1932

Abstract

Selective and remote manipulation of activity for biomolecules, including protein, DNA, and lipids, is crucial to elucidate their molecular function and to develop biomedical applications. While advances in tool development, such as optogenetics, have significantly impacted these directions, the requirement for genetic modification significantly limits their therapeutic applications. Plasmonic nanoparticle heating has brought new opportunities to the field, as hot nanoparticles are unique point heat sources at the nanoscale. In this review, we summarize fundamental engineering problems such as plasmonic heating and the resulting biomolecular responses. We highlight the biological responses and applications of manipulating biomolecules and provide perspectives for future directions in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110222-105043
2024-07-03
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-110222-105043.html?itemId=/content/journals/10.1146/annurev-bioeng-110222-105043&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chamberlain PP, Hamann LG. 2019.. Development of targeted protein degradation therapeutics. . Nat. Chem. Biol. 15::93744
    [Crossref] [Google Scholar]
  2. 2.
    Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. 2011.. Optogenetics in neural systems. . Neuron 71::934
    [Crossref] [Google Scholar]
  3. 3.
    Jauffred L, Samadi A, Klingberg H, Bendix PM, Oddershede LB. 2019.. Plasmonic heating of nanostructures. . Chem. Rev. 119::8087130
    [Crossref] [Google Scholar]
  4. 4.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. 1994.. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. . J. Chem. Soc. Chem. Commun. 7::8012
    [Crossref] [Google Scholar]
  5. 5.
    Baffou G, Berto P, Bermúdez Ureña E, Quidant R, Monneret S, et al. 2013.. Photoinduced heating of nanoparticle arrays. . ACS Nano 7::647888
    [Crossref] [Google Scholar]
  6. 6.
    Kang P, Chen Z, Nielsen SO, Hoyt K, D'Arcy S, et al. 2017.. Molecular hyperthermia: spatiotemporal protein unfolding and inactivation by nanosecond plasmonic heating. . Small 13::1700841
    [Crossref] [Google Scholar]
  7. 7.
    Kang P, Li X, Liu Y, Shiers SI, Xiong H, et al. 2019.. Transient photoinactivation of cell membrane protein activity without genetic modification by molecular hyperthermia. . ACS Nano 13::1248799
    [Crossref] [Google Scholar]
  8. 8.
    Nelidova D, Morikawa RK, Cowan CS, Raics Z, Goldblum D, et al. 2020.. Restoring light sensitivity using tunable near-infrared sensors. . Science 368::110813
    [Crossref] [Google Scholar]
  9. 9.
    Wang C, Zhang Q, Wang X, Chang H, Zhang S, et al. 2017.. Dynamic modulation of enzyme activity by near-infrared light. . Angew. Chem. Int. Ed. Engl. 56:(24):676772
    [Crossref] [Google Scholar]
  10. 10.
    Urban P, Kirchner SR, Mühlbauer C, Lohmüller T, Feldmann J. 2016.. Reversible control of current across lipid membranes by local heating. . Sci. Rep. 6::22686
    [Crossref] [Google Scholar]
  11. 11.
    He H, Liu L, Zhang S, Zheng M, Ma A, et al. 2020.. Smart gold nanocages for mild heat-triggered drug release and breaking chemoresistance. . J. Control. Release 323::38797
    [Crossref] [Google Scholar]
  12. 12.
    Hastman DA, Melinger JS, Aragonés GL, Cunningham PD, Chiriboga M, et al. 2020.. Femtosecond laser pulse excitation of DNA-labeled gold nanoparticles: establishing a quantitative local nanothermometer for biological applications. . ACS Nano 14::857083
    [Crossref] [Google Scholar]
  13. 13.
    Hastman DA, Chaturvedi P, Oh E, Melinger JS, Medintz IL, et al. 2022.. Mechanistic understanding of DNA denaturation in nanoscale thermal gradients created by femtosecond excitation of gold nanoparticles. . ACS Appl. Mater. Interfaces 14::340417
    [Crossref] [Google Scholar]
  14. 14.
    Colomban P, Tournié A, Ricciardi P. 2009.. Raman spectroscopy of copper nanoparticle-containing glass matrices: ancient red stained-glass windows. . J. Raman Spectrosc. 40::194955
    [Crossref] [Google Scholar]
  15. 15.
    Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton TA. 2006.. Limits of localized heating by electromagnetically excited nanoparticles. . J. Appl. Phys. 100::054305
    [Crossref] [Google Scholar]
  16. 16.
