1932

Abstract

There is nothing like a global pandemic to motivate the need for improved respiratory treatments and mucosal vaccines. Stimulated by the COVID-19 pandemic, pulmonary aerosol drug delivery has seen a flourish of activity, building on the prior decades of innovation in particle engineering, inhaler device technologies, and clinical understanding. As such, the field has expanded into new directions and is working toward the efficient delivery of increasingly complex cargos to address a wider range of respiratory diseases. This review seeks to highlight recent innovations in approaches to personalize inhalation drug delivery, deliver complex cargos, and diversify the targets treated and prevented through pulmonary drug delivery. We aim to inform readers of the emerging efforts within the field and predict where future breakthroughs are expected to impact the treatment of respiratory diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110122-010848
2024-07-03
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-110122-010848.html?itemId=/content/journals/10.1146/annurev-bioeng-110122-010848&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Halpin DMG, Celli BR, Criner GJ, Frith P, López Varela MV, et al. 2019.. It is time for the world to take COPD seriously: a statement from the GOLD board of directors. . Eur. Respir. J. 54::1900914
    [Crossref] [Google Scholar]
  2. 2.
    Roth GA. 2018.. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. . Lancet 392::173688
    [Crossref] [Google Scholar]
  3. 3.
    Singh D, Agusti A, Anzueto A, Barnes PJ, Bourbeau J, et al. 2019.. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. . Eur. Respir. J. 53::1900164
    [Crossref] [Google Scholar]
  4. 4.
    Sul B, Oppito Z, Jayasekera S, Vanger B, Zeller A, et al. 2018.. Assessing airflow sensitivity to healthy and diseased lung conditions in a computational fluid dynamics model validated in vitro. . J. Biomech. Eng. 140::051009
    [Crossref] [Google Scholar]
  5. 5.
    Weers JG, Bell J, Chan HK, Cipolla D, Dunbar C, et al. 2010.. Pulmonary formulations: What remains to be done?. J. Aerosol Med. Pulm. Drug Deliv. 23:(Suppl. 2):S523
    [Crossref] [Google Scholar]
  6. 6.
    Patton JS, Byron PR. 2007.. Inhaling medicines: delivering drugs to the body through the lungs. . Nat. Rev. Drug Discov. 6::6774
    [Crossref] [Google Scholar]
  7. 7.
    Muralidharan P, Malapit M, Mallory E, Hayes D Jr., Mansour HM. 2015.. Inhalable nanoparticulate powders for respiratory delivery. . Nanomedicine 11::118999
    [Crossref] [Google Scholar]
  8. 8.
    Stein SW, Thiel CG. 2017.. The history of therapeutic aerosols: a chronological review. . J. Aerosol Med. Pulm. Drug Deliv. 30::2041
    [Crossref] [Google Scholar]
  9. 9.
    Clark AR. 2022.. Half a century of technological advances in pulmonary drug delivery: a personal perspective. . Front. Drug Deliv. 2::871147
    [Crossref] [Google Scholar]
  10. 10.
    Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, et al. 2004.. The number of alveoli in the human lung. . Am. J. Respir. Crit. Care Med. 169::12024
    [Crossref] [Google Scholar]
  11. 11.
    Weibel ER. 1963.. Morphometry of the Human Lung. Amsterdam:: Elsevier Science
    [Google Scholar]
  12. 12.
    Kolewe EL, Feng Y, Fromen CA. 2020.. Realizing lobe-specific aerosol targeting in a 3D-printed in vitro lung model. . J. Aerosol Med. Pulm. Drug Deliv. 34::4256
    [Crossref] [Google Scholar]
  13. 13.
    West JB, Luks A. 2016.. West's Respiratory Physiology: The Essentials. Philadelphia:: Wolters Kluwer
    [Google Scholar]
  14. 14.
    Kuprat AP, Price O, Asgharian B, Singh RK, Colby S, et al. 2023.. Automated bidirectional coupling of multiscale models of aerosol dosimetry: validation with subject-specific deposition data. . J. Aerosol Sci. 174::106233
    [Crossref] [Google Scholar]
  15. 15.
    Borojeni AAT, Gu W, Asgharian B, Price O, Kuprat AP, et al. 2023.. In silico quantification of intersubject variability on aerosol deposition in the oral airway. . Pharmaceutics 15::160
    [Crossref] [Google Scholar]
  16. 16.
    Kolewe EL, Padhye S, Woodward IR, Feng Y, Briddell JW, Fromen CA. 2023.. A pediatric upper airway library to evaluate interpatient variability of in silico aerosol deposition. . AAPS PharmSciTech 24::162
    [Crossref] [Google Scholar]
  17. 17.
    Hinds WC. 1999.. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York:: John Wiley & Sons, Inc.
    [Google Scholar]
  18. 18.
    Darquenne C. 2020.. Deposition mechanisms. . J. Aerosol Med. Pulm. Drug Deliv. 33::18185
    [Crossref] [Google Scholar]
  19. 19.
    Marple VA, Roberts DL, Romay FJ, Miller NC, Truman KG, et al. 2003.. Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part I: Design. . J. Aerosol Med. 16::28399
    [Crossref] [Google Scholar]
  20. 20.
