1932

Abstract

The democratization of ultrasound imaging refers to the process of making ultrasound technology more accessible. Traditionally, ultrasound imaging has been predominately used in specialized medical facilities by trained professionals. Advancements in technology and changes in the health-care landscape have inspired efforts to broaden the availability of ultrasound imaging to various settings such as remote and resource-limited areas. In this review, we highlight several key factors that have contributed to the ongoing democratization of ultrasound imaging, including portable and handheld devices, recent advancements in technology, and training and education. Examples of diagnostic point-of-care ultrasound (POCUS) imaging used in emergency and critical care, gastroenterology, musculoskeletal applications, and other practices are provided for both human and veterinary medicine. Open challenges and the future of POCUS imaging are presented, including the emerging role of artificial intelligence in technology development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110222-095229
2024-07-03
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-110222-095229.html?itemId=/content/journals/10.1146/annurev-bioeng-110222-095229&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Díaz-Gómez JL, Mayo PH, Koenig SJ. 2021.. Point-of-care ultrasonography. . N. Engl. J. Med. 385:(17):1593602
    [Crossref] [Google Scholar]
  2. 2.
    Sippel S, Muruganandan K, Levine A, Shah S. 2011.. Review article: Use of ultrasound in the developing world. . Int. J. Emerg. Med. 4::72
    [Crossref] [Google Scholar]
  3. 3.
    Duggan NM, Jowkar N, Ma IWY, Schulwolf S, Selame LA, et al. 2022.. Novice-performed point-of-care ultrasound for home-based imaging. . Sci. Rep. 12:(1):20461
    [Crossref] [Google Scholar]
  4. 4.
    Ito GNW, Rodrigues VAC, Hümmelgen J, Meschino GSPG, Abou-Rejaile GM, et al. 2022.. COVID-19 pathophysiology and ultrasound imaging: a multiorgan review. . J. Clin. Ultrasound 50:(3):32638
    [Crossref] [Google Scholar]
  5. 5.
    Bennett CE, Samavedam S, Jayaprakash N, Kogan A, Gajic O, Sekiguchi H. 2018.. When to incorporate point-of-care ultrasound (POCUS) into the initial assessment of acutely ill patients: a pilot crossover study to compare 2 POCUS-assisted simulation protocols. . Cardiovasc. Ultrasound 16:(1):14
    [Crossref] [Google Scholar]
  6. 6.
    Szabo TL. 2014.. Diagnostic Ultrasound Imaging: Inside Out. Boston:: Academic. , 2nd ed..
    [Google Scholar]
  7. 7.
    Zhou Q, Lam KH, Zheng H, Qiu W, Shung KK. 2014.. Piezoelectric single crystals for ultrasonic transducers in biomedical applications. . Prog. Mater. Sci. 66::87111
    [Crossref] [Google Scholar]
  8. 8.
    Powers J, Kremkau F. 2011.. Medical ultrasound systems. . Interface Focus 1:(4):47789
    [Crossref] [Google Scholar]
  9. 9.
    Hoffman DM, Johnson PV, Kim JS, Vargas AD, Banks MS. 2014.. 240 Hz OLED technology properties that can enable improved image quality. . J. Soc. Inf. Disp. 22:(7):34656
    [Crossref] [Google Scholar]
  10. 10.
    World Fed. Ultrasound Med. Biol. (WFUMB). 2013.. WFUMB policy and statements on safety of ultrasound. . Ultrasound Med. Biol. 39:(5):92629
    [Crossref] [Google Scholar]
  11. 11.
    Am. Inst. Ultrasound Med. (AIUM). 2019.. How to interpret the ultrasound output display standard for diagnostic ultrasound devices: version 3. . J. Ultrasound Med. 38:(12):31015
    [Crossref] [Google Scholar]
  12. 12.
    Dalecki D. 2004.. Mechanical bioeffects of ultrasound. . Annu. Rev. Biomed. Eng. 6::22948
    [Crossref] [Google Scholar]
  13. 13.
