1932

Abstract

Insertable biosensor systems are medical diagnostic devices with two primary components: an implantable biosensor within the body and a wearable monitor that can remotely interrogate the biosensor from outside the body. Because the biosensor does not require a physical connection to the electronic monitor, insertable biosensor systems promise improved patient comfort, reduced inflammation and infection risk, and extended operational lifetimes relative to established percutaneous biosensor systems. However, the lack of physical connection also presents technical challenges that have necessitated new innovations in developing sensing chemistries, transduction methods, and communication modalities. In this review, we discuss the key developments that have made insertables a promising option for longitudinal biometric monitoring and highlight the essential needs and existing development challenges to realizing the next generation of insertables for extended-use diagnostic and prognostic devices.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110222-101045
2024-07-03
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-110222-101045.html?itemId=/content/journals/10.1146/annurev-bioeng-110222-101045&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Clark LC Jr., Lyons C. 1962.. Electrode systems for continuous monitoring in cardiovascular surgery. . Ann. N. Y. Acad. Sci. 102::2945
    [Crossref] [Google Scholar]
  2. 2.
    Olczuk D, Priefer R. 2018.. A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus. . Diabetes Metab. Syndr. 12::18187
    [Crossref] [Google Scholar]
  3. 3.
    Rodbard D. 2017.. Continuous glucose monitoring: a review of recent studies demonstrating improved glycemic outcomes. . Diabetes Technol. Ther. 19::S2537
    [Crossref] [Google Scholar]
  4. 4.
    Cappon G, Vettoretti M, Sparacino G, Facchinetti A. 2019.. Continuous glucose monitoring sensors for diabetes management: a review of technologies and applications. . Diabetes Metab. J. 43::38397
    [Crossref] [Google Scholar]
  5. 5.
    Rowland J. 2021.. PDB45 continuous glucose monitoring (CGM) trends among US adults with type I diabetes in National Health and Wellness Survey (NHWS). . Value Health 24::S85
    [Crossref] [Google Scholar]
  6. 6.
    Maiorino MI, Signoriello S, Maio A, Chiodini P, Bellastella G, et al. 2020.. Effects of continuous glucose monitoring on metrics of glycemic control in diabetes: a systematic review with meta-analysis of randomized controlled trials. . Diabetes Care 43::114656
    [Crossref] [Google Scholar]
  7. 7.
    Hoss U, Budiman ES. 2017.. Factory-calibrated continuous glucose sensors: the science behind the technology. . Diabetes Technol. Ther. 19::S4450
    [Crossref] [Google Scholar]
  8. 8.
    US Food Drug Admin. (FDA). 2023.. FDA clears new insulin pump and algorithm-based software to support enhanced automatic insulin delivery. News Release, May 19 , FDA, Silver Spring, MD:. https://www.fda.gov/news-events/press-announcements/fda-clears-new-insulin-pump-and-algorithm-based-software-support-enhanced-automatic-insulin-delivery
    [Google Scholar]
  9. 9.
    Beck RW, Russell SJ, Damiano ER, El-Khatib FH, Ruedy KJ, et al. 2022.. A multicenter randomized trial evaluating fast-acting insulin aspart in the bionic pancreas in adults with type 1 diabetes. . Diabetes Technol. Ther. 24::68196
    [Crossref] [Google Scholar]
  10. 10.
    Russell SJ, Balliro C, Ekelund M, El-Khatib F, Graungaard T, et al. 2021.. Improvements in glycemic control achieved by altering the tmax setting in the iLet® bionic pancreas when using fast-acting insulin aspart: a randomized trial. . Diabetes Ther. 12::201933
    [Crossref] [Google Scholar]
  11. 11.
    Dehennis A, Mortellaro MA, Ioacara S. 2015.. Multisite study of an implanted continuous glucose sensor over 90 days in patients with diabetes mellitus. . J. Diabetes Sci. Technol. 9::95156
    [Crossref] [Google Scholar]
  12. 12.
