1932

Abstract

Among the various types of enzyme-based biosensors, sensors utilizing enzymes capable of direct electron transfer (DET) are recognized as the most ideal. However, only a limited number of redox enzymes are capable of DET with electrodes, that is, dehydrogenases harboring a subunit or domain that functions specifically to accept electrons from the redox cofactor of the catalytic site and transfer the electrons to the external electron acceptor. Such subunits or domains act as built-in mediators for electron transfer between enzymes and electrodes; consequently, such enzymes enable direct electron transfer to electrodes and are designated as DET-type enzymes. DET-type enzymes fall into several categories, including redox cofactors of catalytic reactions, built-in mediators for DET with electrodes and by their protein hierarchic structures, DET-type oxidoreductases with oligomeric structures harboring electron transfer subunits, and monomeric DET-type oxidoreductases harboring electron transfer domains. In this review, we cover the science of DET-type oxidoreductases and their biomedical applications. First, we introduce the structural biology and current understanding of DET-type enzyme reactions. Next, we describe recent technological developments based on DET-type enzymes for biomedical applications, such as biosensors and biochemical energy harvesting for self-powered medical devices. Finally, after discussing how to further engineer and create DET-type enzymes, we address the future prospects for DET-type enzymes in biomedical engineering.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110222-101926
2024-07-03
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-110222-101926.html?itemId=/content/journals/10.1146/annurev-bioeng-110222-101926&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Turner APF, Karube I, Wilson GS, Worsfold PJ. 1987.. Preface. . In Biosensors: Fundamentals and Applications, pp. vvii. New York:: Oxford Univ. Press
    [Google Scholar]
  2. 2.
    Clark LC Jr., Lyons C. 1962.. Electrode systems for continuous monitoring in cardiovascular surgery. . Ann. N. Y. Acad. Sci. 102:(1):2945
    [Crossref] [Google Scholar]
  3. 3.
    Updike SJ, Hicks GP. 1967.. The enzyme electrode. . Nature 214:(5092):98688
    [Crossref] [Google Scholar]
  4. 4.
    Clark LC Jr. 1965.. Membrane polarographic electrode system and method with electrochemical compensation. US Patent 3,539,455
    [Google Scholar]
  5. 5.
    Lee I, Probst D, Klonoff D, Sode K. 2021.. Continuous glucose monitoring systems—current status and future perspectives of the flagship technologies in biosensor research. . Biosens. Bioelectron. 181::113054
    [Crossref] [Google Scholar]
  6. 6.
    Berezin IV, Bogdanovskaya VA, Varfolomeev SD, Tarasevich MR, Iaropolov AI. 1978.. Bioelectrocatalysis—equilibrium oxygen potential in presence of laccase. . Dokl. Akad. Nauk. SSSR 240:(3):61518
    [Google Scholar]
  7. 7.
    Guo LH, Hill HAO, Lawrance GA, Sanghera GS, Hopper DJ. 1989.. Direct un-mediated electrochemistry of the enzyme p-cresolmethylhydroxylase. . J. Electroanal. Chem. 266:(2):37996
    [Crossref] [Google Scholar]
  8. 8.
    Burrows AL, Allen H, Hill O, Leese TA, Mcintire WS, et al. 1991.. Direct electrochemistry of the enzyme, methylamine dehydrogenase, from bacterium W3A1. . Eur. J. Biochem. 199:(1):7378
    [Crossref] [Google Scholar]
  9. 9.
    Ikeda T, Fushimi F, Miki K, Senda M. 1988.. Direct bioelectrocatalysis at electrodes modified with d-gluconate dehydrogenase. . Agric. Biol. Chem. 52:(10):265558
    [Google Scholar]
  10. 10.
    Ikeda T, Matsushita F, Senda M. 1991.. Amperometric fructose sensor based on direct bioelectrocatalysis. . Biosens. Bioelectron. 6:(4):299304
    [Crossref] [Google Scholar]
  11. 11.
    Ikeda T, Miyaoka S, Matsushita F, Kobayashi D, Senda M. 1992.. Direct bioelectrocatalysis at metal and carbon electrodes modified with adsorbed d-gluconate dehydrogenase or adsorbed alcohol dehydrogenase from bacterial membranes. . Chem. Lett. 21:(5):84750
    [Crossref] [Google Scholar]
  12. 12.
    Bollella P, Gorton L. 2018.. Enzyme based amperometric biosensors. . Curr. Opin. Electrochem. 10::15773
    [Crossref] [Google Scholar]
  13. 13.
    Schachinger F, Chang H, Scheiblbrandner S, Ludwig R. 2021.. Amperometric biosensors based on direct electron transfer enzymes. . Molecules 26:(15):4525
    [Crossref] [Google Scholar]
  14. 14.
    Das P, Das M, Chinnadayyala SR, Singha IM, Goswami P. 2016.. Recent advances on developing 3rd generation enzyme electrode for biosensor applications. . Biosens. Bioelectron. 79::38697
    [Crossref] [Google Scholar]
  15. 15.
    Adachi T, Kitazumi Y, Shirai O, Kano K. 2020.. Recent progress in applications of enzymatic bioelectrocatalysis. . Catalysts 10:(12):1413
    [Crossref] [Google Scholar]
  16. 16.
    Chen ZW, Koh M, Van Driessche G, Van Beeumen JJ, Bartsch RG, et al. 1994.. The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. . Science 266:(5184):43032
    [Crossref] [Google Scholar]
  17. 17.
    Shiota M, Yamazaki T, Yoshimatsu K, Kojima K, Tsugawa W, et al. 2016.. An Fe–S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes. . Bioelectrochemistry 112::17883
    [Crossref] [Google Scholar]
  18. 18.