    Abramowicz JS. 2013.. Benefits and risks of ultrasound in pregnancy. . Semin. Perinatol. 37:(5):295300
    [Crossref] [Google Scholar]
  14. 14.
    Baribeau Y, Sharkey A, Chaudhary O, Krumm S, Fatima H, et al. 2020.. Handheld point-of-care ultrasound probes: the new generation of POCUS. . J. Cardiothorac. Vasc. Anesth. 34:(11):313945
    [Crossref] [Google Scholar]
  15. 15.
    Le M-PT, Voigt L, Nathanson R, Maw AM, Johnson G, et al. 2022.. Comparison of four handheld point-of-care ultrasound devices by expert users. . Ultrasound J. 14:(1):27
    [Crossref] [Google Scholar]
  16. 16.
    Savoia AS, Calianov G, Pappalardo M. 2012.. A CMUT probe for medical ultrasonography: from microfabrication to system integration. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59:(6):112738
    [Crossref] [Google Scholar]
  17. 17.
    Khairalseed M, Hoyt K. 2019.. Integration of a CMUT linear array for wideband H-scan ultrasound imaging. . In 2019 IEEE International Ultrasonics Symposium, pp. 151922. New York:: IEEE
    [Google Scholar]
  18. 18.
    Caliano G, Matrone G, Savoia AS. 2017.. Biasing of capacitive micromachined ultrasonic transducers. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64:(2):40213
    [Crossref] [Google Scholar]
  19. 19.
    Oralkan O, Ergun AS, Johnson JA, Karaman M, Demirci U, et al. 2002.. Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49:(11):1596610
    [Crossref] [Google Scholar]
  20. 20.
    He Y, Wan H, Jiang X, Peng C. 2022.. Piezoelectric micromachined ultrasound transducer technology: recent advances and applications. . Biosensors 13:(1):55
    [Crossref] [Google Scholar]
  21. 21.
    Harvey G, Gachagan A, Mackersie JW, McCunnie T, Banks R. 2009.. Flexible ultrasonic transducers incorporating piezoelectric fibres. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56:(9):19992009
    [Crossref] [Google Scholar]
  22. 22.
    Dong B, Sun C, Zhang HF. 2017.. Optical detection of ultrasound in photoacoustic imaging. . IEEE Trans. Biomed. Eng. 64:(1):415
    [Crossref] [Google Scholar]
  23. 23.
    Yamada H, Ito H, Fujiwara M. 2022.. Cardiac and vascular point-of-care ultrasound: current situation, problems, and future prospects. . J. Med. Ultrason. 49:(4):6018
    [Crossref] [Google Scholar]
  24. 24.
    Barrosse-Antle ME, Patel KH, Kramer JA, Baston CM. 2021.. Point-of-care ultrasound for bedside diagnosis of lower extremity DVT. . Chest 160:(5):185363
    [Crossref] [Google Scholar]
  25. 25.
    Arnold MJ, Jonas CE, Carter RE. 2020.. Point-of-care ultrasonography. . Am. Fam. Physician 101:(5):27585
    [Google Scholar]
  26. 26.
    Argaiz ER, Koratala A, Reisinger N. 2021.. Comprehensive assessment of fluid status by point-of-care ultrasonography. . Kidney360 2:(8):132638
    [Crossref] [Google Scholar]
  27. 27.
    Recker F, Weber E, Strizek B, Gembruch U, Westerway SC, Dietrich CF. 2021.. Point-of-care ultrasound in obstetrics and gynecology. . Arch. Gynecol. Obstet. 303:(4):87176
    [Crossref] [Google Scholar]
  28. 28.
    Hashim A, Tahir MJ, Ullah I, Asghar MS, Siddiqi H, Yousaf Z. 2021.. The utility of point of care ultrasonography (POCUS). . Ann. Med. Surg. 71::102982
    [Crossref] [Google Scholar]
  29. 29.
