1932

Abstract

Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110122-124359
2024-07-03
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-110122-124359.html?itemId=/content/journals/10.1146/annurev-bioeng-110122-124359&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pollard AJ, Bijker EM. 2021.. A guide to vaccinology: from basic principles to new developments. . Nat. Rev. Immunol. 21:(2):83100
    [Crossref] [Google Scholar]
  2. 2.
    Fries CN, Curvino EJ, Chen J-L, Permar SR, Fouda GG, Collier JH. 2021.. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. . Nat. Nanotechnol. 16:(4):114
    [Crossref] [Google Scholar]
  3. 3.
    Shields CW IV, Wang LL-W, Evans MA, Mitragotri S. 2020.. Materials for immunotherapy. . Adv. Mater. 32:(13):1901633
    [Crossref] [Google Scholar]
  4. 4.
    Wang Z-B, Xu J. 2020.. Better adjuvants for better vaccines: progress in adjuvant delivery systems, modifications, and adjuvant-antigen codelivery. . Vaccines 8:(1):128
    [Crossref] [Google Scholar]
  5. 5.
    Liu J, Liu Z, Pang Y, Zhou H. 2022.. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. . J. Nanobiotechnol. 20::127
    [Crossref] [Google Scholar]
  6. 6.
    Luo M, Samandi LZ, Wang Z, Chen ZJ, Gao J. 2017.. Synthetic nanovaccines for immunotherapy. . J. Control. Release 263::20010
    [Crossref] [Google Scholar]
  7. 7.
    Makadia HK, Siegel SJ. 2011.. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. . Polymers 3:(3):137797
    [Crossref] [Google Scholar]
  8. 8.
    Hines DJ, Kaplan DL. 2013.. Poly (lactic-co-glycolic acid) controlled release systems: experimental and modeling insights. . Crit. Rev. Ther. Drug Carrier Syst. 30:(3):25776
    [Crossref] [Google Scholar]
  9. 9.
    Fang X, Lan H, Jin K, Gong D, Qian J. 2022.. Nanovaccines for cancer prevention and immunotherapy: an update review. . Cancers 14:(16):3842
    [Crossref] [Google Scholar]
  10. 10.
    Maina TW, Grego EA, Boggiatto PM, Sacco RE, Narasimhan B, McGill JL. 2020.. Applications of nanovaccines for disease prevention in cattle. . Front. Bioeng. Biotechnol. 8::608050
    [Crossref] [Google Scholar]
  11. 11.
    Xu F, Yuan Y, Wang Y, Yin Q. 2023.. Emerging peptide-based nanovaccines: from design synthesis to defense against cancer and infection. . Biomed. Pharmacother. 158::114117
    [Crossref] [Google Scholar]
  12. 12.
    Dinda AK, Bhat M, Srivastava S, Kottarath SK, Prashant CK. 2016.. Novel nanocarrier for oral hepatitis B vaccine. . Vaccine 34:(27):307681
    [Crossref] [Google Scholar]
  13. 13.
    Renu S, Renukaradhya GJ. 2020.. Chitosan nanoparticle based mucosal vaccines delivered against infectious diseases of poultry and pigs. . Front. Bioeng. Biotechnol. 8::558349
    [Crossref] [Google Scholar]
  14. 14.
    Wilson B, Geetha KM. 2022.. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. . J. Drug Deliv. Sci. Technol. 74::103553
    [Crossref] [Google Scholar]
  15. 15.
    Bo Y, Wang H. 2022.. Materials-based vaccines for infectious diseases. . WIREs Nanomed. Nanobiotechnol. 14:(5):e1824
    [Crossref] [Google Scholar]
  16. 16.
    Wholey W-Y, Yoda S-T, Cheng W. 2021.. Site-specific and stable conjugation of the SARS-CoV-2 receptor-binding domain to liposomes in the absence of any other adjuvants elicits potent neutralizing antibodies in BALB/c mice. . Bioconjug. Chem. 32:(12):2497506
    [Crossref] [Google Scholar]
  17. 17.
    Yue P, He L, Qiu S, Li Y, Liao Y, et al. 2014.. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. . Mol. Cancer 13::191
    [Crossref] [Google Scholar]
  18. 18.
    Tenchov R, Bird R, Curtze AE, Zhou Q. 2021.. Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. . ACS Nano 15:(11):169827015
    [Crossref] [Google Scholar]
  19. 19.
    Nat. Rev. Mater. 2021.. Lasting impact of lipid nanoparticles. . Nat. Rev. Mater. 6:(12):1071
    [Crossref] [Google Scholar]
  20. 20.
    Wu Y, Wen H, Bernstein ZJ, Hainline KM, Blakney TS, et al. 2022.. Multiepitope supramolecular peptide nanofibers eliciting coordinated humoral and cellular antitumor immune responses. . Sci. Adv. 8:(29):eabm7833
    [Crossref] [Google Scholar]
  21. 21.
    Zeigler DF, Gage E, Roque R, Clegg CH. 2019.. Epitope targeting with self-assembled peptide vaccines. . NPJ Vaccines 4::30
    [Crossref] [Google Scholar]
  22. 22.
    Fries CN, Chen J-L, Dennis ML, Votaw NL, Eudailey J, et al. 2021.. HIV envelope antigen valency on peptide nanofibers modulates antibody magnitude and binding breadth. . Sci. Rep. 11:(1):14494
    [Crossref] [Google Scholar]
  23. 23.