    Tsujimura S, Abo T, Ano Y, Matsushita K, Kano K. 2007.. Electrochemistry of d-gluconate 2-dehydrogenase from Gluconobacter frateurii on indium tin oxide electrode surface. . Chem. Lett. 36:(9):116465
    [Crossref] [Google Scholar]
  19. 19.
    Ramanavicius A, Habermuller K, Csöregi E, Laurinavicius V, Schuhmann W. 1999.. Polypyrrole-entrapped quinohemoprotein alcohol dehydrogenase. Evidence for direct electron transfer via conducting-polymer chains. . Anal. Chem. 71:(16):358186
    [Crossref] [Google Scholar]
  20. 20.
    Adachi T, Miyata T, Makino F, Tanaka H, Namba K, et al. 2023.. Experimental and theoretical insights into bienzymatic cascade for mediatorless bioelectrochemical ethanol oxidation with alcohol and aldehyde dehydrogenases. . ACS Catal. 13:(12):795565
    [Crossref] [Google Scholar]
  21. 21.
    Tsutsumi M, Tsujimura S, Shirai O, Kano K. 2009.. Direct electrochemistry of histamine dehydrogenase from Nocardioides simplex. . J. Electroanal. Chem. 625:(2):8285
    [Crossref] [Google Scholar]
  22. 22.
    Goyal P, Deay D III, Seibold S, Candido ACL, et al. 2023.. Structure of Rhizobium sp. 4-9 histamine dehydrogenase and analysis of the electron transfer pathway to an abiological electron acceptor. . Arch. Biochem. Biophys. 742::109612
    [Crossref] [Google Scholar]
  23. 23.
    Reed T, Lushington GH, Xia Y, Hirakawa H, Travis DAM, et al. 2010.. Crystal structure of histamine dehydrogenase from Nocardioides simplex. . J. Biol. Chem. 285:(33):2578291
    [Crossref] [Google Scholar]
  24. 24.
    Sode K, Tsugawa W, Yamazaki T, Watanabe M, Ogasawara N, Tanaka M. 1996.. A novel thermostable glucose dehydrogenase varying temperature properties by altering its quaternary structures. . Enzyme Microb. Technol. 19:(2):8285
    [Crossref] [Google Scholar]
  25. 25.
    Yamazaki T, Tsugawa W, Sode K. 1999.. Subunit analyses of a novel thermostable glucose dehydrogenase showing different temperature properties according to its quaternary structure. . Appl. Biochem. Biotechnol. 77–79::32535
    [Crossref] [Google Scholar]
  26. 26.
    Yamazaki T, Tsugawa W, Sode K. 1999.. Increased thermal stability of glucose dehydrogenase by cross-linking chemical modification. . Biotechnol. Lett. 21:(3):199202
    [Crossref] [Google Scholar]
  27. 27.
    Inose K, Fujikawa M, Yamazaki T, Kojima K, Sode K. 2003.. Cloning and expression of the gene encoding catalytic subunit of thermostable glucose dehydrogenase from Burkholderia cepacia in Escherichia coli. . Biochim. Biophys. Acta Proteins Proteom. 1645:(2):13338
    [Crossref] [Google Scholar]
  28. 28.
    Yamaoka H, Ferri S, Fujikawa M, Sode K. 2004.. Essential role of the small subunit of thermostable glucose dehydrogenase from Burkholderia cepacia. . Biotechnol. Lett. 26:(22):175761
    [Crossref] [Google Scholar]
  29. 29.
    Tsuya T, Ferri S, Fujikawa M, Yamaoka H, Sode K. 2006.. Cloning and functional expression of glucose dehydrogenase complex of Burkholderia cepacia in Escherichia coli. . J. Biotechnol. 123:(2):12736
    [Crossref] [Google Scholar]
  30. 30.
    Kakehi N, Yamazaki T, Tsugawa W, Sode K. 2007.. A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell. . Biosens. Bioelectron. 22:(9/10):225055
    [Crossref] [Google Scholar]
  31. 31.
    Yoshida H, Kojima K, Shiota M, Yoshimatsu K, Yamazaki T, et al. 2019.. X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein. . Acta Crystallogr. D 75::84151
    [Crossref] [Google Scholar]
  32. 32.
    Yamashita Y, Suzuki N, Hirose N, Kojima K, Tsugawa W, Sode K. 2018.. Mutagenesis study of the cytochrome c subunit responsible for the direct electron transfer-type catalytic activity of FAD-dependent glucose dehydrogenase. . Int. J. Mol. Sci. 19:(4):931
    [Crossref] [Google Scholar]
  33. 33.
    Okuda-Shimazaki J, Loew N, Hirose N, Kojima K, Mori K, et al. 2018.. Construction and characterization of flavin adenine dinucleotide glucose dehydrogenase complex harboring a truncated electron transfer subunit. . Electrochim. Acta 277::27686
    [Crossref] [Google Scholar]
  34. 34.
    Okuda-Shimazaki J, Yoshida H, Lee I, Kojima K, Suzuki N, et al. 2022.. Microgravity environment grown crystal structure information based engineering of direct electron transfer type glucose dehydrogenase. . Commun. Biol. 5::1334
    [Crossref] [Google Scholar]
  35. 35.
    Ameyama M, Shinagawa E, Matsushita K, Adachi O. 1981.. d-fructose dehydrogenase of Gluconobacter industrius: purification, characterization, and application to enzymatic microdetermination of d-fructose. . J. Bacteriol. 145:(2):81423
    [Crossref] [Google Scholar]
  36. 36.
    So K, Kawai S, Hamano Y, Kitazumi Y, Shirai O, et al. 2014.. Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode. . Phys. Chem. Chem. Phys. 16:(10):482329
    [Crossref] [Google Scholar]
  37. 37.