    Sorensen B, Hunskaar S. 2019.. Point-of-care ultrasound in primary care: a systematic review of generalist performed point-of-care ultrasound in unselected populations. . Ultrasound J. 11:(1):31
    [Crossref] [Google Scholar]
  30. 30.
    Xu C, Melendez A, Nguyen T, Ellenberg J, Anand A, et al. 2022.. Point-of-care ultrasound may expedite diagnosis and revascularization of occult occlusive myocardial infarction. . Am. J. Emerg. Med. 58::18691
    [Crossref] [Google Scholar]
  31. 31.
    Surdhar I, Kirschner D. 2020.. Ultrasound-guided needle aspiration of an iliac crest abscess in a pediatric emergency department. . Pediatr. Emerg. Care 36:(3):16567
    [Crossref] [Google Scholar]
  32. 32.
    Doyle WN, Giagni CC, Roth K, Amaducci A. 2023.. Diagnosing emergent heterotopic pregnancy via point-of-care ultrasound: a case report. . Cureus 15:(8):e43663
    [Google Scholar]
  33. 33.
    Abrams ER, Rose G, Fields JM, Esener D. 2020.. Point-of-care ultrasound in the evaluation of COVID-19. . J. Emerg. Med. 59:(3):4038
    [Crossref] [Google Scholar]
  34. 34.
    Guzmán-García MB, Mohedano-Moriano A, González-González J, Morales-Cano JM, Campo-Linares R, et al. 2022.. Lung ultrasound as a triage method in primary care for patients with suspected SARS-CoV-2 pneumonia. . J. Clin. Med. 11:(21):6420
    [Crossref] [Google Scholar]
  35. 35.
    Guevarra K, Greenstein Y. 2020.. Ultrasonography in the critical care unit. . Curr. Cardiol. Rep. 22:(11):145
    [Crossref] [Google Scholar]
  36. 36.
    Schrift D, Barron K, Arya R, Choe C. 2021.. The use of POCUS to manage ICU patients with COVID-19. . J. Ultrasound Med. 40:(9):174961
    [Crossref] [Google Scholar]
  37. 37.
    Sharpe RE, Nazarian LN, Parker L, Rao VM, Levin DC. 2012.. Dramatically increased musculoskeletal ultrasound utilization from 2000 to 2009, especially by podiatrists in private offices. . J. Am. Coll. Radiol. 9:(2):14146
    [Crossref] [Google Scholar]
  38. 38.
    Chen K-C, Lin AC-M, Chong C-F, Wang T-L. 2016.. An overview of point-of-care ultrasound for soft tissue and musculoskeletal applications in the emergency department. . J. Intensive Care 4::55
    [Crossref] [Google Scholar]
  39. 39.
    Jackson SS, Le HM, Kerkhof DL, Corrado GD. 2021.. Point-of-care ultrasound, the new musculoskeletal physical examination. . Curr. Sports Med. Rep. 20:(2):10912
    [Crossref] [Google Scholar]
  40. 40.
    Zhang L, Sanagapalli S, Stoita A. 2018.. Challenges in diagnosis of pancreatic cancer. . World J. Gastroenterol. 24:(19):204760
    [Crossref] [Google Scholar]
  41. 41.
    Francica G. 2020.. Intracavitary contrast-enhanced ultrasound in ultrasound-guided percutaneous management of abdominal fluid collections/abscesses by a single clinician: an example of point-of-care ultrasound. . J. Ultrasound 23:(2):17581
    [Crossref] [Google Scholar]
  42. 42.
    Ibrahim MN, Blázquez-García R, Lightstone A, Meng F, Bhat M, et al. 2023.. Automated fatty liver disease detection in point-of-care ultrasound B-mode images. . J. Med. Imaging 10:(3):034505
    [Crossref] [Google Scholar]
  43. 43.
