1932

Abstract

Recent advances in single-cell and multicellular microfluidics technology have provided powerful tools for studying cancer biology and immunology. The ability to create controlled microenvironments, perform high-throughput screenings, and monitor cellular interactions at the single-cell level has significantly advanced our understanding of tumor biology and immune responses. We discuss cutting-edge multicellular and single-cell microfluidic technologies and methodologies utilized to investigate cancer–immune cell interactions and assess the effectiveness of immunotherapies. We explore the advantages and limitations of the wide range of 3D spheroid and single-cell microfluidic models recently developed, highlighting the various approaches in device generation and applications in immunotherapy screening for potential opportunities for point-of-care approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110222-102142
2024-07-03
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-110222-102142.html?itemId=/content/journals/10.1146/annurev-bioeng-110222-102142&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Li Y, Fan H, Ding J, Xu J, Liu C, Wang H. 2022.. Microfluidic devices: the application in TME modeling and the potential in immunotherapy optimization. . Front. Genet. 13::969723
    [Crossref] [Google Scholar]
  2. 2.
    Berger Fridman I, Ugolini GS, VanDelinder V, Cohen S, Konry T. 2021.. High throughput microfluidic system with multiple oxygen levels for the study of hypoxia in tumor spheroids. . Biofabrication 13::035037
    [Crossref] [Google Scholar]
  3. 3.
    Macounova K, Cabrera CR, Holl MR, Yager P. 2000.. Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing. . Anal. Chem. 72::374551
    [Crossref] [Google Scholar]
  4. 4.
    Ayuso JM, Rehman S, Virumbrales-Munoz M, McMinn PH, Geiger P, et al. 2021.. Microfluidic tumor-on-a-chip model to evaluate the role of tumor environmental stress on NK cell exhaustion. . Sci. Adv. 7::eabc2331
    [Crossref] [Google Scholar]
  5. 5.
    Pavesi A, Tan AT, Koh S, Chia A, Colombo M, et al. 2017.. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. . JCI Insight 2::e89762
    [Crossref] [Google Scholar]
  6. 6.
    Konry T, Dominguez-Villar M, Baecher-Allan C, Hafler DA, Yarmush ML. 2011.. Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. . Biosens. Bioelectron. 26::270710
    [Crossref] [Google Scholar]
  7. 7.
    Sabhachandani P, Motwani V, Cohen N, Sarkar S, Torchilin V, Konry T. 2016.. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. . Lab Chip 16::497505
    [Crossref] [Google Scholar]
  8. 8.
    Sarkar S, Motwani V, Sabhachandani P, Cohen N, Konry T. 2015.. T cell dynamic activation and functional analysis in nanoliter droplet microarray. . J. Clin. Cell. Immunol. 6::334
    [Crossref] [Google Scholar]
  9. 9.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, et al. 2015.. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. . Cell 161::120214
    [Crossref] [Google Scholar]
  10. 10.
    Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, et al. 2015.. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. . Cell 161::1187201
    [Crossref] [Google Scholar]
  11. 11.
    Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA. 2013.. Single-cell analysis and sorting using droplet-based microfluidics. . Nat. Protoc. 8::87091
    [Crossref] [Google Scholar]
  12. 12.
    Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, et al. 2010.. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. . PNAS 107::40049
    [Crossref] [Google Scholar]
  13. 13.
    Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, et al. 2017.. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. . PNAS 114::1058489
    [Crossref] [Google Scholar]
  14. 14.
    Duncanson WJ, Lin T, Abate AR, Seiffert S, Shah RK, Weitz DA. 2012.. Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. . Lab Chip 12::213545
    [Crossref] [Google Scholar]
  15. 15.
    Lan F, Demaree B, Ahmed N, Abate AR. 2017.. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. . Nat. Biotechnol. 35::64046
    [Crossref] [Google Scholar]
  16. 16.
    Sun C, Liu L, Perez L, Li X, Liu Y, et al. 2022.. Droplet-microfluidics-assisted sequencing of HIV proviruses and their integration sites in cells from people on antiretroviral therapy. . Nat. Biomed. Eng. 6::100412
    [Crossref] [Google Scholar]
  17. 17.