    Freire Haddad H, Roe EF, Collier JH. 2023.. Expanding opportunities to engineer mucosal vaccination with biomaterials. . Biomater. Sci. 11:(5):162547
    [Crossref] [Google Scholar]
  24. 24.
    Pogostin BH, Yu MH, Azares AR, Euliano EM, Lai CSE, et al. 2022.. Multidomain peptide hydrogel adjuvants elicit strong bias towards humoral immunity. . Biomater. Sci. 10:(21):621729
    [Crossref] [Google Scholar]
  25. 25.
    Morris C, Glennie SJ, Lam HS, Baum HE, Kandage D, et al. 2019.. A modular vaccine platform combining self-assembled peptide cages and immunogenic peptides. . Adv. Funct. Mater. 29:(8):1807357
    [Crossref] [Google Scholar]
  26. 26.
    Shen H, Fallas JA, Lynch E, Sheffler W, Parry B, et al. 2018.. De novo design of self-assembling helical protein filaments. . Science 362:(6415):7059
    [Crossref] [Google Scholar]
  27. 27.
    Yang G, Chen S, Zhang J. 2019.. Bioinspired and biomimetic nanotherapies for the treatment of infectious diseases. . Front. Pharmacol. 10::751
    [Crossref] [Google Scholar]
  28. 28.
    Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. 2020.. Biomimetic nanotechnology toward personalized vaccines. . Adv. Mater. 32:(13):1901255
    [Crossref] [Google Scholar]
  29. 29.
    Fang RH, Kroll AV, Gao W, Zhang L. 2018.. Cell membrane coating nanotechnology. . Adv. Mater. 30:(23):1706759
    [Crossref] [Google Scholar]
  30. 30.
    Johnson DT, Zhou J, Kroll AV, Fang RH, Yan M, et al. 2022.. Acute myeloid leukemia cell membrane-coated nanoparticles for cancer vaccination immunotherapy. . Leukemia 36:(4):9941005
    [Crossref] [Google Scholar]
  31. 31.
    Chen X, Shi T, Yang C, Chen F, He X, et al. 2022.. Scalable biomimetic SARS-CoV-2 nanovaccines with robust protective immune responses. . Sig. Transduct. Target. Ther. 7::96
    [Crossref] [Google Scholar]
  32. 32.
    Boyoglu-Barnum S, Ellis D, Gillespie RA, Hutchinson GB, Park Y-J, et al. 2021.. Quadrivalent influenza nanoparticle vaccines induce broad protection. . Nature 592:(7855):62328
    [Crossref] [Google Scholar]
  33. 33.
    Sobczak JM, Krenger PS, Storni F, Mohsen MO, Balke I, et al. 2023.. The next generation virus-like particle platform for the treatment of peanut allergy. . Allergy 78:(7):198096
    [Crossref] [Google Scholar]
  34. 34.
    Wang S, Gao J, Wang Z. 2019.. Outer membrane vesicles for vaccination and targeted drug delivery. . WIREs Nanomed. Nanobiotechnol. 11:(2):e1523
    [Crossref] [Google Scholar]
  35. 35.
    Pordanjani PM, Bolhassani A, Milani A, Pouriayevali MH. 2023.. Extracellular vesicles in vaccine development and therapeutic approaches for viral diseases. . Process Biochem. 128::16780
    [Crossref] [Google Scholar]
  36. 36.
    Santos P, Almeida F. 2021.. Exosome-based vaccines: history, current state, and clinical trials. . Front. Immunol. 12::711565
    [Crossref] [Google Scholar]
  37. 37.
    Cheng K, Zhao R, Li Y, Qi Y, Wang Y, et al. 2021.. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. . Nat. Commun. 12::2041
    [Crossref] [Google Scholar]
  38. 38.
    Hess KL, Medintz IL, Jewell CM. 2019.. Designing inorganic nanomaterials for vaccines and immunotherapies. . Nano Today 27::7398
    [Crossref] [Google Scholar]
  39. 39.
    Tapia D, Sanchez-Villamil JI, Torres AG. 2020.. Multicomponent gold nano-glycoconjugate as a highly immunogenic and protective platform against Burkholderia mallei. . NPJ Vaccines 5::82
    [Crossref] [Google Scholar]
  40. 40.
    Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. 2019.. Nanoparticle-based vaccines against respiratory viruses. . Front. Immunol. 10::22
    [Crossref] [Google Scholar]
  41. 41.
    Trabbic KR, Kleski KA, Barchi JJ Jr. 2021.. Stable gold-nanoparticle-based vaccine for the targeted delivery of tumor-associated glycopeptide antigens. . ACS Bio Med Chem Au 1:(1):3143
    [Crossref] [Google Scholar]
  42. 42.
    Gao L, Song Y, Zhong J, Lin X, Zhou S-F, Zhan G. 2022.. Biocompatible 2D Cu-TCPP nanosheets derived from Cu2O nanocubes as multifunctional nanoplatforms for combined anticancer therapy. . ACS Biomater. Sci. Eng. 8:(3):107486
    [Crossref] [Google Scholar]
  43. 43.
    Marzaioli V, Aguilar-Pimentel JA, Weichenmeier I, Luxenhofer G, Wiemann M, et al. 2014.. Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties. . Int. J. Nanomed. 9::281532
    [Google Scholar]
  44. 44.
    Jeong H, Lee C-S, Lee J, Lee J, Hwang HS, et al. 2021.. Hemagglutinin nanoparticulate vaccine with controlled photochemical immunomodulation for pathogenic influenza-specific immunity. . Adv. Sci. 8:(23):2100118
    [Crossref] [Google Scholar]
  45. 45.