    Roe JH, Epstein JH, Goldstein NP. 1949.. A photometric method for the determination of insulin in plasma and urine. . J. Biol. Chem. 178:(2):83945
    [Crossref] [Google Scholar]
  38. 38.
    Bollella P, Gorton L, Antiochia R. 2018.. Direct electron transfer of dehydrogenases for development of 3rd generation biosensors and enzymatic fuel cells. . Sensors 18:(5):1319
    [Crossref] [Google Scholar]
  39. 39.
    Kawai S, Goda-Tsutsumi M, Yakushi T, Kano K, Matsushita K. 2013.. Heterologous overexpression and characterization of a flavoprotein–cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260. . Appl. Environ. Microbiol. 79:(5):165460
    [Crossref] [Google Scholar]
  40. 40.
    Kawai S, Yakushi T, Matsushita K, Kitazumi Y, Shirai O, Kano K. 2014.. The electron transfer pathway in direct electrochemical communication of fructose dehydrogenase with electrodes. . Electrochem. Commun. 38::2831
    [Crossref] [Google Scholar]
  41. 41.
    Kawai S, Kitazumi Y, Shirai O, Kano K. 2016.. Bioelectrochemical characterization of the reconstruction of heterotrimeric fructose dehydrogenase from its subunits. . Electrochim. Acta 210::68994
    [Crossref] [Google Scholar]
  42. 42.
    Hibino Y, Kawai S, Kitazumi Y, Shirai O, Kano K. 2016.. Mutation of heme c axial ligands in d-fructose dehydrogenase for investigation of electron transfer pathways and reduction of overpotential in direct electron transfer-type bioelectrocatalysis. . Electrochem. Commun. 67::4346
    [Crossref] [Google Scholar]
  43. 43.
    Hibino Y, Kawai S, Kitazumi Y, Shirai O, Kano K. 2017.. Construction of a protein-engineered variant of d-fructose dehydrogenase for direct electron transfer-type bioelectrocatalysis. . Electrochem. Commun. 77::11215
    [Crossref] [Google Scholar]
  44. 44.
    Kaida Y, Hibino Y, Kitazumi Y, Shirai O, Kano K. 2019.. Ultimate downsizing of d-fructose dehydrogenase for improving the performance of direct electron transfer-type bioelectrocatalysis. . Electrochem. Commun. 98::1015
    [Crossref] [Google Scholar]
  45. 45.
    Yamashita Y, Lee I, Loew N, Sode K. 2018.. Direct electron transfer (DET) mechanism of FAD dependent dehydrogenase complexes—from the elucidation of intra- and inter-molecular electron transfer pathway to the construction of engineered DET enzyme complexes. . Curr. Opin. Electrochem. 12::92100
    [Crossref] [Google Scholar]
  46. 46.
    Sugimoto Y, Kawai S, Kitazumi Y, Shirai O, Kano K. 2015.. Function of C-terminal hydrophobic region in fructose dehydrogenase. . Electrochim. Acta 176::97681
    [Crossref] [Google Scholar]
  47. 47.
    Kawai S, Yakushi T, Matsushita K, Kitazumi Y, Shirai O, Kano K. 2015.. Role of a non-ionic surfactant in direct electron transfer-type bioelectrocatalysis by fructose dehydrogenase. . Electrochim. Acta 152::1924
    [Crossref] [Google Scholar]
  48. 48.
    Suzuki Y, Makino F, Miyata T, Tanaka H, Namba K, et al. 2022.. Structural and bioelectrochemical elucidation of direct electron transfer-type membrane-bound fructose dehydrogenase. . ChemRxiv 2022-d7hl9. https://doi.org/10.26434/chemrxiv-2022-d7hl9
  49. 49.
    Suzuki Y, Makino F, Miyata T, Tanaka H, Namba K, et al. 2023.. Essential insight of direct electron transfer-type bioelectrocatalysis by membrane-bound d-fructose dehydrogenase with structural bioelectrochemistry. . ACS Catal. 13::1382837
    [Crossref] [Google Scholar]
  50. 50.
    Adachi T, Sowa K, Kitazumi Y, Shirai O, Kano K. 2022.. Cyanide sensitivity in direct electron transfer–type bioelectrocatalysis by membrane-bound alcohol dehydrogenase from Gluconobacter oxydans. . Bioelectrochemistry 143::107992
    [Crossref] [Google Scholar]
  51. 51.
    Adachi T, Kitazumi Y, Shirai O, Kano K. 2021.. Direct electron transfer-type bioelectrocatalysis by membrane-bound aldehyde dehydrogenase from Gluconobacter oxydans and cyanide effects on its bioelectrocatalytic properties. . Electrochem. Commun. 123::106911
    [Crossref] [Google Scholar]
  52. 52.
    Scheiblbrandner S, Ludwig R. 2020.. Cellobiose dehydrogenase: bioelectrochemical insights and applications. . Bioelectrochemistry 131::107345
    [Crossref] [Google Scholar]
  53. 53.
    Kadek A, Kavan D, Felice AKG, Ludwig R, Halada P, Man P. 2015.. Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase. . FEBS Lett. 589:(11):119499
    [Crossref] [Google Scholar]
  54. 54.
    Kadek A, Kavan D, Marcoux J, Stojko J, Felice AKG, et al. 2017.. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics. . Biochim. Biophys. Acta Gen. Subj. 1861:(2):15767
    [Crossref] [Google Scholar]
  55. 55.
    Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, et al. 2015.. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. . Nat. Commun. 6::7542
    [Crossref] [Google Scholar]
  56. 56.
    Zámocký M, Hallberg M, Ludwig R, Divne C, Haltrich D. 2004.. Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. . Gene 338:(1):114
    [Crossref] [Google Scholar]
  57. 57.