    Sourianarayanane A, McCullough AJ. 2023.. Accuracy of ultrasonographic fatty liver index using point-of-care ultrasound in stratifying non-alcoholic fatty liver disease patients. . Eur. J. Gastroenterol. Hepatol. 35:(6):65461
    [Crossref] [Google Scholar]
  44. 44.
    Sasso M, Miette V, Sandrin L, Beaugrand M. 2012.. The controlled attenuation parameter (CAP): a novel tool for the non-invasive evaluation of steatosis using Fibroscan. . Clin. Res. Hepatol. Gastroenterol. 36:(1):1320
    [Crossref] [Google Scholar]
  45. 45.
    Koratala A, Bhattacharya D, Kazory A. 2019.. Point of care renal ultrasonography for the busy nephrologist: a pictorial review. . World J. Nephrol. 8:(3):4458
    [Crossref] [Google Scholar]
  46. 46.
    Koratala A, Reisinger N. 2022.. Venous excess Doppler ultrasound for the nephrologist: pearls and pitfalls. . Kidney Med. 4:(7):100482
    [Crossref] [Google Scholar]
  47. 47.
    Salib A, Halpern E, Eisenbrey J, Chandrasekar T, Chung PH, et al. 2023.. The evolving role of contrast-enhanced ultrasound in urology: a review. . World J. Urol. 41:(3):67378
    [Crossref] [Google Scholar]
  48. 48.
    Uy M, Lovatt CA, Hoogenes J, Bernacci C, Matsumoto ED. 2021.. Point-of-care ultrasound in urology: design and evaluation of a feasible introductory training program for Canadian residents. . Can. Urol. Assoc. J. 15:(4):21014
    [Google Scholar]
  49. 49.
    Camilo GB, Abu-Zidan F, Koratala A. 2022.. Editorial: Experiences and advances in endocrinology point-of-care ultrasound (POCUS). . Front. Endocrinol. 13::1094024
    [Crossref] [Google Scholar]
  50. 50.
    Yong-Ping L, Juan Z, Li J-W, Qi H-H, Liu J-P, et al. 2022.. The value of ultrasound guided laser ablation in papillary thyroid recurrence carcinoma: a retrospective, single center study from China. . Front. Endocrinol. 13::946966
    [Crossref] [Google Scholar]
  51. 51.
    Platz E, Merz AA, Jhund PS, Vazir A, Campbell R, McMurray JJ. 2017.. Dynamic changes and prognostic value of pulmonary congestion by lung ultrasound in acute and chronic heart failure: a systematic review. . Eur. J. Heart Fail. 19:(9):115463
    [Crossref] [Google Scholar]
  52. 52.
    Baloescu C, Toporek G, Kim S, McNamara K, Liu R, et al. 2020.. Automated lung ultrasound B-line assessment using a deep learning algorithm. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67:(11):231220
    [Crossref] [Google Scholar]
  53. 53.
    Maw AM, Hassanin A, Ho PM, McInnes MDF, Moss A, et al. 2019.. Diagnostic accuracy of point-of-care lung ultrasonography and chest radiography in adults with symptoms suggestive of acute decompensated heart failure: a systematic review and meta-analysis. . JAMA Netw. Open 2:(3):e190703
    [Crossref] [Google Scholar]
  54. 54.
    Tee A, Yusuf GT, Wong A, Rao D, Tran S, Sidhu PS. 2022.. Point-of-care contrast enhanced lung ultrasound and COVID-19. . Ultrasound 30:(3):2018
    [Crossref] [Google Scholar]
  55. 55.
    Capizzano JN, O'Dwyer M-C, Furst W, Plegue M, Tucker R, et al. 2022.. Current state of point-of-care ultrasound use within family medicine. . J. Am. Board Fam. Med. 35:(4):80913
    [Crossref] [Google Scholar]
  56. 56.
    Steinmetz P, Oleskevich S. 2016.. The benefits of doing ultrasound exams in your office. . J. Fam. Pract. 65:(8):51723
    [Google Scholar]
  57. 57.