    Konry T, Golberg A, Yarmush M. 2013.. Live single cell functional phenotyping in droplet nano-liter reactors. . Sci. Rep. 3::3179
    [Crossref] [Google Scholar]
  18. 18.
    Agnihotri SN, Ugolini GS, Sullivan MR, Yang Y, De Ganzo A, et al. 2022.. Droplet microfluidics for functional temporal analysis and cell recovery on demand using microvalves: application in immunotherapies for cancer. . Lab Chip 22::325867
    [Crossref] [Google Scholar]
  19. 19.
    Konry T, Sarkar S, Sabhachandani P, Cohen N. 2016.. Innovative tools and technology for analysis of single cells and cell-cell interaction. . Annu. Rev. Biomed. Eng. 18::25984
    [Crossref] [Google Scholar]
  20. 20.
    Ravi D, Sarkar S, Purvey S, Passero F, Beheshti A, et al. 2020.. Interaction kinetics with transcriptomic and secretory responses of CD19-CAR natural killer-cell therapy in CD20 resistant non-hodgkin lymphoma. . Leukemia 34::1291304
    [Crossref] [Google Scholar]
  21. 21.
    Paterson K, Zanivan S, Glasspool R, Coffelt SB, Zagnoni M. 2021.. Microfluidic technologies for immunotherapy studies on solid tumours. . Lab Chip 21::230629
    [Crossref] [Google Scholar]
  22. 22.
    Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH Jr. 2020.. A review of cancer immunotherapy: from the past, to the present, to the future. . Curr. Oncol. 27::S8797
    [Crossref] [Google Scholar]
  23. 23.
    Kim J, Koo BK, Knoblich JA. 2020.. Human organoids: model systems for human biology and medicine. . Nat. Rev. Mol. Cell Biol. 21::57184
    [Crossref] [Google Scholar]
  24. 24.
    Matsui T, Shinozawa T. 2021.. Human organoids for predictive toxicology research and drug development. . Front. Genet. 12::767621
    [Crossref] [Google Scholar]
  25. 25.
    Prabhakar P, Sen RK, Dwivedi N, Khan R, Solanki PR, et al. 2021.. 3D-printed microfluidics and potential biomedical applications. . Front. Nanotechnol. 3::609355
    [Crossref] [Google Scholar]
  26. 26.
    Schuster B, Junkin M, Kashaf SS, Romero-Calvo I, Kirby K, et al. 2020.. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. . Nat. Commun. 11::5271
    [Crossref] [Google Scholar]
  27. 27.
    Tehranirokh M, Kouzani AZ, Francis PS, Kanwar JR. 2013.. Microfluidic devices for cell cultivation and proliferation. . Biomicrofluidics 7::51502
    [Crossref] [Google Scholar]
  28. 28.
    Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A. 2014.. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. . Nat. Commun. 5::4250
    [Crossref] [Google Scholar]
  29. 29.
    Agarwal P, Wang H, Sun M, Xu J, Zhao S, et al. 2017.. Microfluidics enabled bottom-up engineering of 3D vascularized tumor for drug discovery. . ACS Nano 11::6691702
    [Crossref] [Google Scholar]
  30. 30.
    Wang H, Liu H, Zhang X, Wang Y, Zhao M, et al. 2021.. One-step generation of aqueous-droplet-filled hydrogel fibers as organoid carriers using an all-in-water microfluidic system. . ACS Appl. Mater. Interfaces 13::3199208
    [Crossref] [Google Scholar]
  31. 31.
    Collins DJ, Neild A, deMello A, Liu AQ, Ai Y. 2015.. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. . Lab Chip 15::343959
    [Crossref] [Google Scholar]
  32. 32.
    Zhang P, Abate AR. 2020.. High-definition single-cell printing: cell-by-cell fabrication of biological structures. . Adv. Mater. 32::e2005346
    [Crossref] [Google Scholar]
  33. 33.
    Belousov KI, Filatov NA, Kukhtevich IV, Kantsler V, Evstrapov AA, Bukatin AS. 2021.. An asymmetric flow-focusing droplet generator promotes rapid mixing of reagents. . Sci. Rep. 11::8797
    [Crossref] [Google Scholar]
  34. 34.