    Berg AK, Nørgaard K, Thyssen JP, Zachariae C, Hommel E, et al. 2018.. Skin problems associated with insulin pumps and sensors in adults with type 1 diabetes: a cross-sectional study. . Diabetes Technol. Ther. 20::47582
    [Crossref] [Google Scholar]
  13. 13.
    Berg AK, Olsen BS, Thyssen JP, Zachariae C, Simonsen AB, et al. 2018.. High frequencies of dermatological complications in children using insulin pumps or sensors. . Pediatr. Diabetes 19::73340
    [Crossref] [Google Scholar]
  14. 14.
    Xu S, Kim J, Walter JR, Ghaffari R, Rogers JA. 2022.. Translational gaps and opportunities for medical wearables in digital health. . Sci. Transl. Med. 14::eabn6036
    [Crossref] [Google Scholar]
  15. 15.
    Oppel E, Kamann S, Heinemann L, Reichl F-X, Högg C. 2020.. The implanted glucose monitoring system Eversense: an alternative for diabetes patients with isobornyl acrylate allergy. . Contact Dermat. 82::1014
    [Crossref] [Google Scholar]
  16. 16.
    Clark LCJ. 1987.. Long-term stability of implanted enzymatic biosensors. . ASAIO Trans. 33::83740
    [Google Scholar]
  17. 17.
    Joseph JI. 2021.. Review of the long-term implantable Senseonics continuous glucose monitoring system and other continuous glucose monitoring systems. . J. Diabetes Sci. Technol. 15::16773
    [Crossref] [Google Scholar]
  18. 18.
    Chimene D, Kaunas R, Gaharwar AK. 2019.. Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies. . Adv. Mater. 0::1902026
    [Google Scholar]
  19. 19.
    Jaafar B, Luo J, Firfilionis D, Soltan A, Neasham J, Degenaar P. 2019.. Ultrasound intra body multi node communication system for bioelectronic medicine. . Sensors 20::31
    [Crossref] [Google Scholar]
  20. 20.
    Klueh U, Liu Z, Feldman B, Henning TP, Cho B, et al. 2011.. Metabolic biofouling of glucose sensors in vivo: role of tissue microhemorrhages. . J. Diabetes Sci. Technol. 5::58395
    [Crossref] [Google Scholar]
  21. 21.
    Klueh U, Qiao Y, Czajkowski C, Ludzinska I, Antar O, Kreutzer DL. 2015.. Basement membrane-based glucose sensor coatings enhance continuous glucose monitoring in vivo. . J. Diabetes Sci. Technol. 9::95765
    [Crossref] [Google Scholar]
  22. 22.
    Klueh U, Kaur M, Montrose DC, Kreutzer DL. 2007.. Inflammation and glucose sensors: use of dexamethasone to extend glucose sensor function and life span in vivo. . J. Diabetes Sci. Technol. 1::496504
    [Crossref] [Google Scholar]
  23. 23.
    Galante R, Pinto TJA, Colaco R, Serro AP. 2018.. Sterilization of hydrogels for biomedical applications: a review. . J. Biomed. Mater. Res. B Appl. Biomater. 106::247292
    [Crossref] [Google Scholar]
  24. 24.
    Avula M, Rao A, McGill L, Grainger D, Solzbacher F. 2013.. Modulation of the foreign body response to implanted sensor models through device-based delivery of the tyrosine kinase inhibitor, masitinib. . Biomaterials 34:(8):973746
    [Crossref] [Google Scholar]
  25. 25.
    Ahmed M, Punshon G, Darbyshire A, Seifalian AM. 2013.. Effects of sterilization treatments on bulk and surface properties of nanocomposite biomaterials. . J. Biomed. Mater. Res. B Appl. Biomater. 101::118290
    [Crossref] [Google Scholar]
  26. 26.