    Johnson J, Stromberg D, Williams B, Greenberg N, Myers O. 2021.. Point-of-care ultrasound for family medicine residents: attitudes and confidence. . Fam. Med. 53:(6):45760
    [Crossref] [Google Scholar]
  58. 58.
    Biggerstaff S, Thompson R, Restrepo D. 2023.. POCUS at home: point-of-care ultrasound for the home hospitalist. . J. Hosp. Med. 18:(1):8789
    [Crossref] [Google Scholar]
  59. 59.
    Dana E, Nour ADM, Kpa'Hanba GA, Khan JS. 2023.. Point-of-care ultrasound (PoCUS) and its potential to advance patient care in low-resource settings and conflict zones. . Disaster Med. Public Health Prep. 17::e417
    [Crossref] [Google Scholar]
  60. 60.
    Thind GS, Fox S, Gupta M, Chahar P, Jones R, Dugar S. 2021.. Point-of-care ultrasonography for the hospitalist. Clevel. . Clin. J. Med. 88:(6):34559
    [Google Scholar]
  61. 61.
    Boysen SR, Rozanski EA, Tidwell AS, Holm JL, Shaw SP, Rush JE. 2004.. Evaluation of a focused assessment with sonography for trauma protocol to detect free abdominal fluid in dogs involved in motor vehicle accidents. . J. Am. Vet. Med. Assoc. 225:(8):1198204
    [Crossref] [Google Scholar]
  62. 62.
    McMurray J, Boysen S, Chalhoub S. 2016.. Focused assessment with sonography in nontraumatized dogs and cats in the emergency and critical care setting. . J. Vet. Emerg. Crit. Care 26:(1):6473
    [Crossref] [Google Scholar]
  63. 63.
    Pelchat J, Chalhoub S, Boysen SR. 2020.. The use of veterinary point-of-care ultrasound by veterinarians: a nationwide Canadian survey. . Can. Vet. J. 61:(12):127882
    [Google Scholar]
  64. 64.
    DeFrancesco T, Royal K. 2018.. A survey of point-of-care ultrasound use in veterinary general practice. . Educ. Health Prof. 1::5054
    [Crossref] [Google Scholar]
  65. 65.
    Wormser C, Reetz JA, Giuffrida MA. 2016.. Diagnostic accuracy of ultrasound to predict the location of solitary hepatic masses in dogs. . Vet. Surg. 45:(2):20813
    [Crossref] [Google Scholar]
  66. 66.
    Lapsley JM, Wavreille V, Barry S, Dornbusch JA, Chen C, et al. 2022.. Risk factors and outcome in dogs with recurrent massive hepatocellular carcinoma: a Veterinary Society of Surgical Oncology case-control study. . Vet. Comp. Oncol. 20:(3):697709
    [Crossref] [Google Scholar]
  67. 67.
    Soler M, Dominguez E, Lucas X, Novellas R, Gomes-Coelho KV, et al. 2016.. Comparison between ultrasonographic findings of benign and malignant canine mammary gland tumours using B-mode, colour Doppler, power Doppler and spectral Doppler. . Res. Vet. Sci. 107::14146
    [Crossref] [Google Scholar]
  68. 68.
    Assawarachan SN, Chuchalermporn P, Maneesaay P, Thengchaisri N. 2019.. Evaluation of hepatobiliary ultrasound scores in healthy dogs and dogs with liver diseases. . Vet. World 12:(8):126672
    [Crossref] [Google Scholar]
  69. 69.
    Griffin S. 2019.. Feline abdominal ultrasonography: What's normal? What's abnormal? The biliary tree. . J. Feline Med. Surg. 21:(5):42941
    [Crossref] [Google Scholar]
  70. 70.