    Gu H, Duits MH, Mugele F. 2010.. A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer. . Lab Chip 10::155056
    [Crossref] [Google Scholar]
  35. 35.
    Choi JH, Lee SK, Lim JM, Yang SM, Yi GR. 2010.. Designed pneumatic valve actuators for controlled droplet breakup and generation. . Lab Chip 10::45661
    [Crossref] [Google Scholar]
  36. 36.
    Li Y, Jain M, Ma Y, Nandakumar K. 2015.. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device. . Soft Matter 11::388499
    [Crossref] [Google Scholar]
  37. 37.
    Salehi SS, Shamloo A, Hannani SK. 2020.. Microfluidic technologies to engineer mesenchymal stem cell aggregates—applications and benefits. . Biophys. Rev. 12::12333
    [Crossref] [Google Scholar]
  38. 38.
    Sonnen KF, Merten CA. 2019.. Microfluidics as an emerging precision tool in developmental biology. . Dev. Cell 48::293311
    [Crossref] [Google Scholar]
  39. 39.
    Ma Q, Ma H, Xu F, Wang X, Sun W. 2021.. Microfluidics in cardiovascular disease research: state of the art and future outlook. . Microsyst. Nanoeng. 7::19
    [Crossref] [Google Scholar]
  40. 40.
    Liu W, Sun M, Han K, Wang J. 2019.. Large-scale antitumor screening based on heterotypic 3D tumors using an integrated microfluidic platform. . Anal. Chem. 91::1360110
    [Crossref] [Google Scholar]
  41. 41.
    Jeyhani M, Gnyawali V, Abbasi N, Hwang DK, Tsai SSH. 2019.. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation. . J. Colloid Interface Sci. 553::38289
    [Crossref] [Google Scholar]
  42. 42.
    Flont M, Jastrzebska E, Brzozka Z. 2020.. A multilayered cancer-on-a-chip model to analyze the effectiveness of new-generation photosensitizers. . Analyst 145::693747
    [Crossref] [Google Scholar]
  43. 43.
    Jiang R, Huang J, Sun X, Chu X, Wang F, et al. 2022.. Construction of in vitro 3-D model for lung cancer-cell metastasis study. . BMC Cancer 22::438
    [Crossref] [Google Scholar]
  44. 44.
    Kwak B, Lee Y, Lee J, Lee S, Lim J. 2018.. Mass fabrication of uniform sized 3D tumor spheroid using high-throughput microfluidic system. . J. Control. Release 275::2017
    [Crossref] [Google Scholar]
  45. 45.
    Khan AH, Zhou SP, Moe M, Ortega Quesada BA, Bajgiran KR, et al. 2022.. Generation of 3D spheroids using a thiol-acrylate hydrogel scaffold to study endocrine response in ER+ breast cancer. . ACS Biomater. Sci. Eng. 8::397785
    [Crossref] [Google Scholar]
  46. 46.
    Truong DD, Kratz A, Park JG, Barrientos ES, Saini H, et al. 2019.. A human organotypic microfluidic tumor model permits investigation of the interplay between patient-derived fibroblasts and breast cancer cells. . Cancer Res. 79::313951
    [Crossref] [Google Scholar]
  47. 47.
    Lombardo JA, Aliaghaei M, Nguyen QH, Kessenbrock K, Haun JB. 2021.. Microfluidic platform accelerates tissue processing into single cells for molecular analysis and primary culture models. . Nat. Commun. 12::2858
    [Crossref] [Google Scholar]
  48. 48.
    Li Y, Zhang T, Pang Y, Li L, Chen ZN, Sun W. 2019.. 3D bioprinting of hepatoma cells and application with microfluidics for pharmacodynamic test of metuzumab. . Biofabrication 11::034102
    [Crossref] [Google Scholar]
  49. 49.
    Tricinci O, De Pasquale D, Marino A, Battaglini M, Pucci C, Ciofani G. 2020.. A 3D biohybrid real-scale model of the brain cancer microenvironment for advanced in vitro testing. . Adv. Mater Technol. 5::2000540
    [Crossref] [Google Scholar]
  50. 50.
    Liu X, Fang J, Huang S, Wu X, Xie X, et al. 2021.. Tumor-on-a-chip: from bioinspired design to biomedical application. . Microsyst. Nanoeng. 7::50
    [Crossref] [Google Scholar]
  51. 51.