    Xie C, Qin Z. 2022.. Spatiotemporal evolution of temperature during transient heating of nanoparticle arrays. . J. Heat Transf. 144::031204
    [Crossref] [Google Scholar]
  17. 17.
    Hashimoto S, Werner D, Uwada T. 2012.. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. . J. Photochem. Photobiol. C Photochem Rev. 13::2854
    [Crossref] [Google Scholar]
  18. 18.
    Wang YL, Chen LY, Liu QK, Cai FH, Qian J. 2016.. The ordering alignment of gold nanorods in liquid crystals and its applications to polarization-sensitive SERS. . J. Phys. Conf. Ser. 680::012021
    [Crossref] [Google Scholar]
  19. 19.
    Bohm D, Pines D. 1951.. A collective description of electron interactions. I. Magnetic interactions. . Phys. Rev. 82::62534
    [Crossref] [Google Scholar]
  20. 20.
    Pelton M, Bryant GW. 2013.. Introduction to Metal-Nanoparticle Plasmonics. Hoboken, NJ:: John Wiley & Sons
    [Google Scholar]
  21. 21.
    Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, et al. 2008.. Modelling the optical response of gold nanoparticles. . Chem. Soc. Rev. 37::1792805
    [Crossref] [Google Scholar]
  22. 22.
    Liu X. 2018.. Colloidal plasmonic nanoparticles for ultrafast optical switching and laser pulse generation. . Front. Mater. 5::59
    [Crossref] [Google Scholar]
  23. 23.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. 2006.. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. . J. Phys. Chem. B 110::723848
    [Crossref] [Google Scholar]
  24. 24.
    Mie G. 1908.. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. . Ann. Phys. 330::377445
    [Crossref] [Google Scholar]
  25. 25.
    Waxenegger J, Trügler A, Hohenester U. 2015.. Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. . Comput. Phys. Commun. 193::13850
    [Crossref] [Google Scholar]
  26. 26.
    Quinten M. 2010.. Optical Properties of Nanoparticle Systems: Mie and Beyond. Hoboken, NJ:: John Wiley & Sons
    [Google Scholar]
  27. 27.
    Link S, El-Sayed MA. 1999.. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. . J. Phys. Chem. B 103::841026
    [Crossref] [Google Scholar]
  28. 28.
    Nguyen SC, Zhang Q, Manthiram K, Ye X, Lomont JP, et al. 2016.. Study of heat transfer dynamics from gold nanorods to the environment via time-resolved infrared spectroscopy. . ACS Nano 10::214451
    [Crossref] [Google Scholar]
  29. 29.
    Anisimov SI, Kapeliovich BL, Perelman TL. 1974.. Electron emission from metal surfaces exposed to ultrashort laser pulses. . Sov. Phys. JETP 39:(2):37577
    [Google Scholar]
  30. 30.
    Qiu TQ, Tien CL. 1993.. Heat transfer mechanisms during short-pulse laser heating of metals. . J. Heat Transf. 115::83541
    [Crossref] [Google Scholar]
  31. 31.
    Chen JK, Beraun JE. 2001.. Numerical study of ultrashort laser pulse interactions with metal films. . Numer. Heat Transf. A Appl. 40::120
    [Google Scholar]
  32. 32.
    Chen JK, Beraun JE, Tham CL. 2003.. Investigation of thermal response caused by pulse laser heating. . Numer. Heat Transf. A Appl. 44::70522
    [Crossref] [Google Scholar]
  33. 33.
    Baffou G, Rigneault H. 2011.. Femtosecond-pulsed optical heating of gold nanoparticles. . Phys. Rev. B Condens. Matter Mater. Phys. 84::035415
    [Crossref] [Google Scholar]
  34. 34.
    Goldenberg H, Tranter CJ. 1952.. Heat flow in an infinite medium heated by a sphere. . Br. J. Appl. Phys. 3::296
    [Crossref] [Google Scholar]
  35. 35.
    Johannsmeier S, Heeger P, Terakawa M, Kalies S, Heisterkamp A, et al. 2018.. Gold nanoparticle-mediated laser stimulation induces a complex stress response in neuronal cells. . Sci. Rep. 8::6533
    [Crossref] [Google Scholar]
  36. 36.
    Tamura M, Iida T, Setoura K. 2022.. Plasmonic nanoscale temperature shaping on a single titanium nitride nanostructure. . Nanoscale 14::1258994
    [Crossref] [Google Scholar]
  37. 37.
    Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, et al. 2003.. Nanoscale thermal transport. . J. Appl. Phys. 93::793818
    [Crossref] [Google Scholar]
  38. 38.
    Wilson BA, Nielsen SO, Randrianalisoa JH, Qin Z. 2022.. Curvature and temperature-dependent thermal interface conductance between nanoscale gold and water. . J. Chem. Phys. 157::054703
    [Crossref] [Google Scholar]
  39. 39.
    Metwally K, Mensah S, Baffou G. 2015.. Fluence threshold for photothermal bubble generation using plasmonic nanoparticles. . J. Phys. Chem. C 119::2858696
    [Crossref] [Google Scholar]
  40. 40.
    Berto P, Mohamed MSA, Rigneault H, Baffou G. 2014.. Time-harmonic optical heating of plasmonic nanoparticles. . Phys. Rev. B Condens. Matter Mater. Phys. 90::035439
    [Crossref] [Google Scholar]
  41. 41.
    Stoll T, Maioli P, Crut A, Rodal-Cedeira S, Pastoriza-Santos I, Vallée F, et al. 2015.. Time-resolved investigations of the cooling dynamics of metal nanoparticles: impact of environment. . J. Phys. Chem. C 119::1275764
    [Crossref] [Google Scholar]
  42. 42.
    Tascini AS, Armstrong J, Chiavazzo E, Fasano M, Asinari P, Bresme F. 2017.. Thermal transport across nanoparticle-fluid interfaces: the interplay of interfacial curvature and nanoparticle-fluid interactions. . Phys. Chem. Chem. Phys. 19::324453
    [Crossref] [Google Scholar]
  43. 43.
    Ge Z, Cahill DG, Braun PV. 2006.. Thermal conductance of hydrophilic and hydrophobic interfaces. . Phys. Rev. Lett. 96::186101
    [Crossref] [Google Scholar]
  44. 44.
    Wilson OM, Hu X, Cahill DG, Braun PV. 2002.. Colloidal metal particles as probes of nanoscale thermal transport in fluids. . Phys. Rev. B Condens. Matter Mater. Phys. 66::224301
    [Crossref] [Google Scholar]
  45. 45.
    Plech A, Kotaidis V, Grésillon S, Dahmen C, von Plessen G. 2004.. Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering. . Phys. Rev. B Condens. Matter Mater. Phys. 70::195423
    [Crossref] [Google Scholar]
  46. 46.
    Schmidt AJ, Alper JD, Chiesa M, Chen G, Das SK, Hamad-Schifferli K. 2008.. Probing the gold nanorod−ligand−solvent interface by plasmonic absorption and thermal decay. . J. Phys. Chem. C 112::1332023
    [Crossref] [Google Scholar]
  47. 47.
    Wu X, Ni Y, Zhu J, Burrows ND, Murphy CJ, et al. 2016.. Thermal transport across surfactant layers on gold nanorods in aqueous solution. . ACS Appl. Mater. Interfaces 8::1058189
    [Crossref] [Google Scholar]
  48. 48.
    Nan C-W, Birringer R, Clarke DR, Gleiter H. 1997.. Effective thermal conductivity of particulate composites with interfacial thermal resistance. . J. Appl. Phys. 81::669299
    [Crossref] [Google Scholar]
  49. 49.
    Petrova H, Lin C-H, de Liejer S, Hu M, McLellan JM, et al. 2007.. Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes. . J. Chem. Phys. 126::094709
    [Crossref] [Google Scholar]
  50. 50.
    Werner D, Hashimoto S. 2011.. Improved working model for interpreting the excitation wavelength- and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles. . J. Phys. Chem. C 115::506372
    [Crossref] [Google Scholar]
  51. 51.
    Kang P, Wang Y, Wilson BA, Liu Y, Dawkrajai N, et al. 2021.. Nanoparticle fragmentation below the melting point under single picosecond laser pulse stimulation. . J. Phys. Chem. C Nanomater. Interfaces 125::2671830
    [Crossref] [Google Scholar]
  52. 52.
    Pang GA, Laufer J, Niessner R, Haisch C. 2016.. Photoacoustic signal generation in gold nanospheres in aqueous solution: signal generation enhancement and particle diameter effects. . J. Phys. Chem. C 120::2764656
    [Crossref] [Google Scholar]
  53. 53.
    Lukianova-Hleb E, Hu Y, Latterini L, Tarpani L, Lee S, et al. 2010.. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. . ACS Nano 4::210923
    [Crossref] [Google Scholar]
  54. 54.