    Newman SP, Chan H-K. 2020.. In vitro-in vivo correlations (IVIVCs) of deposition for drugs given by oral inhalation. . Adv. Drug Deliv. Rev. 167::13547
    [Crossref] [Google Scholar]
  21. 21.
    Newman SP. 2022.. Fine particle fraction: the good and the bad. . J. Aerosol Med. Pulm. Drug Deliv. 35::210
    [Crossref] [Google Scholar]
  22. 22.
    Mitchell JP, Doub W, Christopher JD, Gruenloh CJ, Patel RB, et al. 2022.. Moving forward from “Fine particle fraction: the good and the bad. .” J. Aerosol Med. Pulm. Drug Deliv. 35::22526
    [Crossref] [Google Scholar]
  23. 23.
    Guilliams M, Lambrecht BN, Hammad H. 2013.. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. . Mucosal Immunol. 6::46473
    [Crossref] [Google Scholar]
  24. 24.
    Sudduth ER, Trautmann-Rodriguez M, Gill N, Bomb K, Fromen CA. 2023.. Aerosol pulmonary immune engineering. . Adv. Drug Deliv. Rev. 199::114831
    [Crossref] [Google Scholar]
  25. 25.
    LoMauro A, Aliverti A. 2018.. Sex differences in respiratory function. . Breathe 14::13140
    [Crossref] [Google Scholar]
  26. 26.
    Bellemare F, Jeanneret A, Couture J. 2003.. Sex differences in thoracic dimensions and configuration. . Am. J. Respir. Crit. Care Med. 168::30512
    [Crossref] [Google Scholar]
  27. 27.
    Shur J, Price R, Lewis D, Young PM, Woollam G, et al. 2016.. From single excipients to dual excipient platforms in dry powder inhaler products. . Int. J. Pharm. 514::37483
    [Crossref] [Google Scholar]
  28. 28.
    Garcia A, Mack P, Williams S, Fromen C, Shen T, et al. 2012.. Microfabricated engineered particle systems for respiratory drug delivery and other pharmaceutical applications. . J. Drug Deliv. 2012::941243
    [Crossref] [Google Scholar]
  29. 29.
    Son Y-J, Longest PW, Tian G, Hindle M. 2013.. Evaluation and modification of commercial dry powder inhalers for the aerosolization of a submicrometer excipient enhanced growth (EEG) formulation. . Eur. J. Pharm. Sci. 49::39099
    [Crossref] [Google Scholar]
  30. 30.
    Berkenfeld K, Lamprecht A, McConville JT. 2015.. Devices for dry powder drug delivery to the lung. . AAPS PharmSciTech. 16::47990
    [Crossref] [Google Scholar]
  31. 31.
    Sosnik A, Seremeta KP. 2015.. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. . Adv. Colloid Interface Sci. 223::4054
    [Crossref] [Google Scholar]
  32. 32.
    Farinha S, JV, Lino PR, Galésio M, Pires J, et al. 2023.. Spray freeze drying of biologics: a review and applications for inhalation delivery. . Pharm. Res. 40::111540
    [Crossref] [Google Scholar]
  33. 33.
    Praphawatvet T, Cui Z, Williams RO. 2022.. Pharmaceutical dry powders of small molecules prepared by thin-film freezing and their applications—a focus on the physical and aerosol properties of the powders. . Int. J. Pharm. 629::122357
    [Crossref] [Google Scholar]
  34. 34.
    Mack P, Tully J, Herlihy K, Farrer B, Sprague J, Maynor B. 2014.. Formulation and in vivo evaluation of treprostinil dry powder for inhalation, fabricated using the PRINT® particle technology. . Respir. Drug Deliv. 2::47376
    [Google Scholar]
  35. 35.
    Hill NS, Feldman JP, Sahay S, Benza RL, Preston IR, et al. 2022.. INSPIRE: safety and tolerability of inhaled Yutrepia (treprostinil) in pulmonary arterial hypertension (PAH). . Pulm. Cir. 12::e12119
    [Crossref] [Google Scholar]
  36. 36.
    El-Sherbiny IM, McGill S, Smyth HD. 2010.. Swellable microparticles as carriers for sustained pulmonary drug delivery. . J. Pharm. Sci. 99::234356
    [Crossref] [Google Scholar]
  37. 37.
    El-Sherbiny IM, Smyth HDC. 2010.. Poly(ethylene glycol)–carboxymethyl chitosan-based pH-responsive hydrogels: photo-induced synthesis, characterization, swelling, and in vitro evaluation as potential drug carriers. . Carbohydr. Res. 345::200412
    [Crossref] [Google Scholar]
  38. 38.
    El-Sherbiny IM, Smyth HDC. 2012.. Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. . Mol. Pharm. 9::26980
    [Crossref] [Google Scholar]
  39. 39.
    Tian G, Longest PW, Li X, Hindle M. 2013.. Targeting aerosol deposition to and within the lung airways using excipient enhanced growth. . J. Aerosol Med. Pulm. Drug Deliv. 26::24865
    [Crossref] [Google Scholar]
  40. 40.