    Moyano DF, Goldsmith M, Solfiell DJ, Landesman-Milo D, Miranda OR, et al. 2012.. Nanoparticle hydrophobicity dictates immune response. . J. Am. Chem. Soc. 134:(9):396567
    [Crossref] [Google Scholar]
  46. 46.
    Xu X, Wang X, Liao Y-P, Luo L, Xia T, Nel AE. 2023.. Use of a liver-targeting immune-tolerogenic mRNA lipid nanoparticle platform to treat peanut-induced anaphylaxis by single- and multiple-epitope nucleotide sequence delivery. . ACS Nano 17:(5):494257
    [Crossref] [Google Scholar]
  47. 47.
    Weyant KB, Oloyede A, Pal S, Liao J, Jesus MR-D, et al. 2023.. A modular vaccine platform enabled by decoration of bacterial outer membrane vesicles with biotinylated antigens. . Nat. Commun. 14::464
    [Crossref] [Google Scholar]
  48. 48.
    Wang R, Cao S, Bashir MEH, Hesser LA, Su Y, et al. 2023.. Treatment of peanut allergy and colitis in mice via the intestinal release of butyrate from polymeric micelles. . Nat. Biomed. Eng. 7:(1):3855
    [Crossref] [Google Scholar]
  49. 49.
    Rodrigues MQ, Alves PM, Roldão A. 2021.. Functionalizing ferritin nanoparticles for vaccine development. . Pharmaceutics 13:(10):1621
    [Crossref] [Google Scholar]
  50. 50.
    Lozano D, Larraga V, Vallet-Regí M, Manzano M. 2023.. An overview of the use of nanoparticles in vaccine development. . Nanomaterials 13:(12):1828
    [Crossref] [Google Scholar]
  51. 51.
    Hou X, Zaks T, Langer R, Dong Y. 2021.. Lipid nanoparticles for mRNA delivery. . Nat. Rev. Mater. 6:(12):107894
    [Crossref] [Google Scholar]
  52. 52.
    Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, et al. 2021.. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. . Int. J. Pharmaceut. 601::120586
    [Crossref] [Google Scholar]
  53. 53.
    Ai L, Li Y, Zhou L, Yao W, Zhang H, et al. 2023.. Lyophilized mRNA-lipid nanoparticle vaccines with long-term stability and high antigenicity against SARS-CoV-2. . Cell Discov. 9::9
    [Crossref] [Google Scholar]
  54. 54.
    Wang Z, Popowski KD, Zhu D, López de Juan Abad B, Wang X, et al. 2022.. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. . Nat. Biomed. Eng. 6:(7):791805
    [Crossref] [Google Scholar]
  55. 55.
    Liang Y, Duan L, Lu J, Xia J. 2021.. Engineering exosomes for targeted drug delivery. . Theranostics 11:(7):318395
    [Crossref] [Google Scholar]
  56. 56.
    Saunders KO, Lee E, Parks R, Martinez DR, Li D, et al. 2021.. Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. . Nature 594:(7864):55359
    [Crossref] [Google Scholar]
  57. 57.
    Li D, Martinez DR, Schäfer A, Chen H, Barr M, et al. 2022.. Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine. . Nat. Commun. 13::6309
    [Crossref] [Google Scholar]
  58. 58.
    World Health Organ. 2023.. HIV and AIDS. Fact Sheet , World Health Organ., Geneva:. https://www.who.int/news-room/fact-sheets/detail/hiv-aids
    [Google Scholar]
  59. 59.
    Haynes BF, Wiehe K, Borrow P, Saunders KO, Korber B, et al. 2023.. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. . Nat. Rev. Immunol. 23:(3):14258
    [Crossref] [Google Scholar]
  60. 60.
    Rudra JS, Sun T, Bird KC, Daniels MD, Gasiorowski JZ, et al. 2012.. Modulating adaptive immune responses to peptide self-assemblies. . ACS Nano 6:(2):155764
    [Crossref] [Google Scholar]
  61. 61.
    Rudra JS, Tian YF, Jung JP, Collier JH. 2010.. A self-assembling peptide acting as an immune adjuvant. . PNAS 107:(2):62227
    [Crossref] [Google Scholar]
  62. 62.
    Hudalla GA, Sun T, Gasiorowski JZ, Han H, Tian YF, et al. 2014.. Gradated assembly of multiple proteins into supramolecular nanomaterials. . Nat. Mater. 13:(8):82936
    [Crossref] [Google Scholar]
  63. 63.
    Chen J, Pompano RR, Santiago FW, Maillat L, Sciammas R, et al. 2013.. The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation. . Biomaterials 34:(34):877685
    [Crossref] [Google Scholar]
  64. 64.
    Votaw NL, Collier L, Curvino EJ, Wu Y, Fries CN, et al. 2021.. Randomized peptide assemblies for enhancing immune responses to nanomaterials. . Biomaterials 273::120825
    [Crossref] [Google Scholar]
  65. 65.
    Mora-Solano C, Wen Y, Han H, Chen J, Chong AS, et al. 2017.. Active immunotherapy for TNF-mediated inflammation using self-assembled peptide nanofibers. . Biomaterials 149::111
    [Crossref] [Google Scholar]
  66. 66.