    Larsson T, Elmgren M, Lindquist SE, Tessema M, Gorton L, Henriksson G. 1996.. Electron transfer between cellobiose dehydrogenase and graphite electrodes. . Anal. Chim. Acta 331:(3):20715
    [Crossref] [Google Scholar]
  58. 58.
    Larsson T, Lindgren A, Ruzgas T, Lindquist SE, Gorton L. 2000.. Bioelectrochemical characterization of cellobiose dehydrogenase modified graphite electrodes: ionic strength and pH dependences. . J. Electroanal. Chem. 482:(1):110
    [Crossref] [Google Scholar]
  59. 59.
    Lindgren A, Larsson T, Ruzgas T, Gorton L. 2000.. Direct electron transfer between the heme of cellobiose dehydrogenase and thiol modified gold electrodes. . J. Electroanal. Chem. 494:(2):10513
    [Crossref] [Google Scholar]
  60. 60.
    Illias RM, Sinclair R, Robertson D, Neu A, Chapman SK, Reid GA. 1998.. l-Mandelate dehydrogenase from Rhodotorula graminis: cloning, sequencing and kinetic characterization of the recombinant enzyme and its independently expressed flavin domain. . Biochem. J. 333:(1):10715
    [Crossref] [Google Scholar]
  61. 61.
    Smutok O, Karkovska M, Serkiz R, Vus В, Čenas N, Gonchar M. 2017.. A novel mediatorless biosensor based on flavocytochrome b2 immobilized onto gold nanoclusters for non-invasive l-lactate analysis of human liquids. . Sens. Actuators B 250::46975
    [Crossref] [Google Scholar]
  62. 62.
    Diêp Lê KH, Lederer F, Golinelli-Pimpaneau B. 2010.. Structural evidence for the functional importance of the heme domain mobility in flavocytochrome b2. . J. Mol. Biol. 400:(3):51830
    [Crossref] [Google Scholar]
  63. 63.
    Toyama H, Mathews FS, Adachi O, Matsushita K. 2004.. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology. . Arch. Biochem. Biophys. 428:(1):1021
    [Crossref] [Google Scholar]
  64. 64.
    Oubrie A, Rozeboom HJ, Kalk KH, Huizinga EG, Dijkstra BW. 2002.. Crystal structure of quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni. . J. Biol. Chem. 277:(5):372732
    [Crossref] [Google Scholar]
  65. 65.
    Ikeda T, Kobayashi D, Matsushita F, Sagara T, Niki K. 1993.. Bioelectrocatalysis at electrodes coated with alcohol dehydrogenase, a quinohemoprotein with heme c serving as a built-in mediator. . J. Electroanal. Chem. 361:(1/2):22128
    [Crossref] [Google Scholar]
  66. 66.
    Takeda K, Kusuoka R, Birrell JA, Yoshida M, Igarashi K, Nakamura N. 2020.. Bioelectrocatalysis based on direct electron transfer of fungal pyrroloquinoline quinone-dependent dehydrogenase lacking the cytochrome domain. . Electrochim. Acta 359::136982
    [Crossref] [Google Scholar]
  67. 67.
    Takeda K, Igarashi K, Yoshida M, Nakamura N. 2020.. Discovery of a novel quinohemoprotein from a eukaryote and its application in electrochemical devices. . Bioelectrochemistry 131::107372
    [Crossref] [Google Scholar]
  68. 68.
    Takeda K, Ishida T, Yoshida M, Samejima M, Ohno H, et al. 2019.. Crystal structure of the catalytic and cytochrome b domains in a eukaryotic pyrroloquinoline quinone-dependent dehydrogenase. . Appl. Environ. Microbiol. 85:(24):e01692-19
    [Crossref] [Google Scholar]
  69. 69.
    Lee I, Loew N, Tsugawa W, Lin CE, Probst D, et al. 2018.. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers. . Bioelectrochemistry 121::16
    [Crossref] [Google Scholar]
  70. 70.
    Probst D, Lee I, Sode K. 2022.. The development of micro-sized enzyme sensor based on direct electron transfer type open circuit potential sensing principle. . Electrochim. Acta 426::140798
    [Crossref] [Google Scholar]
  71. 71.
    Hiraka K, Tsugawa W, Asano R, Yokus MA, Ikebukuro K, et al. 2021.. Rational design of direct electron transfer type l-lactate dehydrogenase for the development of multiplexed biosensor. . Biosens. Bioelectron. 176::112933
    [Crossref] [Google Scholar]
  72. 72.
    Yamazaki T, Okuda-Shimazaki J, Sakata C, Tsuya T, Sode K. 2008.. Construction and characterization of direct electron transfer–type continuous glucose monitoring system employing thermostable glucose dehydrogenase complex. . Anal. Lett. 41:(13):236373
    [Crossref] [Google Scholar]
  73. 73.
    Inoue Y, Kusaka Y, Shinozaki K, Lee I, Sode K. 2022.. In vitro evaluation of miniaturized amperometric enzyme sensor based on the direct electron transfer principle for continuous glucose monitoring. . J. Diabetes Sci. Technol. 16:(5):11016
    [Crossref] [Google Scholar]
  74. 74.
    Yamashita Y, Ferri S, Huynh ML, Shimizu H, Yamaoka H, Sode K. 2013.. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase. . Enzyme Microbiol. Technol. 52:(2):12328
    [Crossref] [Google Scholar]
  75. 75.
    Shimizu H, Tsugawa W. 2012.. Glucose monitoring by direct electron transfer needle-type miniaturized electrode. . Electrochemistry 80:(5):37578
    [Crossref] [Google Scholar]
  76. 76.