    Longest PW, Hindle M. 2011.. Numerical model to characterize the size increase of combination drug and hygroscopic excipient nanoparticle aerosols. . Aerosol Sci. Technol. 45::88499
    [Crossref] [Google Scholar]
  41. 41.
    Bass K, Farkas D, Hassan A, Bonasera S, Hindle M, Longest PW. 2021.. High-efficiency dry powder aerosol delivery to children: review and application of new technologies. . J. Aerosol Sci. 153::105692
    [Crossref] [Google Scholar]
  42. 42.
    Longest W, Hassan A, Farkas D, Hindle M. 2022.. Computational fluid dynamics (CFD) guided spray drying recommendations for improved aerosol performance of a small-particle antibiotic formulation. . Pharm. Res. 39::295316
    [Crossref] [Google Scholar]
  43. 43.
    Anderson CF, Grimmett ME, Domalewski CJ, Cui H. 2020.. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. . Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12::e1586
    [Crossref] [Google Scholar]
  44. 44.
    Kaczmarek JC, Kauffman KJ, Fenton OS, Sadtler K, Patel AK, et al. 2018.. Optimization of a degradable polymer-lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells. . Nano Lett. 18::644954
    [Crossref] [Google Scholar]
  45. 45.
    Rotolo L, Vanover D, Bruno NC, Peck HE, Zurla C, et al. 2023.. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. . Nat. Mater. 22::36979
    [Crossref] [Google Scholar]
  46. 46.
    Suberi A, Grun MK, Mao T, Israelow B, Reschke M, et al. 2022.. Inhalable polymer nanoparticles for versatile mRNA delivery and mucosal vaccination. . bioRxiv 2022.03.22.485401. https://doi.org/10.1101/2022.03.22.485401
  47. 47.
    Lokugamage MP, Vanover D, Beyersdorf J, Hatit MZC, Rotolo L, et al. 2021.. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. . Nat. Biomed. Eng. 5::105968
    [Crossref] [Google Scholar]
  48. 48.
    Kim J, Jozic A, Lin Y, Eygeris Y, Bloom E, et al. 2022.. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. . ACS Nano 16::14792806
    [Crossref] [Google Scholar]
  49. 49.
    Popowski KD, Moatti A, Scull G, Silkstone D, Lutz H, et al. 2022.. Inhalable dry powder mRNA vaccines based on extracellular vesicles. . Matter 5::296074
    [Crossref] [Google Scholar]
  50. 50.
    Ferguson LT, Ma X, Myerson JW, Wu J, Glassman PM, et al. 2023.. Mechanisms by which liposomes improve inhaled drug delivery for alveolar diseases. . Adv. NanoBiomed. Res. 3::2200106
    [Crossref] [Google Scholar]
  51. 51.
    Garbuzenko O, Kbah N, Kuzmov A, Pogrebnyak N, Pozharov V, Minko T. 2019.. Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers. . J. Control. Release 296::22531
    [Crossref] [Google Scholar]
  52. 52.
    Muralidharan P, Malapit M, Mallory E, Hayes D, Mansour HM. 2015.. Inhalable nanoparticulate powders for respiratory delivery. . Nanomed. Nanotechnol. Biol. Med. 11::118999
    [Crossref] [Google Scholar]
  53. 53.
    Shirley M. 2019.. Amikacin liposome inhalation suspension: a review in Mycobacterium avium complex lung disease. . Drugs 79::55562
    [Crossref] [Google Scholar]
  54. 54.
    Bassetti M, Vena A, Russo A, Peghin M. 2020.. Inhaled liposomal antimicrobial delivery in lung infections. . Drugs 80::130918
    [Crossref] [Google Scholar]
  55. 55.
    Chang RYK, Chan H-K. 2021.. Lipid nanoparticles for the inhalation of mRNA. . Nat. Biomed. Eng. 5::94950
    [Crossref] [Google Scholar]
  56. 56.
    Bennett WD, Brown JS, Zeman KL, Hu S-C, Scheuch G, et al. 2002.. Targeting delivery of aerosols to different lung regions. . J. Aerosol Med. 15::17988
    [Crossref] [Google Scholar]
  57. 57.
    Gleich GJ. 1990.. The eosinophil and bronchial asthma: current understanding. . J. Allergy Clin. Immunol. 85::42236
    [Crossref] [Google Scholar]
  58. 58.
    Kleinstreuer C, Zhang Z. 2003.. Targeted drug aerosol deposition analysis for a four-generation lung airway model with hemispherical tumors. . J. Biomech. Eng. 125::197206
    [Crossref] [Google Scholar]
  59. 59.
    Price DN, Stromberg LR, Kunda NK, Muttil P. 2017.. In vivo pulmonary delivery and magnetic-targeting of dry powder nano-in-microparticles. . Mol. Pharm. 14::474150
    [Crossref] [Google Scholar]
  60. 60.
    Peterman EL, Kolewe EL, Fromen CA. 2020.. Evaluating regional pulmonary deposition using patient-specific 3D printed lung models. . J. Vis. Exp. 165::e61706
    [Google Scholar]
  61. 61.