    Hainline KM, Shores LS, Votaw NL, Bernstein ZJ, Kelly SH, et al. 2021.. Modular complement assemblies for mitigating inflammatory conditions. . PNAS 118:(15):e2018627118
    [Crossref] [Google Scholar]
  67. 67.
    Shores LS, Kelly SH, Hainline KM, Suwanpradid J, MacLeod AS, Collier JH. 2020.. Multifactorial design of a supramolecular peptide anti-IL-17 vaccine toward the treatment of psoriasis. . Front. Immunol. 11::1855
    [Crossref] [Google Scholar]
  68. 68.
    Chen J-L, Fries CN, Berendam SJ, Rodgers NS, Roe EF, et al. 2022.. Self-assembling peptide nanofiber HIV vaccine elicits robust vaccine-induced antibody functions and modulates Fc glycosylation. . Sci. Adv. 8:(38):eabq0273
    [Crossref] [Google Scholar]
  69. 69.
    Leggat DJ, Cohen KW, Willis JR, Fulp WJ, deCamp AC, et al. 2022.. Vaccination induces HIV broadly neutralizing antibody precursors in humans. . Science 378:(6623):eadd6502
    [Crossref] [Google Scholar]
  70. 70.
    Cohen KW, De Rosa SC, Fulp WJ, deCamp AC, Fiore-Gartland A, et al. 2023.. A first-in-human germline-targeting HIV nanoparticle vaccine induced broad and publicly targeted helper T cell responses. . Sci. Transl. Med. 15:(697):eadf3309
    [Crossref] [Google Scholar]
  71. 71.
    Xin X, Liu Y, Guo L, Wang H, Lu D, et al. 2023.. Improvement of B cell responses by an HIV-1 amphiphilic polymer nanovaccine. . Nano Lett. 23:(9):409094
    [Crossref] [Google Scholar]
  72. 72.
    Cent. Dis. Control Prev. 2022.. Burden of influenza. Inf., Cent. Dis. Control Prev., Atlanta:. https://www.cdc.gov/flu/about/burden/index.html
    [Google Scholar]
  73. 73.
    Wei C-J, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. 2020.. Next-generation influenza vaccines: opportunities and challenges. . Nat. Rev. Drug Discov. 19:(4):23952
    [Crossref] [Google Scholar]
  74. 74.
    López-Sagaseta J, Malito E, Rappuoli R, Bottomley MJ. 2016.. Self-assembling protein nanoparticles in the design of vaccines. . Comput. Struct. Biotechnol. J. 14::5868
    [Crossref] [Google Scholar]
  75. 75.
    Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, et al. 2021.. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. . J. Nanobiotechnol. 19::59
    [Crossref] [Google Scholar]
  76. 76.
    Chaparian RR, Harding AT, Hamele CE, Riebe K, Karlsson A, et al. 2022.. A virion-based combination vaccine protects against influenza and SARS-CoV-2 disease in mice. . J. Virol. 96:(15):e00689-22
    [Crossref] [Google Scholar]
  77. 77.
    Bailey JR, Barnes E, Cox AL. 2019.. Approaches, progress, and challenges to hepatitis C vaccine development. . Gastroenterology 156:(2):41830
    [Crossref] [Google Scholar]
  78. 78.
    Izmirly AM, Alturki SO, Alturki SO, Connors J, Haddad EK. 2020.. Challenges in dengue vaccines development: pre-existing infections and cross-reactivity. . Front. Immunol. 11::1055
    [Crossref] [Google Scholar]
  79. 79.
    Graham BS. 2011.. Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. . Immunol. Rev. 239:(1):14966
    [Crossref] [Google Scholar]
  80. 80.
    Rostgaard K, Balfour HH, Jarrett R, Erikstrup C, Pedersen O, et al. 2019.. Primary Epstein-Barr virus infection with and without infectious mononucleosis. . PLOS ONE 14:(12):e0226436
    [Crossref] [Google Scholar]
  81. 81.
    Sliepen K, Radić L, Capella-Pujol J, Watanabe Y, Zon I, et al. 2022.. Induction of cross-neutralizing antibodies by a permuted hepatitis C virus glycoprotein nanoparticle vaccine candidate. . Nat. Commun. 13::7271
    [Crossref] [Google Scholar]
  82. 82.
    Wang W, Zhou X, Bian Y, Wang S, Chai Q, et al. 2020.. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. . Nat. Nanotechnol. 15::40616
    [Crossref] [Google Scholar]
  83. 83.
    Rainho-Tomko JN, Pavot V, Kishko M, Swanson K, Edwards D, et al. 2022.. Immunogenicity and protective efficacy of RSV G central conserved domain vaccine with a prefusion nanoparticle. . NPJ Vaccines 7:(1):74
    [Crossref] [Google Scholar]
  84. 84.
    Wei C-J, Bu W, Nguyen LA, Batchelor JD, Kim J, et al. 2022.. A bivalent Epstein-Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice. . Sci. Transl. Med. 14:(643):eabf3685
    [Crossref] [Google Scholar]
  85. 85.
    Warner NL, Frietze KM. 2021.. Development of bacteriophage virus-like particle vaccines displaying conserved epitopes of dengue virus non-structural protein 1. . Vaccines 9:(7):726
    [Crossref] [Google Scholar]
  86. 86.
    Natl. Acad. Sci. Eng. Med. 2017.. Addressing continuous threats: HIV/AIDS, tuberculosis, and malaria. . In Global Health and the Future Role of the United States. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  87. 87.