    Fontana F, Marzagalli M, Sommariva M, Gagliano N, Limonta P. 2021.. In vitro 3D cultures to model the tumor microenvironment. . Cancers 13::2970
    [Crossref] [Google Scholar]
  52. 52.
    Krysko DV, Demuynck R, Efimova I, Naessens F, Krysko O, Catanzaro E. 2022.. In vitro veritas: from 2D cultures to organ-on-a-chip models to study immunogenic cell death in the tumor microenvironment. . Cells 11::3705
    [Crossref] [Google Scholar]
  53. 53.
    Brassart-Pasco S, Brezillon S, Brassart B, Ramont L, Oudart JB, Monboisse JC. 2020.. Tumor microenvironment: extracellular matrix alterations influence tumor progression. . Front. Oncol. 10::397
    [Crossref] [Google Scholar]
  54. 54.
    Micek HM, Visetsouk MR, Masters KS, Kreeger PK. 2020.. Engineering the extracellular matrix to model the evolving tumor microenvironment. . iScience 23::101742
    [Crossref] [Google Scholar]
  55. 55.
    Khalaf K, Hana D, Chou JT, Singh C, Mackiewicz A, Kaczmarek M. 2021.. Aspects of the tumor microenvironment involved in immune resistance and drug resistance. . Front. Immunol. 12::656364
    [Crossref] [Google Scholar]
  56. 56.
    Eslami Amirabadi H, SahebAli S, Frimat JP, Luttge R, den Toonder JMJ. 2017.. A novel method to understand tumor cell invasion: integrating extracellular matrix mimicking layers in microfluidic chips by “selective curing. .” Biomed. Microdevices 19::92
    [Crossref] [Google Scholar]
  57. 57.
    Frisk T, Rydholm S, Liebmann T, Svahn HA, Stemme G, Brismar H. 2007.. A microfluidic device for parallel 3-D cell cultures in asymmetric environments. . Electrophoresis 28::470512
    [Crossref] [Google Scholar]
  58. 58.
    Akther F, Little P, Li Z, Nguyen NT, Ta HT. 2020.. Hydrogels as artificial matrices for cell seeding in microfluidic devices. . RSC Adv. 10::43682703
    [Crossref] [Google Scholar]
  59. 59.
    Ma J, Li N, Wang Y, Wang L, Wei W, et al. 2018.. Engineered 3D tumour model for study of glioblastoma aggressiveness and drug evaluation on a detachably assembled microfluidic device. . Biomed. Microdevices 20::80
    [Crossref] [Google Scholar]
  60. 60.
    Liu C, Lewin Mejia D, Chiang B, Luker KE, Luker GD. 2018.. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion. . Acta Biomater. 75::21325
    [Crossref] [Google Scholar]
  61. 61.
    Lee KY, Mooney DJ. 2012.. Alginate: properties and biomedical applications. . Prog. Polym. Sci. 37::10626
    [Crossref] [Google Scholar]
  62. 62.
    Sabhachandani P, Sarkar S, McKenney S, Ravi D, Evens AM, Konry T. 2019.. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release. . J. Control. Release 295::2130
    [Crossref] [Google Scholar]
  63. 63.
    Liu P, Tian Z, Yang K, Naquin TD, Hao N, et al. 2022.. Acoustofluidic black holes for multifunctional in-droplet particle manipulation. . Sci. Adv. 8::eabm2592
    [Crossref] [Google Scholar]
  64. 64.
    Zhou Y, Yu Z, Wu M, Lan Y, Jia C, Zhao J. 2023.. Single-cell sorting using integrated pneumatic valve droplet microfluidic chip. . Talanta 253::124044
    [Crossref] [Google Scholar]
  65. 65.
    Girault M, Kim H, Arakawa H, Matsuura K, Odaka M, et al. 2017.. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution. . Sci. Rep. 7::40072
    [Crossref] [Google Scholar]
  66. 66.
    Dugger SA, Platt A, Goldstein DB. 2018.. Drug development in the era of precision medicine. . Nat. Rev. Drug Discov. 17::18396
    [Crossref] [Google Scholar]
  67. 67.
