbewegungen durch chemische Reize. . Unters. Bot. Ins. Tübingen 1::363482
    [Google Scholar]
  121. 121.
    Carter SB. 1967.. Haptotaxis and the mechanism of cell motility. . Nature 5073::25660
    [Crossref] [Google Scholar]
  122. 122.
    Lo CM, Wang HB, Dembo M, Wang YL. 2000.. Cell movement is guided by the rigidity of the substrate. . Biophys. J. 79::14452
    [Crossref] [Google Scholar]
  123. 123.
    Le Maout E, Lo Vecchio S, Korla PK, Sheu JJC, Riveline D. 2020.. Ratchetaxis in channels: entry point and local asymmetry set cell directions in confinement. . Biophys. J. 119::13018
    [Crossref] [Google Scholar]
  124. 124.
    Park J, Kim DH, Kim HN, Wang CJ, Kwak MK, et al. 2016.. Directed migration of cancer cells guided by the graded texture of the underlying matrix. . Nat. Mater. 15::792801
    [Crossref] [Google Scholar]
  125. 125.
    Pieuchot L, Marteau J, Guignandon A, Dos Santos T, Brigaud I, et al. 2018.. Curvotaxis directs cell migration through cell-scale curvature landscapes. . Nat. Commun. 9::3995
    [Crossref] [Google Scholar]
  126. 126.
    Mao BH, Thi KMN, Tang MJ, Kamm RD, Tu TY. 2023.. The interface stiffness and topographic feature dictate interfacial invasiveness of cancer spheroids. . Biofabrication 15::015023
    [Crossref] [Google Scholar]
  127. 127.
    Zhang Y, Ge CH, Zhu C, Salaita K. 2014.. DNA-based digital tension probes reveal integrin forces during early cell adhesion. . Nat. Commun. 5::5167
    [Crossref] [Google Scholar]
  128. 128.
    Baek KY, Kim S, Koh HR. 2022.. Molecular tension probes to quantify cell-generated mechanical forces. . Mol. Cells 45::2632
    [Crossref] [Google Scholar]
  129. 129.
    Cheung BCH, Hodgson L, Segall JE, Wu M. 2022.. Spatial and temporal dynamics of RhoA activities of single breast tumor cells in a 3D environment revealed by a machine learning-assisted FRET technique. . Exp. Cell Res. 410::112939
    [Crossref] [Google Scholar]
  130. 130.
    Zinkovska N, Pekar M, Smilek J. 2022.. Gradient hydrogels—overview of techniques demonstrating the existence of a gradient. . Polymers 14::866
    [Crossref] [Google Scholar]
  131. 131.
    Moysidou CM, Barberio C, Owens RM. 2021.. Advances in engineering human tissue models. . Front. Bioeng. Biotechnol. 8::620962
    [Crossref] [Google Scholar]
  132. 132.
    Dash SK, Patra B, Sharma V, Das SK, Verma RS. 2022.. Fluid shear stress in a logarithmic microfluidic device enhances cancer cell stemness marker expression. . Lab Chip 22::220011
    [Crossref] [Google Scholar]
  133. 133.
    Mao SB, Sarkar A, Wang YL, Song C, LeVine D, et al. 2021.. Microfluidic chip grafted with integrin tension sensors for evaluating the effects of flowing shear stress and ROCK inhibitor on platelets. . Lab Chip 21::312836
    [Crossref] [Google Scholar]
  134. 134.
    Lee GH, Huang SA, Aw WY, Rathod ML, Cho C, et al. 2022.. Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow. . Biofabrication 14::025007
    [Crossref] [Google Scholar]
  135. 135.
    Harris AK, Stopak D, Wild P. 1981.. Fibroblast traction as a mechanism for collagen morphogenesis. . Nature 290::24951
    [Crossref] [Google Scholar]
  136. 136.
    Munevar S, Wang YL, Dembo M. 2001.. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. . Biophys. J. 80::174457
    [Crossref] [Google Scholar]
  137. 137.
    Ribeiro AJS, Denisin AK, Wilson RE, Pruitt BL. 2016.. For whom the cells pull: hydrogel and micropost devices for measuring traction forces. . Methods 94::5164
    [Crossref] [Google Scholar]
  138. 138.
    Denisin AK, Pruitt BL. 2016.. Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. . ACS Appl. Mater. Interfaces 8::21893902
    [Crossref] [Google Scholar]
  139. 139.