    Dames P, Gleich B, Flemmer A, Hajek K, Seidl N, et al. 2007.. Targeted delivery of magnetic aerosol droplets to the lung. . Nat. Nanotechnol. 2::49599
    [Crossref] [Google Scholar]
  62. 62.
    Manshadi MKD, Saadat M, Mohammadi M, Kamali R, Shamsi M, et al. 2019.. Magnetic aerosol drug targeting in lung cancer therapy using permanent magnet. . Drug Deliv. 26::12028
    [Crossref] [Google Scholar]
  63. 63.
    Zimmermann CJ, Schraeder T, Reynolds B, DeBoer EM, Neeves KB, Marr DWM. 2022.. Delivery and actuation of aerosolized microbots. . Nano Select 3::118591
    [Crossref] [Google Scholar]
  64. 64.
    Feng Y, Zhao J, Chen X, Lin J. 2017.. An in silico subject-variability study of upper airway morphological influence on the airflow regime in a tracheobronchial tree. . Bioengineering 4::90103
    [Crossref] [Google Scholar]
  65. 65.
    Celikoglu F, Celikoglu SI, Goldberg EP. 2008.. Bronchoscopic intratumoral chemotherapy of lung cancer. . Lung Cancer 61::112
    [Crossref] [Google Scholar]
  66. 66.
    Carmack M, Hwang T, Bourgeois FT. 2020.. Pediatric drug policies supporting safe and effective use of therapeutics in children: a systematic analysis. . Health Aff. 39::1799805
    [Crossref] [Google Scholar]
  67. 67.
    Kolewe EL, Padhye S, Woodward IR, Wee J, Rahman T, et al. 2022.. Spatial aerosol deposition correlated to anatomic feature development in 6-year-old upper airway computational models. . Comput. Biol. Med. 149::106058
    [Crossref] [Google Scholar]
  68. 68.
    Golshahi L, Finlay W. 2012.. An idealized child throat that mimics average pediatric oropharyngeal deposition. . Aerosol Sci. Technol. 46::iiv
    [Crossref] [Google Scholar]
  69. 69.
    Tavernini S, Church TK, Lewis DA, Noga M, Martin AR, Finlay WH. 2018.. Deposition of micrometer-sized aerosol particles in neonatal nasal airway replicas. . Aerosol Sci. Technol. 52::40719
    [Crossref] [Google Scholar]
  70. 70.
    Oakes JM, Amirav I, Sznitman J. 2023.. Pediatric inhalation therapy and the aerodynamic rationale for age-based aerosol sizes. . Expert Opin. Drug Deliv. 20::103740
    [Crossref] [Google Scholar]
  71. 71.
    DiBlasi RM. 2015.. Clinical controversies in aerosol therapy for infants and children. . Respir. Care 60::894916
    [Crossref] [Google Scholar]
  72. 72.
    Ari A. 2021.. A path to successful patient outcomes through aerosol drug delivery to children: a narrative review. . Ann. Transl. Med. 9::593
    [Crossref] [Google Scholar]
  73. 73.
    Golshahi L, Noga ML, Finlay WH. 2012.. Deposition of inhaled micrometer-sized particles in oropharyngeal airway replicas of children at constant flow rates. . J. Aerosol Sci. 49::2131
    [Crossref] [Google Scholar]
  74. 74.
    Stahlhofen W, Rudolf G, James A. 1989.. Intercomparison of experimental regional aerosol deposition data. . J. Aerosol Med. 2::285308
    [Crossref] [Google Scholar]
  75. 75.
    Poorbahrami K, Vignon-Clementel IE, Shadden SC, Oakes JM. 2021.. A whole lung in silico model to estimate age dependent particle dosimetry. . Sci. Reports 11::11180
    [Google Scholar]
  76. 76.
    Fleming S, Thompson M, Stevens R, Heneghan C, Plüddemann A, et al. 2011.. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. . Lancet 377::101118
    [Crossref] [Google Scholar]
  77. 77.
    Chourpiliadis C, Bhardwaj A. 2023.. Physiology, respiratory rate. . In StatPearls. Treasure Island, FL:: StatPearls Publishing
    [Google Scholar]
  78. 78.
    Farkas D, Thomas ML, Hassan A, Bonasera S, Hindle M, Longest W. 2023.. Near elimination of in vitro predicted extrathoracic aerosol deposition in children using a spray-dried antibiotic formulation and pediatric air-jet DPI. . Pharm. Res. 40::1193207
    [Crossref] [Google Scholar]
  79. 79.
    Boc S, Momin MAM, Farkas DR, Longest W, Hindle M. 2021.. Development and characterization of excipient enhanced growth (EEG) surfactant powder formulations for treating neonatal respiratory distress syndrome. . AAPS PharmSciTech. 22::136
    [Crossref] [Google Scholar]
  80. 80.
    Kamga Gninzeko FJ, Valentine MS, Tho CK, Chindal SR, Boc S, et al. 2020.. Excipient enhanced growth aerosol surfactant replacement therapy in an in vivo rat lung injury model. . J. Aerosol Med. Pulm. Drug Deliv. 33::31422
    [Crossref] [Google Scholar]
  81. 81.