    Klohnen A, Vachon AM, Fischer AT. 1996.. Use of diagnostic ultrasonography in horses with signs of acute abdominal pain. . J. Am. Vet. Med. Assoc. 209:(9):1597601
    [Crossref] [Google Scholar]
  71. 71.
    Lisciandro GR, Lagutchik MS, Mann KA, Voges AK, Fosgate GT, et al. 2008.. Evaluation of a thoracic focused assessment with sonography for trauma (TFAST) protocol to detect pneumothorax and concurrent thoracic injury in 145 traumatized dogs. . J. Vet. Emerg. Crit. Care 18:(3):25869
    [Crossref] [Google Scholar]
  72. 72.
    Boysen SR, Lisciandro GR. 2013.. The use of ultrasound for dogs and cats in the emergency room: AFAST and TFAST. . Vet. Clin. North Am. Small Anim. Pract. 43:(4):77397
    [Crossref] [Google Scholar]
  73. 73.
    Ward JL, Lisciandro GR, Ware WA, Viall AK, Aona BD, et al. 2018.. Evaluation of point-of-care thoracic ultrasound and NT-proBNP for the diagnosis of congestive heart failure in cats with respiratory distress. . J. Vet. Intern. Med. 32:(5):153040
    [Crossref] [Google Scholar]
  74. 74.
    Boysen SR, Gommeren K. 2021.. Assessment of volume status and fluid responsiveness in small animals. . Front. Vet. Sci. 8::630643
    [Crossref] [Google Scholar]
  75. 75.
    Dewey CW. 2000.. Emergency management of the head trauma patient: principles and practice. . Vet. Clin. North Am. Small Anim. Pract. 30:(1):20725
    [Crossref] [Google Scholar]
  76. 76.
    McCormick T, Chilstrom M, Childs J, McGarry R, Seif D, et al. 2017.. Point-of-care ultrasound for the detection of traumatic intracranial hemorrhage in infants: a pilot study. . Pediatr. Emerg. Care 33:(1):1820
    [Crossref] [Google Scholar]
  77. 77.
    Cook CR. 2016.. Ultrasound imaging of the musculoskeletal system. . Vet. Clin. North Am. Small Anim. Pract. 46:(3):35571
    [Crossref] [Google Scholar]
  78. 78.
    Ortega-Ferrusola C, Gómez-Arrones V, Martín-Cano FE, Gil MC, Peña FJ, et al. 2022.. Advances in the ultrasound diagnosis in equine reproductive medicine: new approaches. . Reprod. Domest. Anim. 57::3444
    [Crossref] [Google Scholar]
  79. 79.
    Fricke PM. 2002.. Scanning the future—ultrasonography as a reproductive management tool for dairy cattle. . J. Dairy Sci. 85:(8):191826
    [Crossref] [Google Scholar]
  80. 80.
    Ollivett TL, Buczinski S. 2016.. On-farm use of ultrasonography for bovine respiratory disease. . Vet. Clin. North Am. Food Anim. Pract. 32:(1):1935
    [Crossref] [Google Scholar]
  81. 81.
    Baker TW, Davidson AP. 2006.. Pediatric abdominal ultrasonography. . Vet. Clin. North Am. Small Anim. Pract. 36:(3):64155
    [Crossref] [Google Scholar]
  82. 82.
    Fujioka T, Nakamura K, Minamoto T, Tsuzuki N, Yamaguchi J, Hidaka Y. 2021.. Ultrasonographic evaluation of the caudal vena cava in dogs with right-sided heart disease. . J. Vet. Cardiol. 34::8092
    [Crossref] [Google Scholar]
  83. 83.
    Agarwala S, Dutta H, Bhatnagar V, Gulathi M, Paul S, Mitra D. 2000.. Congenital hepatoportal arteriovenous fistula: report of a case. . Surg. Today 30:(3):26871
    [Crossref] [Google Scholar]
  84. 84.