    Seyhan AA, Carini C. 2019.. Are innovation and new technologies in precision medicine paving a new era in patients centric care?. J. Transl. Med. 17::114
    [Crossref] [Google Scholar]
  68. 68.
    Roth L, Bempong D, Babigumira JB, Banoo S, Cooke E, et al. 2018.. Expanding global access to essential medicines: investment priorities for sustainably strengthening medical product regulatory systems. . Global Health 14::102
    [Crossref] [Google Scholar]
  69. 69.
    Yao B, Zhu L, Jiang Q, Xia HA. 2013.. Safety monitoring in clinical trials. . Pharmaceutics 5::94106
    [Crossref] [Google Scholar]
  70. 70.
    Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, et al. 2023.. The evolving role of investigative toxicology in the pharmaceutical industry. . Nat. Rev. Drug Discov. 22::31735
    [Crossref] [Google Scholar]
  71. 71.
    Hughes JP, Rees S, Kalindjian SB, Philpott KL. 2011.. Principles of early drug discovery. . Br. J. Pharmacol. 162::123949
    [Crossref] [Google Scholar]
  72. 72.
    Cardoso BD, Castanheira EMS, Lanceros-Mendez S, Cardoso VF. 2023.. Recent advances on cell culture platforms for in vitro drug screening and cell therapies: from conventional to microfluidic strategies. . Adv. Healthc. Mater. 12::e2202936
    [Crossref] [Google Scholar]
  73. 73.
    Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD. 2015.. 3D cell culture systems: advantages and applications. . J. Cell. Physiol. 230::1626
    [Crossref] [Google Scholar]
  74. 74.
    Lage OM, Ramos MC, Calisto R, Almeida E, Vasconcelos V, Vicente F. 2018.. Current screening methodologies in drug discovery for selected human diseases. . Mar. Drugs 16::279
    [Crossref] [Google Scholar]
  75. 75.
    Ugolini GS, Occhetta P, Saccani A, Re F, Krol S, et al. 2018.. Design and validation of a microfluidic device for blood–brain barrier monitoring and transport studies. . J. Micromech. Microeng. 24::044001
    [Crossref] [Google Scholar]
  76. 76.
    Järvinen P, Bonabi A, Jokinen V, Sikanen T. 2020.. Simultaneous culturing of cell monolayers and spheroids on a single microfluidic device for bridging the gap between 2D and 3D cell assays in drug research. . Adv. Funct. Mater. 30::2000479
    [Crossref] [Google Scholar]
  77. 77.
    Li S, Yang K, Chen X, Zhu X, Zhou H, et al. 2021.. Simultaneous 2D and 3D cell culture array for multicellular geometry, drug discovery and tumor microenvironment reconstruction. . Biofabrication 13::045013
    [Crossref] [Google Scholar]
  78. 78.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. 2013.. Cancer drug resistance: an evolving paradigm. . Nat. Rev. Cancer 13::71426
    [Crossref] [Google Scholar]
  79. 79.
    Xu Z, Gao Y, Hao Y, Li E, Wang Y, et al. 2013.. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. . Biomaterials 34::410917
    [Crossref] [Google Scholar]
  80. 80.
    Amoyav B, Goldstein Y, Steinberg E, Benny O. 2020.. 3D printed microfluidic devices for drug release assays. . Pharmaceutics 13::13
    [Crossref] [Google Scholar]
  81. 81.
    Chen X, Chen H, Wu D, Chen Q, Zhou Z, et al. 2018.. 3D printed microfluidic chip for multiple anticancer drug combinations. . Sens. Actuators B Chem. 276::50716
    [Crossref] [Google Scholar]
  82. 82.
    Jeong SY, Lee JH, Shin Y, Chung S, Kuh HJ. 2016.. Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. . PLOS ONE 11::e0159013
    [Crossref] [Google Scholar]
  83. 83.
    Al-Samadi A, Poor B, Tuomainen K, Liu V, Hyytiainen A, et al. 2019.. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. . Exp. Cell Res. 383::111508
    [Crossref] [Google Scholar]
  84. 84.
    Rahmanian M, Seyfoori A, Ghasemi M, Shamsi M, Kolahchi AR, et al. 2021.. In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. . J. Control. Release 334::16477
    [Crossref] [Google Scholar]
  85. 85.