    Murray KA, Kennedy JE, McEvoy B, Vrain O, Ryan D, et al. 2013.. Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly (ether-block-amide) thermoplastic elastomers. . J. Mech. Behav. Biomed. 17::25268
    [Crossref] [Google Scholar]
  27. 27.
    Phillip E, Murthy NS, Bolikal D, Narayanan P, Kohn J, et al. 2013.. Ethylene oxide's role as a reactive agent during sterilization: effects of polymer composition and device architecture. . J. Biomed. Mater. Res. B Appl. Biomater. 101B::53240
    [Crossref] [Google Scholar]
  28. 28.
    Vanichvattanadecha C, Supaphol P, Nagasawa N, Tamada M, Tokura S, et al. 2010.. Effect of gamma radiation on dilute aqueous solutions and thin films of N-succinyl chitosan. . Polym. Degrad. Stabil. 95::23444
    [Crossref] [Google Scholar]
  29. 29.
    Jiang H, Carter NM, Zareei A, Nejati S, Waimin JF, et al. 2020.. A wireless implantable strain sensing scheme using ultrasound imaging of highly stretchable zinc oxide/poly dimethylacrylamide nanocomposite hydrogel. . ACS Appl. Bio Mater. 3::401224
    [Crossref] [Google Scholar]
  30. 30.
    Montero-Baker M, Au-Yeung K, Wisniewski N, Gamsey S, Morelli-Alvarez L, et al. 2015.. The first-in-man “si se puede” study for the use of micro-oxygen sensors (MOXYs) to determine dynamic relative oxygen indices in the feet of patients with limb-threatening ischemia during endovascular therapy. . J. Vasc. Surg. 61::150110.e1
    [Crossref] [Google Scholar]
  31. 31.
    Unruh RM, Bornhoeft LR, Nichols SP, Wisniewski NA, McShane MJ. 2022.. Inorganic–organic interpenetrating network hydrogels as tissue-integrating luminescent implants: physicochemical characterization and preclinical evaluation. . Macromol. Biosci. 22::2100380
    [Crossref] [Google Scholar]
  32. 32.
    Andrus LP, Unruh R, Wisniewski NA, McShane MJ. 2015.. Characterization of lactate sensors based on lactate oxidase and palladium benzoporphyrin immobilized in hydrogels. . Biosensors 5::398416
    [Crossref] [Google Scholar]
  33. 33.
    Unruh RM, Roberts JR, Nichols SP, Gamsey S, Wisniewski NA, McShane MJ. 2015.. Preclinical evaluation of poly(HEMA-co-acrylamide) hydrogels encapsulating glucose oxidase and palladium benzoporphyrin as fully implantable glucose sensors. . J. Diabetes Sci. Technol. 9::98592
    [Crossref] [Google Scholar]
  34. 34.
    Kaefer K, Kruger K, Schlapp F, Uzun H, Celiksoy S, et al. 2021.. Implantable sensors based on gold nanoparticles for continuous long-term concentration monitoring in the body. . Nano Lett. 21::332530
    [Crossref] [Google Scholar]
  35. 35.
    Falcucci T, Presley KF, Choi J, Fizpatrick V, Barry J, et al. 2022.. Degradable silk-based subcutaneous oxygen sensors. . Adv. Funct. Mater. 32::2202020
    [Crossref] [Google Scholar]
  36. 36.
    Terzopoulou Z, Zamboulis A, Koumentakou I, Michailidou G, Noordam MJ, Bikiaris DN. 2022.. Biocompatible synthetic polymers for tissue engineering purposes. . Biomacromolecules 23::184163
    [Crossref] [Google Scholar]
  37. 37.
    Teo AJT, Mishra A, Park I, Kim YJ, Park WT, Yoon YJ. 2016.. Polymeric biomaterials for medical implants and devices. . ACS Biomater. Sci. Eng. 2::45472
    [Crossref] [Google Scholar]
  38. 38.