    Lee I, Loew N, Tsugawa W, Ikebukuro K, Sode K. 2019.. Development of a third-generation glucose sensor based on the open circuit potential for continuous glucose monitoring. . Biosens. Bioelectron. 124/125::21623
    [Crossref] [Google Scholar]
  77. 77.
    Lee I, Wakako T, Ikebukuro K, Sode K. 2022.. In vitro continuous 3 months operation of direct electron transfer type open circuit potential based glucose sensor: heralding the next CGM sensor. . J. Diabetes Sci. Technol. 16:(5):110713
    [Crossref] [Google Scholar]
  78. 78.
    Ito Y, Okuda-Shimazaki J, Tsugawa W, Loew N, Shitanda I, et al. 2019.. Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase. Biosens. Bioelectron. 15:(129):18997
    [Crossref] [Google Scholar]
  79. 79.
    Tasca F, Zafar MN, Harreither W, Nöll G, Ludwig R, Gorton L. 2011.. A third generation glucose biosensor based on cellobiose dehydrogenase from Corynascus thermophilus and single-walled carbon nanotubes. . Analyst 136:(10):203336
    [Crossref] [Google Scholar]
  80. 80.
    Jayakumar K, Reichhart TMB, Schulz C, Ludwig R, Felice AKG, Leech D. 2022.. An oxygen insensitive amperometric glucose biosensor based on an engineered cellobiose dehydrogenase: direct versus mediated electron transfer responses. . ChemElectroChem 9:(13):e202200418
    [Crossref] [Google Scholar]
  81. 81.
    Felice AKG, Sygmund C, Harreither W, Kittl R, Gorton L, Ludwig R. 2013.. Substrate specificity and interferences of a direct-electron-transfer-based glucose biosensor. . J. Diabetes Sci. Technol. 7:(3):66977
    [Crossref] [Google Scholar]
  82. 82.
    Gineitytė J, Meškys R, Dagys M, Ratautas D. 2019.. Highly efficient direct electron transfer bioanode containing glucose dehydrogenase operating in human blood. . J. Power Sources 441::227163
    [Crossref] [Google Scholar]
  83. 83.
    Okuda J, Sode K. 2004.. PQQ glucose dehydrogenase with novel electron transfer ability. . Biochem. Biophys. Res. Commun. 314:(3):79397
    [Crossref] [Google Scholar]
  84. 84.
    Lee H, Lee YS, Lee SK, Baek S, Choi IG, et al. 2019.. Significant enhancement of direct electric communication across enzyme-electrode interface via nano-patterning of synthetic glucose dehydrogenase on spatially tunable gold nanoparticle (AuNP)-modified electrode. . Biosens. Bioelectron. 126::17077
    [Crossref] [Google Scholar]
  85. 85.
    Ito K, Okuda-Shimazaki J, Mori K, Kojima K, Tsugawa W, et al. 2019.. Designer fungus FAD glucose dehydrogenase capable of direct electron transfer. . Biosens. Bioelectron. 123::11423
    [Crossref] [Google Scholar]
  86. 86.
    Ito K, Okuda-Shimazaki J, Kojima K, Mori K, Tsugawa W, et al. 2021.. Strategic design and improvement of the internal electron transfer of heme b domain-fused glucose dehydrogenase for use in direct electron transfer-type glucose sensors. . Biosens. Bioelectron. 176::112911
    [Crossref] [Google Scholar]
  87. 87.
    Viehauser MC, Breslmayr E, Scheiblbrandner S, Schachinger F, Ma S, Ludwig R. 2022.. A cytochrome b–glucose dehydrogenase chimeric enzyme capable of direct electron transfer. . Biosens. Bioelectron. 196::113704
    [Crossref] [Google Scholar]
  88. 88.
    Yanase T, Okuda-Shimazaki J, Mori K, Kojima K, Tsugawa W, Sode K. 2020.. Creation of a novel DET type FAD glucose dehydrogenase harboring Escherichia coli derived cytochrome b562 as an electron transfer domain. . Biochem. Biophys. Res. Commun. 530:(1):8286
    [Crossref] [Google Scholar]
  89. 89.
    Yanase T, Okuda-Shimazaki J, Asano R, Ikebukuro K, Sode K, Tsugawa W. 2023.. Development of a versatile method to construct direct electron transfer–type enzyme complexes employing SpyCatcher/SpyTag system. . Int. J. Mol. Sci. 24:(3):1837
    [Crossref] [Google Scholar]
  90. 90.
    Algov I, Feiertag A, Alfonta L. 2021.. Site-specifically wired and oriented glucose dehydrogenase fused to a minimal cytochrome with high glucose sensing sensitivity. . Biosens. Bioelectron. 180::113117
    [Crossref] [Google Scholar]
  91. 91.
    Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R. 2018.. Highly sensitive membraneless fructose biosensor based on fructose dehydrogenase immobilized onto aryl thiol modified highly porous gold electrode: characterization and application in food samples. . Anal. Chem. 90:(20):1213136
    [Crossref] [Google Scholar]
  92. 92.
    Šakinyte I, Barkauskas J, Gaidukevič J, Razumiene J. 2015.. Thermally reduced graphene oxide: the study and use for reagentless amperometric d-fructose biosensors. . Talanta 144::1096103
    [Crossref] [Google Scholar]
  93. 93.
    Siepenkoetter T, Salaj-Kosla U, Magner E. 2017.. The immobilization of fructose dehydrogenase on nanoporous gold electrodes for the detection of fructose. . ChemElectroChem 4:(4):90512
    [Crossref] [Google Scholar]
  94. 94.