    Liu W, Sun M, Lu B, Yan M, Han K, Wang J. 2019.. A microfluidic platform for multi-size 3D tumor culture, monitoring and drug resistance testing. . Sens. Actuators B Chem. 292::11120
    [Crossref] [Google Scholar]
  86. 86.
    Carvalho MR, Barata D, Teixeira LM, Giselbrecht S, Reis RL, et al. 2019.. Colorectal tumor-on-a-chip system: a 3D tool for precision onco-nanomedicine. . Sci. Adv. 5::eaaw1317
    [Crossref] [Google Scholar]
  87. 87.
    Shembekar N, Chaipan C, Utharala R, Merten CA. 2016.. Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. . Lab Chip 16::131431
    [Crossref] [Google Scholar]
  88. 88.
    Jiang Z, Shi H, Tang X, Qin J. 2023.. Recent advances in droplet microfluidics for single-cell analysis. . Trends Analyt. Chem. 159::116932
    [Crossref] [Google Scholar]
  89. 89.
    Cui P, Wang S. 2019.. Application of microfluidic chip technology in pharmaceutical analysis: a review. . J. Pharm. Anal. 9::23847
    [Crossref] [Google Scholar]
  90. 90.
    De Stefano P, Bianchi E, Dubini G. 2022.. The impact of microfluidics in high-throughput drug-screening applications. . Biomicrofluidics 16::031501
    [Crossref] [Google Scholar]
  91. 91.
    Ling SD, Geng Y, Chen A, Du Y, Xu J. 2020.. Enhanced single-cell encapsulation in microfluidic devices: from droplet generation to single-cell analysis. . Biomicrofluidics 14::061508
    [Crossref] [Google Scholar]
  92. 92.
    Tavakoli H, Zhou W, Ma L, Perez S, Ibarra A, et al. 2019.. Recent advances in microfluidic platforms for single-cell analysis in cancer biology, diagnosis and therapy. . Trends Analyt. Chem. 117::1326
    [Crossref] [Google Scholar]
  93. 93.
    Li B, Ma X, Cheng J, Tian T, Guo J, et al. 2023.. Droplets microfluidics platform—a tool for single cell research. . Front. Bioeng. Biotechnol. 11::1121870
    [Crossref] [Google Scholar]
  94. 94.
    Fan Y, Nguyen DT, Akay Y, Xu F, Akay M. 2016.. engineering a brain cancer chip for high-throughput drug screening. . Sci. Rep. 6::25062
    [Crossref] [Google Scholar]
  95. 95.
    Hou HW, Li QS, Lee GY, Kumar AP, Ong CN, Lim CT. 2009.. Deformability study of breast cancer cells using microfluidics. . Biomed. Microdevices 11::55764
    [Crossref] [Google Scholar]
  96. 96.
    Eduati F, Utharala R, Madhavan D, Neumann UP, Longerich T, et al. 2018.. A microfluidics platform for combinatorial drug screening on cancer biopsies. . Nat. Commun. 9::2434
    [Crossref] [Google Scholar]
  97. 97.
    An X, Zuo P, Ye BC. 2020.. A single cell droplet microfluidic system for quantitative determination of food-borne pathogens. . Talanta 209::120571
    [Crossref] [Google Scholar]
  98. 98.
    Choi Y, Hyun E, Seo J, Blundell C, Kim HC, et al. 2015.. A microengineered pathophysiological model of early-stage breast cancer. . Lab Chip 15::335057
    [Crossref] [Google Scholar]
  99. 99.
    Du GS, Pan JZ, Zhao SP, Zhu Y, den Toonder JM, Fang Q. 2013.. Cell-based drug combination screening with a microfluidic droplet array system. . Anal. Chem. 85::674047
    [Crossref] [Google Scholar]
  100. 100.
    An D, Kim K, Kim J. 2014.. Microfluidic system based high throughput drug screening system for curcumin/TRAIL combinational chemotherapy in human prostate cancer PC3 cells. . Biomol. Ther. 22::35562
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110222-102142
Loading
/content/journals/10.1146/annurev-bioeng-110222-102142
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error