    Xuan M, Wu Z, Shao J, Dai L, Si T, He Q. 2016.. Near infrared light-powered Janus mesoporous silica nanoparticle motors. . J. Am. Chem. Soc. 138::649297
    [Crossref] [Google Scholar]
  55. 55.
    Xu M, Wang LV. 2006.. Photoacoustic imaging in biomedicine. . Rev. Sci. Instrum. 77::041101
    [Crossref] [Google Scholar]
  56. 56.
    Lin L, Hu P, Shi J, Appleton CM, et al. 2018.. Single-breath-hold photoacoustic computed tomography of the breast. . Nat. Commun. 9::2352
    [Crossref] [Google Scholar]
  57. 57.
    Nedev S, Carretero-Palacios S, Kühler P, Lohmüller T, Urban AS, et al. 2015.. An optically controlled microscale elevator using plasmonic Janus particles. . ACS Photonics 2::49196
    [Crossref] [Google Scholar]
  58. 58.
    Simoncelli S, Johnson S, Kriegel F, Lipfert J, Feldmann J. 2017.. Stretching and heating single DNA molecules with optically trapped gold-silica Janus particles. . ACS Photonics 4::284351
    [Crossref] [Google Scholar]
  59. 59.
    Parsamian P, Liu Y, Xie C, Chen Z, Kang P, et al. 2023.. Enhanced nanobubble formation: gold nanoparticle conjugation to Qβ virus-like particles. . ACS Nano 17::7797805
    [Crossref] [Google Scholar]
  60. 60.
    Lombard J, Biben T, Merabia S. 2017.. Threshold for vapor nanobubble generation around plasmonic nanoparticles. . J. Phys. Chem. C 121::1540215
    [Crossref] [Google Scholar]
  61. 61.
    Liu Y, Ye H, Huynh H, Xie C, Kang P, et al. 2022.. Digital plasmonic nanobubble detection for rapid and ultrasensitive virus diagnostics. . Nat. Commun. 13::1687
    [Crossref] [Google Scholar]
  62. 62.
    Li M, Lohmüller T, Feldmann J. 2015.. Optical injection of gold nanoparticles into living cells. . Nano Lett. 15::77075
    [Crossref] [Google Scholar]
  63. 63.
    Kang P, Xie C, Fall O, Randrianalisoa J, Qin Z. 2021.. computational investigation of protein photoinactivation by molecular hyperthermia. . J. Biomech. Eng. 143::031004
    [Crossref] [Google Scholar]
  64. 64.
    Lalisse A, Tessier G, Plain J, Baffou G. 2015.. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. . J. Phys. Chem. C 119::2551828
    [Crossref] [Google Scholar]
  65. 65.
    Liu Y, Ye H, Bayram A, Zhang T, Cai Q, et al. 2022.. Gold nanourchins improve virus targeting and plasmonic coupling for virus diagnosis on a smartphone platform. . ACS Sens. 7::374152
    [Crossref] [Google Scholar]
  66. 66.
    Hassan S, Schade M, Shaw CP, Lévy R, Hamm P. 2014.. Response of villin headpiece-capped gold nanoparticles to ultrafast laser heating. . J. Phys. Chem. B 118::795462
    [Crossref] [Google Scholar]
  67. 67.
    Anderson RR, Parrish JA. 1983.. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. . Science 220:(4596):52427
    [Crossref] [Google Scholar]
  68. 68.
    Bischof JC, He X. 2005.. Thermal stability of proteins. . Ann. N. Y. Acad. Sci. 1066::1233
    [Crossref] [Google Scholar]
  69. 69.
    Hüttmann G, Radt B, Serbin J, Birngruber R. 2003.. Inactivation of proteins by irradiation of gold nanoparticles with nano- and picosecond laser pulses. . In Therapeutic Laser Applications and Laser-Tissue Interactions. Washington, DC:: OSA
    [Google Scholar]
  70. 70.
    Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP. 2003.. Selective cell targeting with light-absorbing microparticles and nanoparticles. . Biophys. J. 84::402332
    [Crossref] [Google Scholar]
  71. 71.
    Jay DG. 1988.. Selective destruction of protein function by chromophore-assisted laser inactivation. . PNAS 85::545458
    [Crossref] [Google Scholar]
  72. 72.
    Pearce J, Thomsen S. 1995.. Rate process analysis of thermal damage. . In Optical-Thermal Response of Laser-Irradiated Tissue, ed. AJ Welch, MJC Van Gemert , pp. 561606. Boston:: Springer US
    [Google Scholar]
  73. 73.