    Suzuki Y, Kano K, Shirai O, Kitazumi Y. 2020.. Diffusion-limited electrochemical d-fructose sensor based on direct electron transfer–type bioelectrocatalysis by a variant of d-fructose dehydrogenase at a porous gold microelectrode. . J. Electroanal. Chem. 877::114651
    [Crossref] [Google Scholar]
  95. 95.
    Tavahodi M, Ortiz R, Schulz C, Ekhtiari A, Ludwig R, et al. 2017.. Direct electron transfer of cellobiose dehydrogenase on positively charged polyethyleneimine gold nanoparticles. . ChemPlusChem 82:(4):54652
    [Crossref] [Google Scholar]
  96. 96.
    Bozorgzadeh S, Hamidi H, Ortiz R, Ludwig R, Gorton L. 2015.. Direct electron transfer of Phaner-ochaete chrysosporium cellobiose dehydrogenase at platinum and palladium nanoparticles decorated carbon nanotubes modified electrodes. . Phys. Chem. Chem. Phys. 17:(37):2415765
    [Crossref] [Google Scholar]
  97. 97.
    Bollella P, Fusco G, Stevar D, Gorton L, Ludwig R, et al. 2018.. A glucose/oxygen enzymatic fuel cell based on gold nanoparticles modified graphene screen-printed electrode. Proof-of-concept in human saliva. . Sens. Actuators B 256::92130
    [Crossref] [Google Scholar]
  98. 98.
    Stoica L, Ludwig R, Haltrich D, Gorton L. 2006.. Third-generation biosensor for lactose based on newly discovered cellobiose dehydrogenase. . Anal. Chem. 78:(2):39398
    [Crossref] [Google Scholar]
  99. 99.
    Ma S, Laurent CVFP, Meneghello M, Tuoriniemi J, Oostenbrink C, et al. 2019.. Direct electron-transfer anisotropy of a site-specifically immobilized cellobiose dehydrogenase. . ACS Catal. 9:(8):760715
    [Crossref] [Google Scholar]
  100. 100.
    Harreither W, Coman V, Ludwig R, Haltrich D, Gorton L. 2007.. Investigation of graphite electrodes modified with cellobiose dehydrogenase from the ascomycete Myriococcum thermophilum. . Electroanalysis 19::17280
    [Crossref] [Google Scholar]
  101. 101.
    Tavahodi M, Schulz C, Assarsson A, Ortiz R, Ludwig R, et al. 2018.. Interaction of polymer-coated gold nanoparticles with cellobiose dehydrogenase: the role of surface charges. . J. Electroanal. Chem. 819::22633
    [Crossref] [Google Scholar]
  102. 102.
    Razumiene J, Niculescu M, Ramanavicius A, Laurinavicius V, Csöregi E. 2002.. Direct bioelectrocatalysis at carbon electrodes modified with quinohemoprotein alcohol dehydrogenase from Gluconobacter sp. 33. . Electroanalysis 14:(1):4349
    [Crossref] [Google Scholar]
  103. 103.
    Takeda K, Kusuoka R, Inukai M, Igarashi K, Ohno H, Nakamura N. 2021.. An amperometric biosensor of l-fucose in urine for the first screening test of cancer. . Biosens. Bioelectron. 174::112831
    [Crossref] [Google Scholar]
  104. 104.
    Freeman DME, Ming DK, Wilson R, Herzog PL, Schulz C, et al. 2023.. Continuous measurement of lactate concentration in human subjects through direct electron transfer from enzymes to microneedle electrodes. . ACS Sens. 8:(4):163947
    [Crossref] [Google Scholar]
  105. 105.
    Shan D, Wang YN, Xue HG, Cosnier S, Ding SN. 2009.. Xanthine oxidase/laponite nanoparticles immobilized on glassy carbon electrode: direct electron transfer and multielectrocatalysis. . Biosens. Bioelectron. 24:(12):355661
    [Crossref] [Google Scholar]
  106. 106.
    Saengdee P, Promptmas C, Zeng T, Leimkühler S, Wollenberger U. 2017.. Third-generation sulfite biosensor based on sulfite oxidase immobilized on aminopropyltriethoxysilane modified indium tin oxide. . Electroanalysis 29:(1):11015
    [Crossref] [Google Scholar]
  107. 107.
    Ferapontova EE, Shipovskov S, Gorton L. 2007.. Bioelectrocatalytic detection of theophylline at theophylline oxidase electrodes. . Biosens. Bioelectron. 22:(11):250815
    [Crossref] [Google Scholar]
  108. 108.
    Xia HQ, Kitazumi Y, Shirai O, Kano K. 2017.. Direct electron transfer-type bioelectrocatalysis of peroxidase at mesoporous carbon electrodes and its application for glucose determination based on bienzyme system. . Anal. Sci. 33:(7):83944
    [Crossref] [Google Scholar]
  109. 109.
    Ferapontova EE, Grigorenko VG, Egorov AM, Börchers T, Ruzgas T, Gorton L. 2001.. Mediatorless biosensor for H2O2 based on recombinant forms of horseradish peroxidase directly adsorbed on polycrystalline gold. . Biosens. Bioelectron. 16:(3):14757
    [Crossref] [Google Scholar]
  110. 110.
    Shi L, Liu X, Niu W, Li H, Han S, et al. 2009.. Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. . Biosens. Bioelectron. 24:(5):115963
    [Crossref] [Google Scholar]
  111. 111.
    Gaspar S, Zimmermann H, Gazaryan I, Csöregi E, Schuhmann W. 2001.. Hydrogen peroxide biosensors based on direct electron transfer from plant peroxidases immobilized on self-assembled thiol-monolayer modified gold electrodes. . Electroanalysis 13:(4):28488
    [Crossref] [Google Scholar]
  112. 112.