    Cole L, Humm K, Dirrig H. 2021.. Focused ultrasound examination of canine and feline emergency urinary tract disorders. . Vet. Clin. North Am. Small Anim. Pract. 51:(6):123348
    [Crossref] [Google Scholar]
  85. 85.
    Bragato N, Borges NC, Fioravanti MCS. 2017.. B-mode and Doppler ultrasound of chronic kidney disease in dogs and cats. . Vet. Res. Commun. 41:(4):30715
    [Crossref] [Google Scholar]
  86. 86.
    Chamberlin SC, Sullivan LA, Morley PS, Boscan P. 2013.. Evaluation of ultrasound-guided vascular access in dogs. . J. Vet. Emerg. Crit. Care 23:(5):498503
    [Crossref] [Google Scholar]
  87. 87.
    Ghosh D, Peng J, Brown K, Sirsi SR, Mineo C, et al. 2019.. Super-resolution ultrasound imaging of skeletal muscle microvascular dysfunction in an animal model of type 2 diabetes. . J. Ultrasound Med. 38:(5):258999
    [Crossref] [Google Scholar]
  88. 88.
    Hoyt K, Umphrey H, Lockhart M, Robbin M, Forero-Torres A. 2015.. Ultrasound imaging of breast tumor perfusion and neovascular morphology. . Ultrasound Med. Biol. 41:(9):2292302
    [Crossref] [Google Scholar]
  89. 89.
    Saini R, Hoyt K. 2014.. Recent developments in dynamic contrast-enhanced ultrasound imaging of tumor angiogenesis. . Imaging Med. 6:(1):4152
    [Crossref] [Google Scholar]
  90. 90.
    Ohlerth S, O'Brien RT. 2007.. Contrast ultrasound: general principles and veterinary clinical applications. . Vet. J. 174:(3):50112
    [Crossref] [Google Scholar]
  91. 91.
    Leinonen MR, Raekallio MR, Vainio OM, Ruohoniemi MO, Biller DS, O'Brien RT. 2010.. Quantitative contrast-enhanced ultrasonographic analysis of perfusion in the kidneys, liver, pancreas, small intestine, and mesenteric lymph nodes in healthy cats. . Am. J. Vet. Res. 71:(11):130511
    [Crossref] [Google Scholar]
  92. 92.
    Sakamoto M, Shibata S, Asahina R, Yamazoe K, Kamishina H, et al. 2017.. Contrast-enhanced ultrasonographic findings of hepatic arterioportal fistulas in a dog. . J. Small Anim. Pract. 58:(7):419
    [Crossref] [Google Scholar]
  93. 93.
    Pollard RE, Watson KD, Hu X, Ingham E, Ferrara KW. 2017.. Feasibility of quantitative contrast ultrasound imaging of bladder tumors in dogs. . Can. Vet. J. 58:(1):7072
    [Google Scholar]
  94. 94.
    Burti S, Zotti A, Rubini G, Orlandi R, Bargellini P, et al. 2023.. Contrast-enhanced ultrasound features of adrenal lesions in dogs. . Vet. Rec. 193::e2949
    [Crossref] [Google Scholar]
  95. 95.
    Ivancić M, Long F, Seiler GS. 2009.. Contrast harmonic ultrasonography of splenic masses and associated liver nodules in dogs. . J. Am. Vet. Med. Assoc. 234:(1):8894
    [Crossref] [Google Scholar]
  96. 96.
    Seiler GS, Brown JC, Reetz JA, Taeymans O, Bucknoff M, et al. 2013.. Safety of contrast-enhanced ultrasonography in dogs and cats: 488 cases (2002–2011). . J. Am. Vet. Med. Assoc. 242:(9):125559
    [Crossref] [Google Scholar]
  97. 97.
    Pollard RE, Puchalski SM, Pascoe PJ. 2008.. Hemodynamic and serum biochemical alterations associated with intravenous administration of three types of contrast media in anesthetized dogs. . Am. J. Vet. Res. 69:(10):126873
    [Crossref] [Google Scholar]
  98. 98.