    Bianco F, Salomone F, Milesi I, Murgia X, Bonelli S, et al. 2021.. Aerosol drug delivery to spontaneously-breathing preterm neonates: lessons learned. . Respir. Res. 22::71
    [Crossref] [Google Scholar]
  82. 82.
    Longest PW, Bass K, Dutta R, Rani V, Thomas ML, et al. 2019.. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. . Expert Opin. Drug Deliv. 16::726
    [Crossref] [Google Scholar]
  83. 83.
    Data Bridge Mark. Res. 2022.. Global biologics market – industry trends and forecast to 2029. Rep. , Data Bridge Market Research Inc., Vancouver, BC, Canada:
    [Google Scholar]
  84. 84.
    Chan J, Cheng-Lai A. 2017.. Inhaled insulin. . Cardiol. Rev. 25::14046
    [Crossref] [Google Scholar]
  85. 85.
    Vanderstocken G, Woolf NL, Trigiante G, Jackson J, McGoldrick R. 2022.. Harnessing the potential of enzymes as inhaled therapeutics in respiratory tract diseases: a review of the literature. . Biomedicines 10::1440
    [Crossref] [Google Scholar]
  86. 86.
    Burgess G, Boyce M, Jones M, Larsson L, Main MJ, et al. 2018.. Randomized study of the safety and pharmacodynamics of inhaled interleukin-13 monoclonal antibody fragment VR942. . EBioMedicine 35::6775
    [Crossref] [Google Scholar]
  87. 87.
    Gauvreau GM, Hohlfeld JM, FitzGerald JM, Boulet LP, Cockcroft DW, et al. 2023.. Inhaled anti-TSLP antibody fragment, ecleralimab, blocks responses to allergen in mild asthma. . Eur. Respir. J. 61::2201193
    [Crossref] [Google Scholar]
  88. 88.
    Matschiner G, Fitzgerald MF, Moebius U, Hohlbaum AM, Gille H, et al. 2023.. Elarekibep (PRS-060/AZD1402), a new class of inhaled Anticalin medicine targeting IL-4Ra for type 2 endotype asthma. . J. Allergy Clin. Immunol. 151::96675
    [Crossref] [Google Scholar]
  89. 89.
    Moss RB, Milla C, Colombo J, Accurso F, Zeitlin PL, et al. 2007.. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. . Human Gene Therapy 18::72632
    [Crossref] [Google Scholar]
  90. 90.
    Duncan GA, Kim N, Colon-Cortes Y, Rodriguez J, Mazur M, et al. 2018.. An adeno-associated viral vector capable of penetrating the mucus barrier to inhaled gene therapy. . Mol. Therapy Methods Clin. Dev. 9::296304
    [Crossref] [Google Scholar]
  91. 91.
    Kwak G, Gololobova O, Sharma N, Caine C, Mazur M, et al. 2023.. Extracellular vesicles enhance pulmonary transduction of stably associated adeno-associated virus following intratracheal administration. . J. Extracell. Vesicles 12::12324
    [Crossref] [Google Scholar]
  92. 92.
    Tian L-C, Zhu Q-Q, Li J, Liu A-J, Huang G-R. 2019.. Aerosol inhalation-mediated delivery of an adeno-associated virus 5-expressed antagonistic interleukin-4 mutant ameliorates experimental murine asthma. . Arch. Med. Res. 50::38492
    [Crossref] [Google Scholar]
  93. 93.
    Robinson E, MacDonald KD, Slaughter K, McKinney M, Patel S, et al. 2018.. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. . Mol. Ther. 26::203446
    [Crossref] [Google Scholar]
  94. 94.
    Chow MY, Qiu Y, Lam JK. 2020.. Inhaled RNA therapy: from promise to reality. . Trends Pharmacol. Sci. 41::71529
    [Crossref] [Google Scholar]
  95. 95.
    Ghanem M, Justet A, Archer G, Jaillet M, Sharma S, et al. 2023.. Inhaled FGF19 therapy in pulmonary fibrosis. . Am. J. Respir. Crit. Care Med. 207::A4708 ( Abstr.)
    [Google Scholar]
  96. 96.
    Dormenval C, Lokras A, Cano-Garcia G, Wadhwa A, Thanki K, et al. 2019.. Identification of factors of importance for spray drying of small interfering RNA-loaded lipidoid-polymer hybrid nanoparticles for inhalation. . Pharm. Res. 36::142
    [Crossref] [Google Scholar]
  97. 97.
    Patel AK, Kaczmarek JC, Bose S, Kauffman KJ, Mir F, et al. 2019.. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. . Adv. Mater. 31::1805116
    [Crossref] [Google Scholar]
  98. 98.
    Gomes dos Reis L, Svolos M, Moir LM, Jaber R, Windhab N, et al. 2019.. Delivery of pDNA polyplexes to bronchial and alveolar epithelial cells using a mesh nebulizer. . Pharm. Res. 36::14
    [Crossref] [Google Scholar]
  99. 99.