    George E, Goswami A, Lodhiya T, Padwal P, Iyer S, et al. 2022.. Immunomodulatory effect of mycobacterial outer membrane vesicles coated nanoparticles. . Biomater. Adv. 139::213003
    [Crossref] [Google Scholar]
  88. 88.
    Li M, Zhou H, Yang C, Wu Y, Zhou X, et al. 2020.. Bacterial outer membrane vesicles as a platform for biomedical applications: an update. . J. Control. Release 323::25368
    [Crossref] [Google Scholar]
  89. 89.
    Matarazzo L, Bettencourt PJG. 2023.. mRNA vaccines: a new opportunity for malaria, tuberculosis and HIV. . Front. Immunol. 14::1172691
    [Crossref] [Google Scholar]
  90. 90.
    Larsen SE, Erasmus JH, Reese VA, Pecor T, Archer J, et al. 2023.. An RNA-based vaccine platform for use against Mycobacterium tuberculosis. . Vaccines 11:(1):130
    [Crossref] [Google Scholar]
  91. 91.
    Rais M, Abdelaal H, Reese VA, Ferede D, Larsen SE, et al. 2023.. Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen. . Tuberculosis 138::102302
    [Crossref] [Google Scholar]
  92. 92.
    Hayashi CTH, Cao Y, Clark LC, Tripathi AK, Zavala F, et al. 2022.. mRNA-LNP expressing PfCSP and Pfs25 vaccine candidates targeting infection and transmission of Plasmodium falciparum. . NPJ Vaccines 7::155
    [Crossref] [Google Scholar]
  93. 93.
    Kelly SH, Votaw NL, Cossette BJ, Wu Y, Shetty S, et al. 2022.. A sublingual nanofiber vaccine to prevent urinary tract infections. . Sci. Adv. 8:(47):eabq4120
    [Crossref] [Google Scholar]
  94. 94.
    Bukowski K, Kciuk M, Kontek R. 2020.. Mechanisms of multidrug resistance in cancer chemotherapy. . Int. J. Mol. Sci. 21:(9):3233
    [Crossref] [Google Scholar]
  95. 95.
    Zhong L, Li Y, Xiong L, Wang W, Wu M, et al. 2021.. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. . Sig. Transduct. Target. Ther. 6::201
    [Crossref] [Google Scholar]
  96. 96.
    Hu C-MJ, Fang RH, Wang K-C, Luk BT, Thamphiwatana S, et al. 2015.. Nanoparticle biointerfacing by platelet membrane cloaking. . Nature 526:(7571):11821
    [Crossref] [Google Scholar]
  97. 97.
    Angsantikul P, Thamphiwatana S, Gao W, Zhang L. 2015.. Cell membrane-coated nanoparticles as an emerging antibacterial vaccine platform. . Vaccines 3:(4):81428
    [Crossref] [Google Scholar]
  98. 98.
    Liu S, Jiang Q, Zhao X, Zhao R, Wang Y, et al. 2021.. A DNA nanodevice-based vaccine for cancer immunotherapy. . Nat. Mater. 20:(3):42130
    [Crossref] [Google Scholar]
  99. 99.
    Egelman EH, Xu C, DiMaio F, Magnotti E, Modlin C, et al. 2015.. Structural plasticity of helical nanotubes based on coiled-coil assemblies. . Structure 23:(2):28089
    [Crossref] [Google Scholar]
  100. 100.
    Aldous AR, Dong JZ. 2018.. Personalized neoantigen vaccines: a new approach to cancer immunotherapy. . Bioorg. Med. Chem. 26:(10):284249
    [Crossref] [Google Scholar]
  101. 101.
    Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, et al. 2015.. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. . Nature 520::69296
    [Crossref] [Google Scholar]
  102. 102.
    Lynn GM, Sedlik C, Baharom F, Zhu Y, Ramirez-Valdez RA, et al. 2020.. Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T cell immunity to tumor antigens. . Nat. Biotechnol. 38:(3):32032
    [Crossref] [Google Scholar]
  103. 103.
    Liu C, Liu X, Xiang X, Pang X, Chen S, et al. 2022.. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. . Nat. Nanotechnol. 17:(5):53140
    [Crossref] [Google Scholar]
  104. 104.
    Gong N, Zhang Y, Teng X, Wang Y, Huo S, et al. 2020.. Proton-driven transformable nanovaccine for cancer immunotherapy. . Nat. Nanotechnol. 15:(12):105364
    [Crossref] [Google Scholar]
  105. 105.
    Bahmani B, Gong H, Luk BT, Haushalter KJ, DeTeresa E, et al. 2021.. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. . Nat. Commun. 12::1999
    [Crossref] [Google Scholar]
  106. 106.
    Xiong X, Zhao J, Pan J, Liu C, Guo X, Zhou S. 2021.. Personalized nanovaccine coated with calcinetin-expressed cancer cell membrane antigen for cancer immunotherapy. . Nano Lett. 21:(19):841825
    [Crossref] [Google Scholar]
  107. 107.
    Liu S, Jiang Q, Zhao X, Zhao R, Wang Y, et al. 2021.. A DNA nanodevice-based vaccine for cancer immunotherapy. . Nat. Mater. 20:(3):42130
    [Crossref] [Google Scholar]
  108. 108.
    Kapadia CH, Melamed JR, Day ES. 2018.. Spherical nucleic acid nanoparticles: therapeutic potential. . BioDrugs 32:(4):297309
    [Crossref] [Google Scholar]
  109. 109.