    Hogg A, Aellen T, Uhl S, Graf B, Keppner H, et al. 2013.. Ultra-thin layer packaging for implantable electronic devices. . J. Micromech. Microeng. 23::075001
    [Crossref] [Google Scholar]
  39. 39.
    Hassler C, von Metzen RP, Ruther P, Stieglitz T. 2010.. Characterization of parylene C as an encapsulation material for implanted neural prostheses. . J. Biomed. Mater. Res. B Appl. Biomater. 93::26674
    [Crossref] [Google Scholar]
  40. 40.
    Shi Z, Gao XH, Cai X, Zhao HY, Wang XH, et al. 2023.. Fully implantable and retrievable upconversion waveguides for photodynamic therapy in deep tissue. . Adv. Opt. Mater. 11::2300689
    [Crossref] [Google Scholar]
  41. 41.
    Sykes EA, Albanese A, Chan WCW. 2013.. Implantable waveguides. . Nat. Photon. 7::94041
    [Crossref] [Google Scholar]
  42. 42.
    Montgomery M, Davenport Huyer L, Bannerman D, Mohammadi MH, Conant G, Radisic M. 2018.. Method for the fabrication of elastomeric polyester scaffolds for tissue engineering and minimally invasive delivery. . ACS Biomater. Sci. Eng. 4::3691703
    [Crossref] [Google Scholar]
  43. 43.
    Turner BL, Twiddy J, Wilkins MD, Ramesh S, Kilgour KM, et al. 2023.. Biodegradable elastomeric circuit boards from citric acid-based polyesters. . NPJ Flexible Electron. 7::25
    [Crossref] [Google Scholar]
  44. 44.
    Tong WY, Sweetman MJ, Marzouk ER, Fraser C, Kuchel T, Voelcker NH. 2016.. Towards a subcutaneous optical biosensor based on thermally hydrocarbonised porous silicon. . Biomaterials 74::21730
    [Crossref] [Google Scholar]
  45. 45.
    Chimene D, Alge DL, Gaharwar AK. 2015.. Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. . Adv. Mater. 27::726184
    [Crossref] [Google Scholar]
  46. 46.
    Nazempour R, Zhang QY, Fu RX, Sheng X. 2018.. Biocompatible and implantable optical fibers and waveguides for biomedicine. . Materials 11::1283
    [Crossref] [Google Scholar]
  47. 47.
    Alt MT, Mittnacht A, Stieglitz T. 2018.. Implantable glass waveguides and coating materials for chronic optical medical applications. . In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 459598. New York:: IEEE
    [Google Scholar]
  48. 48.
    Lee GH, Moon H, Kim H, Lee GH, Kwon W, et al. 2020.. Multifunctional materials for implantable and wearable photonic healthcare devices. . Nat. Rev. Mater. 5::14965
    [Crossref] [Google Scholar]
  49. 49.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. 2008.. Biosensing with plasmonic nanosensors. . Nat. Mater. 7::44253
    [Crossref] [Google Scholar]
  50. 50.
    Boulogeorgos AAA, Trevlakis SE, Chatzidiamantis ND. 2021.. Optical wireless communications for in-body and transdermal biomedical applications. . IEEE Commun. Mag. 59::11925
    [Crossref] [Google Scholar]
  51. 51.
    Azzi J, Arnoux P, Mansour H, Botrus L, Le Cunff S, et al. 2022.. Skin oxygen saturation measurement using a non-contact optical device: optical phantoms development and metrological characterization. . Proc. SPIE 12147::1214703
    [Google Scholar]
  52. 52.
    Jo HC, Kim JH, Kim DY. 2018.. Comparison of light absorption levels with different skin phantoms and the Monte Carlo simulation using Fourier-domain optical coherence tomography. . Proc. SPIE 10492::11318
    [Google Scholar]
  53. 53.
    Liu GL, Chen JF, Zhao ZH, Zhao G, Dong EB, et al. 2017.. Effect of surface topographic features on the optical properties of skin: a phantom study. . Proc. SPIE 10024::100240O
    [Google Scholar]
  54. 54.