    Alton EWFW, Armstrong DK, Ashby D, Bayfield KJ, Bilton D, et al. 2016.. A randomised, double-blind, placebo-controlled trial of repeated nebulisation of non-viral cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy in patients with cystic fibrosis. . Effic. Mech. Eval. 3:(5). https://doi.org/10.3310/eme03050
    [Google Scholar]
  100. 100.
    Zhang H, Bahamondez-Canas TF, Zhang Y, Leal J, Smyth HDC. 2018.. PEGylated chitosan for nonviral aerosol and mucosal delivery of the CRISPR/Cas9 system in vitro. . Mol. Pharm. 15::481426
    [Crossref] [Google Scholar]
  101. 101.
    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, et al. 2021.. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. . CA Cancer J. Clin. 71::20949
    [Crossref] [Google Scholar]
  102. 102.
    de Groot PM, Wu CC, Carter BW, Munden RF. 2018.. The epidemiology of lung cancer. . Transl. Lung Cancer Res. 7::220
    [Crossref] [Google Scholar]
  103. 103.
    Sardeli C, Zarogoulidis P, Kosmidis C, Amaniti A, Katsaounis A, et al. 2019.. Inhaled chemotherapy adverse effects: mechanisms and protection methods. . Lung Cancer Manag. 8:(4). https://doi.org/10.2217/lmt-2019-0007
    [Crossref] [Google Scholar]
  104. 104.
    Ahmad J, Akhter S, Rizwanullah M, Amin S, Rahman M, et al. 2015.. Nanotechnology-based inhalation treatments for lung cancer: state of the art. . Nanotechnol. Sci. Appl. 8::5566
    [Google Scholar]
  105. 105.
    Otterson GA, Villalona-Calero MA, Hicks W, Pan X, Ellerton JA, et al. 2010.. Phase I/II study of inhaled doxorubicin combined with platinum-based therapy for advanced non–small cell lung cancer. . Clin. Cancer Res. 16::246673
    [Crossref] [Google Scholar]
  106. 106.
    Wittgen BP, Kunst PW, Van Der Born K, Van Wijk AW, Perkins W, et al. 2007.. Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. . Clin. Cancer Res. 13::241421
    [Crossref] [Google Scholar]
  107. 107.
    Chou AJ, Gupta R, Bell MD, Riewe KO, Meyers PA, Gorlick R. 2013.. Inhaled lipid cisplatin (ILC) in the treatment of patients with relapsed/progressive osteosarcoma metastatic to the lung. . Pediatr. Blood Cancer 60::58086
    [Crossref] [Google Scholar]
  108. 108.
    Verschraegen CF, Gilbert BE, Loyer E, Huaringa A, Walsh G, et al. 2004.. Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20(S)-camptothecin in patients with advanced pulmonary malignancies. . Clin. Cancer Res. 10::231926
    [Crossref] [Google Scholar]
  109. 109.
    Levet V, Rosière R, Merlos R, Fusaro L, Berger G, et al. 2016.. Development of controlled-release cisplatin dry powders for inhalation against lung cancers. . Int. J. Pharm. 515::20920
    [Crossref] [Google Scholar]
  110. 110.
    Davenne T, Percier P, Larbanoix L, Moser M, Leo O, et al. 2023.. Inhaled dry powder cisplatin increases antitumour response to anti-PD1 in a murine lung cancer model. . J. Control. Release 353::31726
    [Crossref] [Google Scholar]
  111. 111.
    Patel V, Bardoliwala D, Lalani R, Patil S, Ghosh S, et al. 2021.. Development of a dry powder for inhalation of nanoparticles codelivering cisplatin and ABCC3 siRNA in lung cancer. . Therapeutic Deliv. 12::65170
    [Crossref] [Google Scholar]
  112. 112.
    Xu C, Wang Y, Guo Z, Chen J, Lin L, et al. 2019.. Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. . J. Control. Release 295::15363
    [Crossref] [Google Scholar]
  113. 113.
    Guilleminault L, Azzopardi N, Arnoult C, Sobilo J, Hervé V, et al. 2014.. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. . J. Control. Release 196::34454
    [Crossref] [Google Scholar]
  114. 114.
    Hervé V, Rabbe N, Guilleminault L, Paul F, Schlick L, et al. 2014.. VEGF neutralizing aerosol therapy in primary pulmonary adenocarcinoma with K-ras activating-mutations. . MAbs 6:(6):163848
    [Crossref] [Google Scholar]
  115. 115.
    Zhang T, Chen Y, Ge Y, Hu Y, Li M, Jin Y. 2018.. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. . Acta Pharm. Sin. B 8::44048
    [Crossref] [Google Scholar]
  116. 116.
    Jin Q, Zhu W, Zhu J, Zhu J, Shen J, et al. 2021.. Nanoparticle-mediated delivery of inhaled immunotherapeutics for treating lung metastasis. . Adv. Mater. 33::2007557
    [Crossref] [Google Scholar]
  117. 117.
    Liu Y, Crowe WN, Wang L, Lu Y, Petty WJ, et al. 2019.. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. . Nat. Commun. 10::5108
    [Crossref] [Google Scholar]
  118. 118.