    Teplensky MH, Dittmar JW, Qin L, Wang S, Evangelopoulos M, et al. 2021.. Spherical nucleic acid vaccine structure markedly influences adaptive immune responses of clinically utilized prostate cancer targets. . Adv. Healthc. Mater. 10:(22):2101262
    [Crossref] [Google Scholar]
  110. 110.
    Chen F, Wang Y, Gao J, Saeed M, Li T, et al. 2021.. Nanobiomaterial-based vaccination immunotherapy of cancer. . Biomaterials 270::120709
    [Crossref] [Google Scholar]
  111. 111.
    El-Gabalawy H, Guenther LC, Bernstein CN. 2010.. Epidemiology of immune-mediated inflammatory diseases: incidence, prevalence, natural history, and comorbidities. . J. Rheumatol. Suppl. 85::210
    [Crossref] [Google Scholar]
  112. 112.
    Lu R-M, Hwang Y-C, Liu I-J, Lee C-C, Tsai H-Z, et al. 2020.. Development of therapeutic antibodies for the treatment of diseases. . J. Biomed. Sci. 27::1
    [Crossref] [Google Scholar]
  113. 113.
    Kotsovilis S, Andreakos E. 2014.. Therapeutic human monoclonal antibodies in inflammatory diseases. . Methods Mol. Biol. 1060::3759
    [Crossref] [Google Scholar]
  114. 114.
    Nguyen TL, Kim J. 2022.. Nanoparticle-based tolerogenic vaccines for the treatment of autoimmune diseases: a review. . ACS Appl. Nano Mater. 5:(5):601328
    [Crossref] [Google Scholar]
  115. 115.
    Park J, Wu Y, Li Q, Choi J, Ju H, et al. 2023.. Nanomaterials for antigen-specific immune tolerance therapy. . Drug Deliv. Transl. Res. 13:(7):185981
    [Crossref] [Google Scholar]
  116. 116.
    Jogpal V, Sanduja M, Dutt R, Garg V, Tinku. 2022.. Advancement of nanomedicines in chronic inflammatory disorders. . Inflammopharmacology 30:(2):35568
    [Crossref] [Google Scholar]
  117. 117.
    Bury MI, Fuller NJ, Clemons TD, Sturm RM, Morrison CD, et al. 2021.. Self-assembling nanofibers inhibit inflammation in a murine model of Crohn's-disease-like ileitis. . Adv. Therap. 4:(4):2000274
    [Crossref] [Google Scholar]
  118. 118.
    Nguyen TL, Choi Y, Im J, Shin H, Phan NM, et al. 2022.. Immunosuppressive biomaterial-based therapeutic vaccine to treat multiple sclerosis via re-establishing immune tolerance. . Nat. Commun. 13::7449
    [Crossref] [Google Scholar]
  119. 119.
    Saito E, Gurczynski SJ, Kramer KR, Wilke CA, Miller SD, et al. 2020.. Modulating lung immune cells by pulmonary delivery of antigen-specific nanoparticles to treat autoimmune disease. . Sci. Adv. 6:(42):eabc9317
    [Crossref] [Google Scholar]
  120. 120.
    Kenison JE, Jhaveri A, Li Z, Khadse N, Tjon E, et al. 2020.. Tolerogenic nanoparticles suppress central nervous system inflammation. . PNAS 117:(50):3201728
    [Crossref] [Google Scholar]
  121. 121.
    Sonigra A, Nel HJ, Wehr P, Ramnoruth N, Patel S, et al. 2022.. Randomized phase I trial of antigen-specific tolerizing immunotherapy with peptide/calcitriol liposomes in ACPA+ rheumatoid arthritis. . JCI Insight 7:(20):e160964
    [Crossref] [Google Scholar]
  122. 122.
    Liu M, Wang Z, Feng D, Shang Y, Li X, et al. 2021.. An insulin-inspired supramolecular hydrogel for prevention of type 1 diabetes. . Adv. Sci. 8:(10):2003599
    [Crossref] [Google Scholar]
  123. 123.
    Lebwohl B, Sanders DS, Green PHR. 2018.. Coeliac disease. . Lancet 391:(10115):7081
    [Crossref] [Google Scholar]
  124. 124.
    Machado MV. 2023.. New developments in celiac disease treatment. . Int. J. Mol. Sci. 24:(2):945
    [Crossref] [Google Scholar]
  125. 125.
    Horvath D, Basler M. 2023.. PLGA particles in immunotherapy. . Pharmaceutics 15:(2):615
    [Crossref] [Google Scholar]
  126. 126.
    Freitag TL, Podojil JR, Pearson RM, Fokta FJ, Sahl C, et al. 2020.. Gliadin nanoparticles induce immune tolerance to gliadin in mouse models of celiac disease. . Gastroenterology 158:(6):166781.e12
    [Crossref] [Google Scholar]
  127. 127.
    Kelly CP, Murray JA, Leffler DA, Getts DR, Bledsoe AC, et al. 2021.. TAK-101 nanoparticles induce gluten-specific tolerance in celiac disease: a randomized, double-blind, placebo-controlled study. . Gastroenterology 161:(1):6680.e8
    [Crossref] [Google Scholar]
  128. 128.
    Pohlit H, Bellinghausen I, Frey H, Saloga J. 2017.. Recent advances in the use of nanoparticles for allergen-specific immunotherapy. . Allergy 72:(10):146174
    [Crossref] [Google Scholar]
  129. 129.