    Pollard RE, Puchalski SM, Pascoe PJ. 2008.. Hemodynamic and serum biochemical alterations associated with intravenous administration of three types of contrast media in anesthetized cats. . Am. J. Vet. Res. 69:(10):127478
    [Crossref] [Google Scholar]
  99. 99.
    Australas. Soc. Ultrasound Med. (ASUM). 2017.. Minimum education & training requirements for ultrasound practitioners. . Australas. J. Ultrasound Med. 20:(3):13235
    [Crossref] [Google Scholar]
  100. 100.
    Bidner A, Bezak E, Parange N. 2022.. Evaluation of antenatal point-of-care ultrasound (PoCUS) training: a systematic review. . Med. Educ. Online 27:(1):2041366
    [Crossref] [Google Scholar]
  101. 101.
    Torres-Macho J, Antón-Santos JM, García-Gutierrez I, de Castro-García M, Gámez-Díez S, et al. 2012.. Initial accuracy of bedside ultrasound performed by emergency physicians for multiple indications after a short training period. . Am. J. Emerg. Med. 30:(9):194349
    [Crossref] [Google Scholar]
  102. 102.
    Shah S, Noble VE, Umulisa I, Dushimiyimana JMV, Bukhman G, et al. 2008.. Development of an ultrasound training curriculum in a limited resource international setting: successes and challenges of ultrasound training in rural Rwanda. . Int. J. Emerg. Med. 1:(3):19396
    [Crossref] [Google Scholar]
  103. 103.
    Sosna J, Pyatigorskaya N, Krestin G, Denton E, Stanislav K, et al. 2021.. International survey on residency programs in radiology: similarities and differences among 17 countries. . Clin. Imaging 79::23034
    [Crossref] [Google Scholar]
  104. 104.
    Rajamani A, Shetty K, Parmar J, Huang S, Ng J, et al. 2020.. Longitudinal competence programs for basic point-of-care ultrasound in critical care: a systematic review. . Chest 158:(3):107989
    [Crossref] [Google Scholar]
  105. 105.
    Kumar A, Kugler J, Jensen T. 2019.. Evaluation of trainee competency with point-of-care ultrasonography (POCUS): a conceptual framework and review of existing assessments. . J. Gen. Intern. Med. 34:(6):102531
    [Crossref] [Google Scholar]
  106. 106.
    Jiménez P, Borrás C, Fleitas I. 2006.. Accreditation of diagnostic imaging services in developing countries. . Rev. Panam. Salud Publica 20:(2–3):10412
    [Google Scholar]
  107. 107.
    Jiang X, Yu J, Ye J, Jia W, Xu W, Shu Q. 2023.. A deep learning-based method for pediatric congenital heart disease detection with seven standard views in echocardiography. . World J. Pediatr. Surg. 6:(3):e000580
    [Crossref] [Google Scholar]
  108. 108.
    Shaikh F, Kenny J-E, Awan O, Markovic D, Friedman O, et al. 2022.. Measuring the accuracy of cardiac output using POCUS: the introduction of artificial intelligence into routine care. . Ultrasound J. 14:(1):47
    [Crossref] [Google Scholar]
  109. 109.
    Lal Vallath A, Sivasubramanian BP, Chatterjee A, Erva S, Ravikumar DB, Dasgupta I. 2023.. Ventricular septal rupture and artificial intelligence (AI)-assisted healthcare. . Cureus 15:(3):e36581
    [Google Scholar]
  110. 110.
    Sonko ML, Arnold TC, Kuznetsov IA. 2022.. Machine learning in point of care ultrasound. . POCUS J. 7::7887
    [Crossref] [Google Scholar]
  111. 111.
    Savoy M. 2020.. IDx-DR for diabetic retinopathy screening. . Am. Fam. Physician 101:(5):3078
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110222-095229
Loading
/content/journals/10.1146/annurev-bioeng-110222-095229
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error