    Yoshie H, Koushki N, Molter C, Siegel PM, Krishnan R, Ehrlicher AJ. 2019.. High throughput traction force microscopy using PDMS reveals dose-dependent effects of transforming growth factor-β on the epithelial-to-mesenchymal transition. . J. Vis. Exp. 148::e59364
    [Google Scholar]
  140. 140.
    Makarchuk S, Beyer N, Gaiddon C, Grange W, Hebraud P. 2018.. Holographic traction force microscopy. . Sci. Rep. 8::3038
    [Crossref] [Google Scholar]
  141. 141.
    Bergert M, Lendenmann T, Zundel M, Ehret AE, Panozzo D, et al. 2016.. Confocal reference free traction force microscopy. . Nat. Commun. 7::12814
    [Crossref] [Google Scholar]
  142. 142.
    Schurmann H, Abbasi F, Russo A, Hofemeier AD, Brandt M, et al. 2022.. Analysis of monocyte cell tractions in 2.5D reveals mesoscale mechanics of podosomes during substrate-indenting cell protrusion. . J. Cell Sci. 135::jcs259042
    [Crossref] [Google Scholar]
  143. 143.
    Barbieri L, Colin-York H, Korobchevskaya K, Li D, Wolfson DL, et al. 2021.. Two-dimensional TIRF-SIM-traction force microscopy (2D TIRF-SIM-TFM). . Nat. Commun. 12::2169
    [Crossref] [Google Scholar]
  144. 144.
    Colin-York H, Shrestha D, Felce JH, Waithe D, Moeendarbary E, et al. 2016.. Super-resolved traction force microscopy (STFM). . Nano Lett. 16::263338
    [Crossref] [Google Scholar]
  145. 145.
    Li D, Colin-York H, Barbieri L, Javanmardi Y, Guo YT, et al. 2021.. Astigmatic traction force microscopy (aTFM). . Nat. Commun. 12::2168
    [Crossref] [Google Scholar]
  146. 146.
    Stubb A, Laine RF, Miihkinen M, Hamidi H, Guzman C, et al. 2020.. Fluctuation-based super-resolution traction force microscopy. . Nano Lett. 20::223045
    [Crossref] [Google Scholar]
  147. 147.
    Franck C, Maskarinec SA, Tirrell DA, Ravichandran G. 2011.. Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. . PLOS ONE 6::e17833
    [Crossref] [Google Scholar]
  148. 148.
    Cóndor M, Steinwachs J, Mark C, García-Aznar JM, Fabry B. 2017.. Traction force microscopy in 3-dimensional extracellular matrix networks. . Curr. Protoc. Cell Biol. 75::10.22.120
    [Crossref] [Google Scholar]
  149. 149.
    Gupta M, Kocgozlu L, Sarangi BR, Margadant F, Ashraf M, Ladoux B. 2015.. Micropillar substrates: a tool for studying cell mechanobiology. . In Biophysical Methods in Cell Biology, ed. EK Paluch , pp. 289308. San Diego:: Elsevier Academic
    [Google Scholar]
  150. 150.
    Schoen I, Hu W, Klotzsch E, Vogel V. 2010.. Probing cellular traction forces by micropillar arrays: contribution of substrate warping to pillar deflection. . Nano Lett. 10::182330
    [Crossref] [Google Scholar]
  151. 151.
    Vorselen D, Wang YF, de Jesus MM, Shah PK, Footer MJ, et al. 2020.. Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell-target interactions. . Nat. Commun. 11::20
    [Crossref] [Google Scholar]
  152. 152.
    Serrano R, Aung A, Yeh YT, Varghese S, Lasheras JC, del Alamo JC. 2019.. Three-dimensional monolayer stress microscopy. . Biophys. J. 117::11128
    [Crossref] [Google Scholar]
  153. 153.
    Lång E, Pedersen C, Lång A, Blicher P, Klungland A, et al. 2021.. Mechanical coupling of supracellular stress amplification and tissue fluidization during exit from quiescence. . PNAS 119:(32):e2201328119
    [Crossref] [Google Scholar]
  154. 154.
    Nier V, Jain S, Lim CT, Ishihara S, Ladoux B, Marcq P. 2016.. Inference of internal stress in a cell monolayer. . Biophys. J. 110::162535
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-103122-031130
Loading
/content/journals/10.1146/annurev-bioeng-103122-031130
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error