    Diao DY, Tchvialeva L, Dhadwal G, Lui H, McLean DI, Lee TK. 2014.. Durable rough skin phantoms for optical modeling. . Phys. Med. Biol. 59::48592
    [Crossref] [Google Scholar]
  55. 55.
    Long RQ, McShane M. 2012.. Design of an optical system for interrogation of implanted luminescent sensors and verification with silicone skin phantoms. . IEEE Trans. Biomed. Eng. 59::245965
    [Crossref] [Google Scholar]
  56. 56.
    Meglinski IV, Matcher SJ. 2002.. Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions. . Physiol. Meas. 23::74153
    [Crossref] [Google Scholar]
  57. 57.
    Smith AM, Mancini MC, Nie SM. 2009.. Second window for in vivo imaging. . Nat. Nanotechnol. 4::71011
    [Crossref] [Google Scholar]
  58. 58.
    Lane LA, Xue RY, Nie SM. 2018.. Emergence of two near-infrared windows for in vivo and intraoperative SERS. . Curr. Opin. Chem. Biol. 45::95103
    [Crossref] [Google Scholar]
  59. 59.
    Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, et al. 2009.. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. . Nat. Nanotechnol. 4::77380
    [Crossref] [Google Scholar]
  60. 60.
    Vo J, Chang TC, Shea KI, Myers M, Arbabian A, Vasudevan S. 2020.. Assessment of miniaturized ultrasound-powered implants: an in vivo study. . J. Neural Eng. 17:(1):016072
    [Crossref] [Google Scholar]
  61. 61.
    Haerinia M, Shadid R. 2020.. Wireless power transfer approaches for medical implants: a review. . Signals 1:(2):20929
    [Crossref] [Google Scholar]
  62. 62.
    Jaafar B, Soltan A, Neasham J, Degenaar P. 2019.. Wireless ultrasonic communication for biomedical injectable implantable device. . In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp. 402427. New York:: IEEE
    [Google Scholar]
  63. 63.
    Ozeri S, Shmilovitz D. 2010.. Ultrasonic transcutaneous energy transfer for powering implanted devices. . Ultrasonics 50:(6):55666
    [Crossref] [Google Scholar]
  64. 64.
    Ferguson JE, Redish AD. 2011.. Wireless communication with implanted medical devices using the conductive properties of the body. . Expert Rev. Med. Devices 8::42733
    [Crossref] [Google Scholar]
  65. 65.
    Shinagawa M, Fukumoto M, Ochiai K, Kyuragi H. 2004.. A near-field-sensing transceiver for intrabody communication based on the electrooptic effect. . IEEE Trans. Instrum. Meas. 53::153338
    [Crossref] [Google Scholar]
  66. 66.
    Zimmerman TG. 1996.. Personal area networks: near-field intrabody communication. . IBM Syst. J. 35::60917
    [Crossref] [Google Scholar]
  67. 67.
    Zhao ZF, Spyropoulos GD, Cea C, Gelinas JN, Khodagholy D. 2022.. Ionic communication for implantable bioelectronics. . Sci. Adv. 8::eabm7851
    [Crossref] [Google Scholar]
  68. 68.
    Polat EO. 2021.. Seamlessly integrable optoelectronics for clinical grade wearables. . Adv. Mater. Technol. 6::2000853
    [Crossref] [Google Scholar]
  69. 69.
    Li HC, Cao Y, Wang ZH, Feng X. 2019.. Flexible and stretchable inorganic optoelectronics. . Opt. Mater. Express 9::402349
    [Crossref] [Google Scholar]
  70. 70.
    Park S, Fukuda K, Wang M, Lee C, Yokota T, et al. 2018.. Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. . Adv. Mater. 30::1802359
    [Crossref] [Google Scholar]
  71. 71.