    Johnson L, Duschl A, Himly M. 2020.. Nanotechnology-based vaccines for allergen-specific immunotherapy: potentials and challenges of conventional and novel adjuvants under research. . Vaccines 8:(2):237
    [Crossref] [Google Scholar]
  130. 130.
    O'Konek JJ, Landers JJ, Janczak KW, Lindsey HK, Mondrusov AM, et al. 2020.. Intranasal nanoemulsion vaccine confers long-lasting immunomodulation and sustained unresponsiveness in a murine model of milk allergy. . Allergy 75:(4):87281
    [Crossref] [Google Scholar]
  131. 131.
    Farazuddin M, Landers JJ, Janczak KW, Lindsey HK, Finkelman FD, et al. 2021.. Mucosal nanoemulsion allergy vaccine suppresses alarmin expression and induces bystander suppression of reactivity to multiple food allergens. . Front. Immunol. 12::599296
    [Crossref] [Google Scholar]
  132. 132.
    Hughes KR, Saunders MN, Landers JJ, Janczak KW, Turkistani H, et al. 2022.. Masked delivery of allergen in nanoparticles safely attenuates anaphylactic response in murine models of peanut allergy. . Front. Allergy 3::829605
    [Crossref] [Google Scholar]
  133. 133.
    Pechsrichuang P, Namwongnao S, Jacquet A. 2020.. Bioengineering of virus-like particles for the prevention or treatment of allergic diseases. . Allergy Asthma Immunol. Res. 13:(1):2341
    [Crossref] [Google Scholar]
  134. 134.
    Storni F, Zeltins A, Balke I, Heath MD, Kramer MF, et al. 2020.. Vaccine against peanut allergy based on engineered virus-like particles displaying single major peanut allergens. . J. Allergy Clin. Immunol. 145:(4):124053.e3
    [Crossref] [Google Scholar]
  135. 135.
    Krienke C, Kolb L, Diken E, Streuber M, Kirchhoff S, et al. 2021.. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. . Science 371:(6525):14553
    [Crossref] [Google Scholar]
  136. 136.
    Zhu M, Wang R, Nie G. 2014.. Applications of nanomaterials as vaccine adjuvants. . Hum. Vacc. Immunotherapeut. 10:(9):276174
    [Crossref] [Google Scholar]
  137. 137.
    Reed SG, Orr MT, Fox CB. 2013.. Key roles of adjuvants in modern vaccines. . Nat. Med. 19:(12):1597608
    [Crossref] [Google Scholar]
  138. 138.
    Pulendran B, Arunachalam PS, O'Hagan DT. 2021.. Emerging concepts in the science of vaccine adjuvants. . Nat. Rev. Drug Discov. 20:(6):45475
    [Crossref] [Google Scholar]
  139. 139.
    Coffman RL, Sher A, Seder RA. 2010.. Vaccine adjuvants: putting innate immunity to work. . Immunity 33:(4):492503
    [Crossref] [Google Scholar]
  140. 140.
    Chattopadhyay S, Chen J-Y, Chen H-W, Hu C-MJ. 2017.. Nanoparticle vaccines adopting virus-like features for enhanced immune potentiation. . Nanotheranostics 1:(3):24460
    [Crossref] [Google Scholar]
  141. 141.
    Chatzikleanthous D, O'Hagan DT, Adamo R. 2021.. Lipid-based nanoparticles for delivery of vaccine adjuvants and antigens: toward multicomponent vaccines. . Mol. Pharm. 18:(8):286788
    [Crossref] [Google Scholar]
  142. 142.
    Ammi R, De Waele J, Willemen Y, Van Brussel I, Schrijvers DM, et al. 2015.. Poly(I:C) as cancer vaccine adjuvant: knocking on the door of medical breakthroughs. . Pharmacol. Ther. 146::12031
    [Crossref] [Google Scholar]
  143. 143.
    Gale EC, Roth GA, Smith AAA, Alcántara-Hernández M, Idoyaga J, Appel EA. 2020.. A nanoparticle platform for improved potency, stability, and adjuvanticity of poly(I:C). . Adv. Ther. 3:(1):1900174
    [Crossref] [Google Scholar]
  144. 144.
    Matsumoto M, Seya T. 2008.. TLR3: interferon induction by double-stranded RNA including poly(I:C). . Adv. Drug Deliv. Rev. 60:(7):80512
    [Crossref] [Google Scholar]
  145. 145.
    Li Y-G, Siripanyaphinyo U, Tumkosit U, Noranate N, A-nuegoonpipat A, et al. 2012.. Poly (I:C), an agonist of Toll-like receptor-3, inhibits replication of the Chikungunya virus in BEAS-2B cells. . Virol. J. 9::114
    [Crossref] [Google Scholar]
  146. 146.
    Hafner AM, Corthésy B, Merkle HP. 2013.. Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. . Adv. Drug Deliv. Rev. 65:(10):138699
    [Crossref] [Google Scholar]
  147. 147.
    Hughes FM Jr. 2016.. The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome mediates inflammation and voiding dysfunction in a lipopolysaccharide-induced rat model of cystitis. . J. Clin. Cell. Immunol. 7:(1):396
    [Crossref] [Google Scholar]
  148. 148.
    Deets KA, Vance RE. 2021.. Inflammasomes and adaptive immune responses. . Nat. Immunol. 22:(4):41222
    [Crossref] [Google Scholar]
  149. 149.