    Miyata M, Kitazumi Y, Shirai O, Kataoka K, Kano K. 2020.. Diffusion-limited biosensing of dissolved oxygen by direct electron transfer-type bioelectrocatalysis of multi-copper oxidases immobilized on porous gold microelectrodes. . J. Electroanal. Chem. 860::113895
    [Crossref] [Google Scholar]
  113. 113.
    Lee YS, Baek S, Lee H, Reginald SS, Kim Y, et al. 2018.. Construction of uniform monolayer- and orientation-tunable enzyme electrode by a synthetic glucose dehydrogenase without electron-transfer subunit via optimized site-specific gold-binding peptide capable of direct electron transfer. . ACS Appl. Mater Interfaces 10:(34):2861526
    [Crossref] [Google Scholar]
  114. 114.
    Sode K, Yamazaki T, Lee I, Hanashi T, Tsugawa W. 2016.. BioCapacitor: a novel principle for biosensors. . Biosens. Bioelectron. 76::2028
    [Crossref] [Google Scholar]
  115. 115.
    Lee I, Sode T, Loew N, Tsugawa W, Lowe CR, Sode K. 2017.. Continuous operation of an ultra-low-power microcontroller using glucose as the sole energy source. . Biosens. Bioelectron. 93::33539
    [Crossref] [Google Scholar]
  116. 116.
    Lee I, Okuda-Shimazaki J, Tsugawa W, Ikebukuro K, Sode K. 2021.. A self-powered glucose sensor based on BioCapacitor principle with micro-sized enzyme anode employing direct electron transfer type FADGDH. . J. Phys. Energy 3:(3):034009
    [Crossref] [Google Scholar]
  117. 117.
    Hanashi T, Yamazaki T, Tsugawa W, Ferri S, Nakayama D, et al. 2009.. BioCapacitor—a novel category of biosensor. . Biosens. Bioelectron. 24:(7):183742
    [Crossref] [Google Scholar]
  118. 118.
    Hanashi T, Yamazaki T, Tsugawa W, Ikebukuro K, Sode K. 2011.. BioRadioTransmitter: a self-powered wireless glucose-sensing system. . J. Diabetes Sci. Technol. 5:(5):103035
    [Crossref] [Google Scholar]
  119. 119.
    Hanashi T, Yamazaki T, Tanaka H, Ikebukuro K, Tsugawa W, Sode K. 2014.. The development of an autonomous self-powered bio-sensing actuator. . Sens. Actuators B 196::42933
    [Crossref] [Google Scholar]
  120. 120.
    Hanashi T, Yamazaki T, Tsugawa W, Ikebukuro K, Sode K. 2012.. BioLC-Oscillator: a self-powered wireless glucose-sensing system with the glucose dependent resonance frequency. . Electrochemistry 80:(5):36770
    [Crossref] [Google Scholar]
  121. 121.
    Bray GA, Popkin BM. 2013.. Calorie-sweetened beverages and fructose: What have we learned 10 years later?. Pediatr. Obes. 8:(4):24248
    [Crossref] [Google Scholar]
  122. 122.
    Sloboda DM, Li M, Patel R, Clayton ZE, Yap C, Vickers MH. 2014.. Early life exposure to fructose and offspring phenotype: implications for long term metabolic homeostasis. . J. Obes. 2014::203474
    [Crossref] [Google Scholar]
  123. 123.
    Becker DJ, Lowe JB. 2003.. Fucose: biosynthesis and biological function in mammals. . Glycobiology 13:(7):R4153
    [Crossref] [Google Scholar]
  124. 124.
    Schneider M, Al-Shareffi E, Haltiwanger RS. 2017.. Biological functions of fucose in mammals. . Glycobiology 27:(7):60118
    [Crossref] [Google Scholar]
  125. 125.
    Aoki K. 1993.. Theory of ultramicroelectrodes. . Electroanalysis 5:(8):62739
    [Crossref] [Google Scholar]
  126. 126.
    Noda T, Wanibuchi M, Kitazumi Y, Tsujimura S, Osamu S, et al. 2013.. Diffusion-controlled detection of glucose with microelectrodes in mediated bioelectrocatalytic oxidation. . Anal. Sci. 29:(3):27981
    [Crossref] [Google Scholar]
  127. 127.
    Coman V, Ludwig R, Harreither W, Haltrich D, Gorton L, et al. 2009.. A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum. . Fuel Cells 10:(1):916
    [Crossref] [Google Scholar]
  128. 128.
    Yan X, Tang J, Ma S, Tanner D, Ludwig R, et al. 2022.. Engineering bio-interfaces for the direct electron transfer of Myriococcum thermophilum cellobiose dehydrogenase: towards a mediator-less biosupercapacitor/biofuel cell hybrid. . Biosens. Bioelectron. 210::114337
    [Crossref] [Google Scholar]
  129. 129.
    Coman V, Vaz-Domínguez C, Ludwig R, Harreither W, Haltrich D, et al. 2008.. A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell. . Phys. Chem. Chem. Phys. 10:(40):609396
    [Crossref] [Google Scholar]
  130. 130.
    Krikstolaityte V, Lamberg P, Toscano MD, Silow M, Eicher-Lorka O, et al. 2014.. Mediatorless carbohydrate/oxygen biofuel cells with improved cellobiose dehydrogenase based bioanode. . Fuel Cells 14:(6):792800
    [Crossref] [Google Scholar]
  131. 131.
    Wang X, Falk M, Ortiz R, Matsumura H, Bobacka J, et al. 2012.. Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes. . Biosens. Bioelectron. 31:(1):21925
    [Crossref] [Google Scholar]
  132. 132.
    Falk M, Pankratov D, Lindh L, Arnebrant T, Shleev S. 2014.. Miniature direct electron transfer based enzymatic fuel cell operating in human sweat and saliva. . Fuel Cells 14:(6):105056
    [Crossref] [Google Scholar]
  133. 133.