    Ackermann DM, Smith B, Wang XF, Kilgore KL, Peckham PH. 2008.. Designing the optical interface of a transcutaneous optical telemetry link. . IEEE Trans. Biomed. Eng. 55::136573
    [Crossref] [Google Scholar]
  72. 72.
    Bremer K, Alwis LSM, Roth B. 2020.. Micro-structured optical multi-mode fibers for sensing applications. . Proc. SPIE 11355::113550O
    [Google Scholar]
  73. 73.
    Li BY, Zhao YF, Zhang YF, Zhang AY, Li XZ, et al. 2021.. Functionalized micro structured optical fibers and devices for sensing applications: a review. . J. Lightwave Technol. 39::381223
    [Crossref] [Google Scholar]
  74. 74.
    Wang J, Sharmin N, Ren Y. 2018.. Wavelength-division-multiplexed fiber Bragg grating sensor integrated with surface plasmon resonance with the capability of multipoint, real-time remote sensing. . Proc. SPIE 10849::108491F
    [Google Scholar]
  75. 75.
    US Food Drug Admin. (FDA). 2017.. Overview of Medical Device Classification and Reclassification. https://www.fda.gov/about-fda/cdrh-transparency/overview-medical-device-classification-and-reclassification
    [Google Scholar]
  76. 76.
    Med. Devices Coord. Group (MDCG). 2021.. Guidance on classification of medical devices. Rep. MDCG 2021-24 , MDCG, Brussels:. https://health.ec.europa.eu/system/files/2021-10/mdcg_2021-24_en_0.pdf
    [Google Scholar]
  77. 77.
    [Google Scholar]
  78. 78.
    US Food Drug Admin. (FDA). 2023.. Marketing Clearance of Diagnostic Ultrasound Systems and Transducers. https://www.fda.gov/media/71100/download
    [Google Scholar]
  79. 79.
    Marty P, Boehm C, Paverd C, Rominger M, Fichtner A. 2022.. Full-waveform ultrasound modeling of soft tissue-bone interactions using conforming hexahedral meshes. . Proc. SPIE 12031::120313H
    [Google Scholar]
  80. 80.
    Lee B-I, Song W, Kim H, Kang HW. 2016.. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments. . J. Korean Phys. Soc. 68::113741
    [Crossref] [Google Scholar]
  81. 81.
    Roldan M, Kyriacou PA. 2023.. Head phantom for the acquisition of pulsatile optical signals for traumatic brain injury monitoring. . Photonics 10::504
    [Crossref] [Google Scholar]
  82. 82.
    Al-Zu'bi MM, Mohan AS. 2020.. Implantable biosensor interface platform for monitoring of atherosclerosis. . IEEE Sens. Lett. 4::14
    [Crossref] [Google Scholar]
  83. 83.
    Jin X, Alam MA. 2020.. Generalized modeling framework of metal oxide-based non-enzymatic glucose sensors: concepts, methods, and challenges. . IEEE Trans. Biomed. Eng. 67::67987
    [Crossref] [Google Scholar]
  84. 84.
    Brown JQ, McShane MJ. 2006.. Modeling of spherical fluorescent glucose microsensor systems: design of enzymatic smart tattoos. . Biosens. Bioelectron. 21::176069
    [Crossref] [Google Scholar]
  85. 85.
    Novak MT, Yuan F, Reichert WM. 2010.. Modeling the relative impact of capsular tissue effects on implanted glucose sensor time lag and signal attenuation. . Anal. Bioanal. Chem. 398::1695705
    [Crossref] [Google Scholar]
  86. 86.
    Malik J, Kim S, Seo JM, Cho YM, Bien F. 2023:. Minimally invasive implant type electromagnetic biosensor for continuous glucose monitoring system: in vivo evaluation. . IEEE Trans. Biomed. Eng. 70::100011
    [Crossref] [Google Scholar]
  87. 87.