    Day R, Daggett V. 2005.. Sensitivity of the folding/unfolding transition state ensemble of chymotrypsin inhibitor 2 to changes in temperature and solvent. . Protein Sci. 14::124252
    [Crossref] [Google Scholar]
  74. 74.
    Mayor U, Johnson CM, Daggett V, Fersht AR. 2000.. Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. . PNAS 97::1351822
    [Crossref] [Google Scholar]
  75. 75.
    Hüttmann G, Birngruber R. 1999.. On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins. . IEEE J. Sel. Top. Quantum Electron. 5::95462
    [Crossref] [Google Scholar]
  76. 76.
    Steel BC, McKenzie DR, Bilek MMM, Nosworthy NJ, dos Remedios CG. 2006.. Nanosecond responses of proteins to ultra-high temperature pulses. . Biophys. J. 91::L6668
    [Crossref] [Google Scholar]
  77. 77.
    Sarkar D, Kang P, Nielsen SO, Qin Z. 2019.. Non-Arrhenius reaction-diffusion kinetics for protein inactivation over a large temperature range. . ACS Nano 13::866979
    [Crossref] [Google Scholar]
  78. 78.
    Xie C, Kang P, Cazals J, Castelán OM, Randrianalisoa J, Qin Z. 2022.. Single pulse heating of a nanoparticle array for biological applications. . Nanoscale Adv. 4::209097
    [Crossref] [Google Scholar]
  79. 79.
    Ilovitsh A, Polak P, Zalevsky Z, Shefi O. 2017.. Selective inactivation of enzymes conjugated to nanoparticles using tuned laser illumination. . Cytometry A 91::76774
    [Crossref] [Google Scholar]
  80. 80.
    Thompson SA, Paterson S, Azab MMM, Wark AW, de la Rica R. 2017.. Light-triggered inactivation of enzymes with photothermal nanoheaters. . Small 13::1603195
    [Crossref] [Google Scholar]
  81. 81.
    Takeda Y, Kondow T, Mafuné F. 2006.. Degradation of protein in nanoplasma generated around gold nanoparticles in solution by laser irradiation. . J. Phys. Chem. B 110::239397
    [Crossref] [Google Scholar]
  82. 82.
    Takeda Y, Mafuné F, Kondow T. 2009.. Selective degradation of proteins by laser irradiation onto gold nanoparticles in solution. . J. Phys. Chem. C 113::502730
    [Crossref] [Google Scholar]
  83. 83.
    Rahmanzadeh R, Rudnitzki F, Hüttmann G. 2019.. Two ways to inactivate the Ki-67 protein—fragmentation by nanoparticles, crosslinking with fluorescent dyes. . J. Biophotonics 12::e201800460
    [Crossref] [Google Scholar]
  84. 84.
    Li X, Vemireddy V, Cai Q, Xiong H, Kang P, et al. 2021.. Reversibly modulating the blood-brain barrier by laser stimulation of molecular-targeted nanoparticles. . Nano Lett. 21::980515
    [Crossref] [Google Scholar]
  85. 85.
    Nakatsuji H, Numata T, Morone N, Kaneko S, Mori Y, et al. 2015.. Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticles. . Angew. Chem. Int. Ed. Engl. 54::1172529
    [Crossref] [Google Scholar]
  86. 86.
    Gao W, Sun Y, Cai M, Zhao Y, Cao W, et al. 2018.. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. . Nat. Commun. 9::231
    [Crossref] [Google Scholar]
  87. 87.
    Yu Y, Yang X, Reghu S, Kaul SC, Wadhwa R, Miyako E. 2020.. Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes. . Nat. Commun. 11::4117
    [Crossref] [Google Scholar]
  88. 88.
    Blankschien MD, Pretzer LA, Huschka R, Halas NJ, Gonzalez R, Wong MS. 2013.. Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes. . ACS Nano 7::65463
    [Crossref] [Google Scholar]
  89. 89.
    Bretschneider JC, Reismann M, von Plessen G, Simon U. 2009.. Photothermal control of the activity of HRP-functionalized gold nanoparticles. . Small 5::254953
    [Crossref] [Google Scholar]
  90. 90.
    Yao J, Liu B, Qin F. 2010.. Kinetic and energetic analysis of thermally activated TRPV1 channels. . Biophys. J. 99::174353
    [Crossref] [Google Scholar]
  91. 91.