    Xiao L, Magupalli VG, Wu H. 2023.. Cryo-EM structures of the active NLRP3 inflammasome disc. . Nature 613:(7944):595600
    [Crossref] [Google Scholar]
  150. 150.
    Zhang Y, Yang W, Li W, Zhao Y. 2021.. NLRP3 inflammasome: checkpoint connecting innate and adaptive immunity in autoimmune diseases. . Front. Immunol. 12::732933
    [Crossref] [Google Scholar]
  151. 151.
    Blevins HM, Xu Y, Biby S, Zhang S. 2022.. The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases. . Front. Aging Neurosci. 14::879021
    [Crossref] [Google Scholar]
  152. 152.
    Wang J, Chen H-J, Hang T, Yu Y, Liu G, et al. 2018.. Physical activation of innate immunity by spiky particles. . Nat. Nanotechnol. 13:(11):107886
    [Crossref] [Google Scholar]
  153. 153.
    Manna S, Howitz WJ, Oldenhuis NJ, Eldredge AC, Shen J, et al. 2018.. Immunomodulation of the NLRP3 inflammasome through structure-based activator design and functional regulation via lysosomal rupture. . ACS Cent. Sci. 4:(8):98295
    [Crossref] [Google Scholar]
  154. 154.
    Manna S, Maiti S, Shen J, Weiss A, Mulder E, et al. 2023.. Nanovaccine that activates the NLRP3 inflammasome enhances tumor specific activation of anti-cancer immunity. . Biomaterials 296::122062
    [Crossref] [Google Scholar]
  155. 155.
    Minkoff JM, tenOever B. 2023.. Innate immune evasion strategies of SARS-CoV-2. . Nat. Rev. Microbiol. 21::17894
    [Google Scholar]
  156. 156.
    Zheng Y, Deng J, Han L, Zhuang M-W, Xu Y, et al. 2022.. SARS-CoV-2 NSP5 and N protein counteract the RIG-I signaling pathway by suppressing the formation of stress granules. . Sig. Transduct. Target. Ther. 7::22
    [Crossref] [Google Scholar]
  157. 157.
    Jangra S, Landers JJ, Rathnasinghe R, O'Konek JJ, Janczak KW, et al. 2021.. A combination adjuvant for the induction of potent antiviral immune responses for a recombinant SARS-CoV-2 protein vaccine. . Front. Immunol. 12::729189
    [Crossref] [Google Scholar]
  158. 158.
    Wong PT, Goff PH, Sun RJ, Ruge MJ, Ermler ME, et al. 2021.. Combined intranasal nanoemulsion and RIG-I activating RNA adjuvants enhance mucosal, humoral, and cellular immunity to influenza virus. . Mol. Pharmaceut. 18:(2):67998
    [Crossref] [Google Scholar]
  159. 159.
    Thomas S, Abraham A, Baldwin J, Piplani S, Petrovsky N. 2022.. Artificial intelligence in vaccine and drug design. . Methods Mol. Biol. 2410::13146
    [Crossref] [Google Scholar]
  160. 160.
    Jabbari P, Rezaei N. 2019.. Artificial intelligence and immunotherapy. . Expert Rev. Clin. Immunol. 15:(7):68991
    [Crossref] [Google Scholar]
  161. 161.
    Hepler NL, Scheffler K, Weaver S, Murrell B, Richman DD, et al. 2014.. IDEPI: rapid prediction of HIV-1 antibody epitopes and other phenotypic features from sequence data using a flexible machine learning platform. . PLOS Comput. Biol. 10:(9):e1003842
    [Crossref] [Google Scholar]
  162. 162.
    Pavillon N, Hobro AJ, Akira S, Smith NI. 2018.. Noninvasive detection of macrophage activation with single-cell resolution through machine learning. . PNAS 115:(12):E267685
    [Crossref] [Google Scholar]
  163. 163.
    Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, et al. 2018.. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. . Lancet Oncol. 19:(9):118091
    [Crossref] [Google Scholar]
  164. 164.
    Alam ST, Ahmed S, Ali SM, Sarker S, Kabir G, ul-Islam A. 2021.. Challenges to COVID-19 vaccine supply chain: Implications for sustainable development goals. . Int. J. Prod. Econ. 239::108193
    [Crossref] [Google Scholar]
  165. 165.
    Lycke N. 2012.. Recent progress in mucosal vaccine development: potential and limitations. . Nat. Rev. Immunol. 12:(8):592605
    [Crossref] [Google Scholar]
  166. 166.
    Neutra MR, Kozlowski PA. 2006.. Mucosal vaccines: the promise and the challenge. . Nat. Rev. Immunol. 6:(2):14858
    [Crossref] [Google Scholar]
  167. 167.
    Woodrow KA, Bennett KM, Lo DD. 2012.. Mucosal vaccine design and delivery. . Annu. Rev. Biomed. Eng. 14::1746
    [Crossref] [Google Scholar]
  168. 168.
    Kelly SH, Wu Y, Varadhan AK, Curvino EJ, Chong AS, Collier JH. 2020.. Enabling sublingual peptide immunization with molecular self-assemblies. . Biomaterials 241::119903
    [Crossref] [Google Scholar]
  169. 169.
    Kelly SH, Opolot EE, Wu Y, Cossette B, Varadhan AK, Collier JH. 2021.. Tabletized supramolecular assemblies for sublingual peptide immunization. . Adv. Healthc. Mater. 10:(6):e2001614
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110122-124359
Loading
/content/journals/10.1146/annurev-bioeng-110122-124359
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error