    Sedehi R, Budgett D, Jiang J, Ziyi X, Dai X, et al. 2021.. A wireless power method for deeply implanted biomedical devices via capacitively coupled conductive power transfer. . IEEE Trans. Power Electron. 36::187082
    [Crossref] [Google Scholar]
  88. 88.
    Wang L, Jacques SL, Zheng L. 1995.. MCML—Monte Carlo modeling of light transport in multi-layered tissues. . Comput. Methods Programs Biomed. 47::13146
    [Crossref] [Google Scholar]
  89. 89.
    Fine J, Coté G, McShane M. 2022.. Geometry design for a fully insertable glucose biosensor with multimodal optical readout. . J. Biomed. Opt. 27::117001
    [Google Scholar]
  90. 90.
    Patrick M, Christian B, Catherine P, Marga R, Andreas F. 2022.. Full-waveform ultrasound modeling of soft tissue-bone interactions using conforming hexahedral meshes. . Proc. SPIE 12031::120313H
    [Google Scholar]
  91. 91.
    Dib G, Sexton S, Prowant M, Crawford S, Diaz A. 2018.. On the usage of ultrasound computational models for decision making under ambiguity. . AIP Conf. Proc. 1949::110001
    [Crossref] [Google Scholar]
  92. 92.
    Leung DP, McCormick DJ, Malpas SC, Budgett DM. 2019.. Reducing drift in implantable pressure sensors. . IEEE Sens. J. 19::245865
    [Crossref] [Google Scholar]
  93. 93.
    Bornhoeft LR, Biswas A, McShane MJ. 2017.. Composite hydrogels with engineered microdomains for optical glucose sensing at low oxygen conditions. . Biosensors 7::8
    [Crossref] [Google Scholar]
  94. 94.
    Baker DA, Gough DA. 1993.. Dynamic concentration challenges for biosensor characterization. . Biosens. Bioelectron. 8::43341
    [Crossref] [Google Scholar]
  95. 95.
    Davey RJ, Low C, Jones TW, Fournier PA. 2010.. Contribution of an intrinsic lag of continuous glucose monitoring systems to differences in measured and actual glucose concentrations changing at variable rates in vitro. . J. Diabetes Sci. Technol. 4::139399
    [Crossref] [Google Scholar]
  96. 96.
    Justino CIL, Duarte AC, Rocha-Santos TAP. 2016.. Critical overview on the application of sensors and biosensors for clinical analysis. . Trends Anal. Chem. 85::3660
    [Crossref] [Google Scholar]
  97. 97.
    Koschwanez HE, Reichert WM. 2007.. In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations. . Biomaterials 28::3687703
    [Crossref] [Google Scholar]
  98. 98.
    Bashkatov AN, Genina EA, Kochubey VF, Stolnitz MM, Bashkatova TA, et al. 2000.. Optical properties of melanin in the skin and skin-like phantoms. . Proc. SPIE 4162::21926
    [Crossref] [Google Scholar]
  99. 99.
    Lualdi M, Colombo A, Mari A, Tomatis S, Marchesini R. 2002.. Development of simulated pigmented lesions in an optical skin-tissue phantom: experimental measurements in the visible and near infrared. . J. Laser Appl. 14::12227
    [Crossref] [Google Scholar]
  100. 100.
    Lualdi M, Colombo A, Carrara M, Scienza L, Tomatis S, Marchesini R. 2006.. Optical devices used for image analysis of pigmented skin lesions: a proposal for quality assurance protocol using tissue-like phantoms. . Phys. Med. Biol. 51::N42940
    [Crossref] [Google Scholar]
  101. 101.
    Saager RB, Kondru C, Au K, Sry K, Ayers F, Durkin AJ. 2010.. Multi-layer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging. . Proc. SPIE 7567::756706
    [Crossref] [Google Scholar]
  102. 102.