    Merimsky O, Gez E, Weitzen R, Nehushtan H, Rubinov R, et al. 2004.. Targeting pulmonary metastases of renal cell carcinoma by inhalation of interleukin-2. . Ann. Oncol. 15::61012
    [Crossref] [Google Scholar]
  119. 119.
    Li AV, Moon JJ, Abraham W, Suh H, Elkhader J, et al. 2013.. Generation of effector memory T cell–based mucosal and systemic immunity with pulmonary nanoparticle vaccination. . Sci. Transl. Med. 5::204ra130
    [Google Scholar]
  120. 120.
    Phua KKL, Staats HF, Leong KW, Nair SK. 2014.. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. . Sci. Reports 4::5128
    [Google Scholar]
  121. 121.
    Li C, Wang H, Jiang Y, Fu W, Liu X, et al. 2022.. Advances in lung cancer screening and early detection. . Cancer Biol. Med. 19::591608
    [Crossref] [Google Scholar]
  122. 122.
    Tang J, Zeng C, Cox TM, Li C, Son YM, et al. 2022.. Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination. . Sci. Immunol. 7::eadd4853
    [Crossref] [Google Scholar]
  123. 123.
    Langel SN, Johnson S, Martinez CI, Tedjakusuma SN, Peinovich N, et al. 2022.. Adenovirus type 5 SARS-CoV-2 vaccines delivered orally or intranasally reduced disease severity and transmission in a hamster model. . Sci. Transl. Med. 14::eabn6868
    [Crossref] [Google Scholar]
  124. 124.
    Lavelle EC, Ward RW. 2022.. Mucosal vaccines—fortifying the frontiers. . Nat. Rev. Immunol. 22::23650
    [Crossref] [Google Scholar]
  125. 125.
    Heida R, Hinrichs WL, Frijlink HW. 2021.. Inhaled vaccine delivery in the combat against respiratory viruses: a 2021 overview of recent developments and implications for COVID-19. . Expert Rev. Vaccines 21::95774
    [Crossref] [Google Scholar]
  126. 126.
    Topol EJ, Iwasaki A. 2022.. Operation nasal vaccine; lightning speed to counter COVID-19. . Sci. Immunol. 7::eadd9947
    [Crossref] [Google Scholar]
  127. 127.
    KA O. 2022.. How nasal-spray vaccines could change the pandemic. . Nature 609::24042
    [Crossref] [Google Scholar]
  128. 128.
    Li J-X, Wu S-P, Guo X-L, Tang R, Huang B-Y, et al. 2022.. Safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised Ad5-nCoV after two-dose priming with an inactivated SARS-CoV-2 vaccine in Chinese adults: a randomised, open-label, single-centre trial. . Lancet Respir. Med. 10::73948
    [Crossref] [Google Scholar]
  129. 129.
    Mao T, Israelow B, Peña-Hernández MA, Suberi A, Zhou L, et al. 2022.. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. . Science 378::eabo2523
    [Crossref] [Google Scholar]
  130. 130.
    Hartwell BL, Melo MB, Xiao P, Lemnios AA, Li N, et al. 2022.. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. . Sci. Transl. Med. 14::eabn1413
    [Crossref] [Google Scholar]
  131. 131.
    Wang Z, Popowski KD, Zhu D, de Juan Abad BL, Wang X, et al. 2022.. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. . Nat. Biomed. Eng. 6::791805
    [Crossref] [Google Scholar]
  132. 132.
    Zhuo S-H, Wu J-J, Zhao L, Li W-H, Zhao Y-F, Li Y-M. 2022.. A chitosan-mediated inhalable nanovaccine against SARS-CoV-2. . Nano Res. 15::4191200
    [Crossref] [Google Scholar]
  133. 133.
    Xu F, Wu S, Yi L, Peng S, Wang F, et al. 2022.. Safety, mucosal and systemic immunopotency of an aerosolized adenovirus-vectored vaccine against SARS-CoV-2 in rhesus macaques. . Emerg. Microbes Infect. 11::43942
    [Crossref] [Google Scholar]
  134. 134.
    Vaca GB, Meyer M, Cadete A, Hsiao CJ, Golding A, et al. 2023.. Intranasal mRNA-LNP vaccination protects hamsters from SARS-CoV-2 infection. . bioRxiv 2023.01.11.523616. https://doi.org/10.1101/2023.01.11.523616
  135. 135.
    Jeyanathan M, Fritz DK, Afkhami S, Aguirre E, Howie KJ, et al. 2022.. Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans. . JCI Insight 7::e155655
    [Crossref] [Google Scholar]
  136. 136.
    Carrigy NB, Larsen SE, Reese V, Pecor T, Harrison M, et al. 2019.. Prophylaxis of Mycobacterium tuberculosis H37Rv infection in a preclinical mouse model via inhalation of nebulized bacteriophage D29. . Antimicrob. Agents Chemother. 63::e00871-19
    [Crossref] [Google Scholar]
  137. 137.