    Falk M, Andoralov V, Blum Z, Sotres J, Suyatin DB, et al. 2012.. Biofuel cell as a power source for electronic contact lenses. . Biosens. Bioelectron. 37:(1):3845
    [Crossref] [Google Scholar]
  134. 134.
    Tasca F, Gorton L, Harreither W, Haltrich D, Ludwig R, Nöll G. 2008.. Direct electron transfer at cellobiose dehydrogenase modified anodes for biofuel cells. . J. Phys. Chem. C 112:(26):995661
    [Crossref] [Google Scholar]
  135. 135.
    Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K. 2007.. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. . Phys. Chem. Chem. Phys. 9:(15):1793801
    [Crossref] [Google Scholar]
  136. 136.
    Herkendell K, Stemmer A, Tel-Vered R. 2019.. Extending the operational lifetimes of all-direct electron transfer enzymatic biofuel cells by magnetically assembling and exchanging the active biocatalyst layers on stationary electrodes. . Nano Res. 12:(4):76775
    [Crossref] [Google Scholar]
  137. 137.
    Murata K, Kajiya K, Nakamura N, Ohno H. 2009.. Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell. . Energy Environ. Sci. 2:(12):128085
    [Crossref] [Google Scholar]
  138. 138.
    Haneda K, Yoshino S, Ofuji T, Miyake T, Nishizawa M. 2012.. Sheet-shaped biofuel cell constructed from enzyme-modified nanoengineered carbon fabric. . Electrochim. Acta 82::17578
    [Crossref] [Google Scholar]
  139. 139.
    Miyake T, Haneda K, Yoshino S, Nishizawa M. 2013.. Flexible, layered biofuel cells. . Biosens. Bioelectron. 40:(1):4549
    [Crossref] [Google Scholar]
  140. 140.
    Kizling M, Stolarczyk K, Kiat JSS, Tammela P, Wang Z, et al. 2015.. Pseudocapacitive polypyrrole-nanocellulose composite for sugar-air enzymatic fuel cells. . Electrochem. Commun. 50::5559
    [Crossref] [Google Scholar]
  141. 141.
    Cohen R, Herzallh NS, Meirovich MM, Bachar O, Frech L, et al. 2023.. An oxygen-insensitive biosensor and a biofuel cell device based on FMN l-lactate dehydrogenase. . Bioelectrochemistry 149::108316
    [Crossref] [Google Scholar]
  142. 142.
    Aquino Neto S, Suda EL, Xu S, Meredith MT, De Andrade AR, Minteer SD. 2013.. Direct electron transfer-based bioanodes for ethanol biofuel cells using PQQ-dependent alcohol and aldehyde dehydrogenases. . Electrochim. Acta 87::32329
    [Crossref] [Google Scholar]
  143. 143.
    Ramanavicius A, Kausaite A, Ramanaviciene A. 2008.. Enzymatic biofuel cell based on anode and cathode powered by ethanol. . Biosens. Bioelectron. 24:(4):76166
    [Crossref] [Google Scholar]
  144. 144.
    Ramanavicius A, Kausaite A, Ramanaviciene A. 2005.. Biofuel cell based on direct bioelectrocatalysis. . Biosens. Bioelectron. 20:(10):196267
    [Crossref] [Google Scholar]
  145. 145.
    Geiss AF, Reichhart TMB, Pejker B, Plattner E, Herzog PL, et al. 2021.. Engineering the turnover stability of cellobiose dehydrogenase toward long-term bioelectronic applications. . ACS Sustain. Chem. Eng. 9:(20):7086100
    [Crossref] [Google Scholar]
  146. 146.
    Lee H, Lee EM, Reginald SS, Chang IS. 2022.. Protocol for construction and characterization of direct electron transfer-based enzyme-electrode using gold binding peptide as molecular binder. . STAR Protoc. 3:(3):101466
    [Crossref] [Google Scholar]
  147. 147.
    Lee H, Lee EM, Reginald SS, Chang IS. 2021.. Peptide sequence-driven direct electron transfer properties and binding behaviors of gold-binding peptide-fused glucose dehydrogenase on electrode. . iScience 24:(11):103373
    [Crossref] [Google Scholar]
  148. 148.
    Hibino Y, Kawai S, Kitazumi Y, Shirai O, Kano K. 2019.. Protein-engineering improvement of direct electron transfer-type bioelectrocatalytic properties of d-fructose dehydrogenase. . Electrochemistry 87:(1):4751
    [Crossref] [Google Scholar]
  149. 149.
    Yoshida H, Sakai G, Mori K, Kojima K, Kamitori S, Sode K. 2015.. Structural analysis of fungus-derived FAD glucose dehydrogenase. . Sci. Rep. 5::13498
    [Crossref] [Google Scholar]
  150. 150.
    Algov I, Grushka J, Zarivach R, Alfonta L. 2017.. Highly efficient favin-adenine dinucleotide glucose dehydrogenase fused to a minimal cytochrome c domain. . J. Am. Chem. Soc. 139:(48):1721720
    [Crossref] [Google Scholar]
  151. 151.
    Hiraka K, Kojima K, Tsugawa W, Asano R, Ikebukuro K, Sode K. 2020.. Rational engineering of Aerococcus viridansl-lactate oxidase for the mediator modification to achieve quasi-direct electron transfer type lactate sensor. . Biosens. Bioelectron. 151::111974
    [Crossref] [Google Scholar]
  152. 152.
    Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, et al. 2012.. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. . PNAS 109:(12):E69097
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110222-101926
Loading
/content/journals/10.1146/annurev-bioeng-110222-101926
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error