    Sheng SW, Wu Q, Han YL, Dong EB, Xu R. 2015.. Fabricating optical phantoms to simulate skin tissue properties and microvasculatures. . Proc. SPIE 9325::932507
    [Crossref] [Google Scholar]
  103. 103.
    Rosa BMG, Yang G-Z. 2020.. Ultrasound powered implants: design, performance considerations and simulation results. . Sci. Rep. 10::6537
    [Crossref] [Google Scholar]
  104. 104.
    Chen CM, Kwasnicki RM, Curto VF, Yang GZ, Lo BPL. 2019.. Tissue oxygenation sensor and an active in vitro phantom for sensor validation. . IEEE Sens. J. 19::823340
    [Crossref] [Google Scholar]
  105. 105.
    Shi C, Andino-Pavlovsky V, Lee SA, Costa T, Elloian J, et al. 2021.. Application of a sub–0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing. . Sci. Adv. 7::eabf6312
    [Crossref] [Google Scholar]
  106. 106.
    Marks HL, Cook K, Roussakis E, Cascales JP, Korunes-Miller JT, et al. 2022.. Quantitative luminescence photography of a swellable hydrogel dressing with a traffic-light response to oxygen. . Adv. Healthcare Mater. 11::2101605
    [Crossref] [Google Scholar]
  107. 107.
    Hoare D, Tsiamis A, Marland JRK, Czyzewski J, Kirimi MT, et al. 2022.. Predicting cardiovascular stent complications using self-reporting biosensors for noninvasive detection of disease. . Adv. Sci. 9::2105285
    [Crossref] [Google Scholar]
  108. 108.
    Sun J, Wu X, Xiao J, Zhang Y, Ding J, et al. 2023.. Hydrogel-integrated multimodal response as a wearable and implantable bidirectional interface for biosensor and therapeutic electrostimulation. . ACS Appl. Mater. Interfaces 15::5897909
    [Crossref] [Google Scholar]
  109. 109.
    Wei JCJ, Edwards GA, Martin DJ, Huang H, Crichton ML, Kendall MAF. 2017.. Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: from mice, rats, rabbits, pigs to humans. . Sci. Rep. 7::15885
    [Crossref] [Google Scholar]
  110. 110.
    Monteiro-Riviere NA, Bristol DG, Manning TO, Rogers RA, Riviere JE. 1990.. Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species. . J. Investig. Dermatol. 95::58286
    [Crossref] [Google Scholar]
  111. 111.
    Lynn AK, Yannas IV, Bonfield W. 2004.. Antigenicity and immunogenicity of collagen. . J. Biomed. Mater. Res. B Appl. Biomater. 71::34354
    [Crossref] [Google Scholar]
  112. 112.
    Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, et al. 2017.. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. . Biotechnol. Adv. 35::53044
    [Crossref] [Google Scholar]
  113. 113.
    Abraham AA, Means AK, Clubb FJ, Fei RC, Locke AK, et al. 2018.. Foreign body reaction to a subcutaneously implanted self cleaning, thermoresponsive hydrogel membrane for glucose biosensors. . ACS Biomater. Sci. Eng. 4::410411
    [Crossref] [Google Scholar]
  114. 114.
    Gu B, Papadimitrakopoulos F, Burgess DJ. 2018.. PLGA microsphere/PVA hydrogel coatings suppress the foreign body reaction for 6 months. . J. Control. Release 289::3543
    [Crossref] [Google Scholar]
  115. 115.
    Muller AJ, Knuth M, Nikolaus KS, Krivanek R, Kuster F, et al. 2013.. Blood glucose self-monitoring with a long-term subconjunctival glucose sensor. . J. Diabetes Sci. Technol. 7::2434
    [Crossref] [Google Scholar]
  116. 116.
    Noskovicova N, Hinz B, Pakshir P. 2021.. Implant fibrosis and the underappreciated role of myofibroblasts in the foreign body reaction. . Cells 10::1794
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110222-101045
Loading
/content/journals/10.1146/annurev-bioeng-110222-101045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error