    Gomez M, McCollum J, Wang H, Ordoubadi M, Jar C, et al. 2021.. Development of a formulation platform for a spray-dried, inhalable tuberculosis vaccine candidate. . Int. J. Pharm. 593::120121
    [Crossref] [Google Scholar]
  138. 138.
    Weir GM, MacDonald LD, Rajagopalan R, Sivko GS, Valderas MW, et al. 2019.. Single dose of DPX-rPA, an enhanced-delivery anthrax vaccine formulation, protects against a lethal Bacillus anthracis spore inhalation challenge. . NPJ Vaccines 4::6
    [Crossref] [Google Scholar]
  139. 139.
    Rajapaksa AE, Ho JJ, Qi A, Bischof R, Nguyen T-H, et al. 2014.. Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization. . Respir. Res. 15::60
    [Crossref] [Google Scholar]
  140. 140.
    Tomar J, Tonnis WF, Patil HP, Hagedoorn P, Vanbever R, et al. 2019.. Pulmonary immunization: Deposition site is of minor relevance for influenza vaccination but deep lung deposition is crucial for hepatitis B vaccination. . Acta Pharm. Sin. B 9::123140
    [Crossref] [Google Scholar]
  141. 141.
    Stillman Z, Decker GE, Dworzak MR, Bloch ED, Fromen CA. 2023.. Aluminum-based metal–organic framework nanoparticles as pulmonary vaccine adjuvants. . J. Nanobiotechnol. 21::39
    [Crossref] [Google Scholar]
  142. 142.
    AboulFotouh K, Xu H, Moon C, Williams RO, Cui Z. 2022.. Development of (inhalable) dry powder formulations of AS01B-containing vaccines using thin-film freeze-drying. . Int. J. Pharm. 622::121825
    [Crossref] [Google Scholar]
  143. 143.
    Roshon M, Lemos-Filho L, Cherevka H, Goldberg L, Salottolo K, Bar-Or D. 2022.. A randomized controlled trial to evaluate the safety and efficacy of a novel inhaled biologic therapeutic in adults with respiratory distress secondary to COVID-19 infection. . Infect. Dis. Ther. 11::595605
    [Crossref] [Google Scholar]
  144. 144.
    Meng Q-F, Tai W, Tian M, Zhuang X, Pan Y, et al. 2023.. Inhalation delivery of dexamethasone with iSEND nanoparticles attenuates the COVID-19 cytokine storm in mice and nonhuman primates. . Sci. Adv. 9::eadg3277
    [Crossref] [Google Scholar]
  145. 145.
    Li Z, Wang Z, Dinh P-UC, Zhu D, Popowski KD, et al. 2021.. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. . Nat. Nanotechnol. 16::94251
    [Crossref] [Google Scholar]
  146. 146.
    Shukla SP, Cho KB, Rustagi V, Gao X, Fu X, et al. 2021.. “Molecular masks” for ACE2 to effectively and safely block SARS-CoV-2 virus entry. . Int. J. Mol. Sci. 22::8963
    [Crossref] [Google Scholar]
  147. 147.
    Rao L, Xia S, Xu W, Tian R, Yu G, et al. 2020.. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. . PNAS 117::2714147
    [Crossref] [Google Scholar]
  148. 148.
    Wang Z, Xiang L, Lin F, Cai Z, Ruan H, et al. 2022.. Inhaled ACE2-engineered microfluidic microsphere for intratracheal neutralization of COVID-19 and calming of the cytokine storm. . Matter 5::33662
    [Crossref] [Google Scholar]
  149. 149.
    Zenilman JM, Fuchs EJ, Hendrix CW, Radebaugh C, Jurao R, et al. 2015.. Phase 1 clinical trials of DAS181, an inhaled sialidase, in healthy adults. . Antiviral Res. 123::11419
    [Crossref] [Google Scholar]
  150. 150.
    Liao Q, Yuan S, Cao J, Tang K, Qiu Y, et al. 2021.. Inhaled dry powder formulation of tamibarotene, a broad-spectrum antiviral against respiratory viruses including SARS-CoV-2 and influenza virus. . Adv. Ther. 4::2100059
    [Crossref] [Google Scholar]
  151. 151.
    Rothen-Rutishauser B, Gibb M, He R, Petri-Fink A, Sayes CM. 2023.. Human lung cell models to study aerosol delivery—considerations for model design and development. . Eur. J. Pharm. Sci. 180::106337
    [Crossref] [Google Scholar]
  152. 152.
    Graf J, Trautmann-Rodriguez M, Sabnis S, Kloxin AM, Fromen CA. 2023.. On the path to predicting immune responses in the lung: modeling the pulmonary innate immune system at the air-liquid interface (ALI). . Eur. J. Pharm. Sci. 191::106596
    [Crossref] [Google Scholar]
  153. 153.
    Ehrmann S, Schmid O, Darquenne C, Rothen-Rutishauser B, Sznitman J, et al. 2020.. Innovative preclinical models for pulmonary drug delivery research. . Expert Opin. Drug Deliv. 17::46378
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110122-010848
Loading
/content/journals/10.1146/annurev-bioeng-110122-010848
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error