    Roversi K, Tabatabaei M, Desjardins-Lecavalier N, Balood M, Crosson T, et al. 2022.. Nanophotonics enable targeted photothermal silencing of nociceptor neurons. . Small 18::e2103364
    [Crossref] [Google Scholar]
  92. 92.
    Yuan J, Liu H, Zhang H, Wang T, Zheng Q, Li Z. 2022.. Controlled activation of TRPV1 channels on microglia to boost their autophagy for clearance of alpha-synuclein and enhance therapy of Parkinson's disease. . Adv. Mater. 34::e2108435
    [Crossref] [Google Scholar]
  93. 93.
    Cao Y, Wang Y. 2016.. Temperature-mediated regulation of enzymatic activity. . ChemCatChem 8::274047
    [Crossref] [Google Scholar]
  94. 94.
    Daniel RM, Danson MJ. 2010.. A new understanding of how temperature affects the catalytic activity of enzymes. . Trends Biochem. Sci. 35::58491
    [Crossref] [Google Scholar]
  95. 95.
    Claaßen C, Gerlach T, Rother D. 2019.. Stimulus-responsive regulation of enzyme activity for one-step and multi-step syntheses. . Adv. Synth. Catal. 361::2387401
    [Crossref] [Google Scholar]
  96. 96.
    Turner P, Mamo G, Karlsson EN. 2007.. Potential and utilization of thermophiles and thermostable enzymes in biorefining. . Microb. Cell Fact. 6::9
    [Crossref] [Google Scholar]
  97. 97.
    Knecht LD, Ali N, Wei Y, Hilt JZ, Daunert S. 2012.. Nanoparticle-mediated remote control of enzymatic activity. . ACS Nano 6::907986
    [Crossref] [Google Scholar]
  98. 98.
    Tadepalli S, Yim J, Madireddi K, Luan J, Naik RR, Singamaneni S. 2017.. Gold nanorod-mediated photothermal enhancement of the biocatalytic activity of a polymer-encapsulated enzyme. . Chem. Mater. 29::630814
    [Crossref] [Google Scholar]
  99. 99.
    Zhang S, Wang C, Chang H, Zhang Q, Cheng Y. 2019.. Off-on switching of enzyme activity by near-infrared light-induced photothermal phase transition of nanohybrids. . Sci. Adv. 5::eaaw4252
    [Crossref] [Google Scholar]
  100. 100.
    Hu J-J, Liu M-D, Gao F, Chen Y, Peng S-Y, et al. 2019.. Photo-controlled liquid metal nanoparticle-enzyme for starvation/photothermal therapy of tumor by win-win cooperation. . Biomaterials 217::119303
    [Crossref] [Google Scholar]
  101. 101.
    Anithkumar M, Rajan SA, Khan A, Kaczmarek B, Michalska-Sionkowska M, et al. 2023.. Glucose oxidase-loaded MnFe2O4 nanoparticles for hyperthermia and cancer starvation therapy. . ACS Appl. Nano Mater. 6::260514
    [Crossref] [Google Scholar]
  102. 102.
    Urban AS, Fedoruk M, Horton MR, Rädler JO, Stefani FD, Feldmann J. 2009.. Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles. . Nano Lett. 9::29038
    [Crossref] [Google Scholar]
  103. 103.
    Yeheskely-Hayon D, Minai L, Golan L, Dann EJ, Yelin D. 2013.. Optically induced cell fusion using bispecific nanoparticles. . Small 9::377177
    [Crossref] [Google Scholar]
  104. 104.
    Kyrsting A, Bendix PM, Stamou DG, Oddershede LB. 2011.. Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. . Nano Lett. 11::88892
    [Crossref] [Google Scholar]
  105. 105.
    Li Y, He D, Tu J, Wang R, Zu C, et al. 2018.. The comparative effect of wrapping solid gold nanoparticles and hollow gold nanoparticles with doxorubicin-loaded thermosensitive liposomes for cancer thermo-chemotherapy. . Nanoscale 10::862841
    [Crossref] [Google Scholar]
  106. 106.
    Brown DA, London E. 2000.. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. . J. Biol. Chem. 275::1722124
    [Crossref] [Google Scholar]
  107. 107.
    Vargas KM, Shon Y-S. 2019.. Hybrid lipid-nanoparticle complexes for biomedical applications. . J. Mater. Chem. B Mater. Biol. Med. 7::695708
    [Crossref] [Google Scholar]
  108. 108.
    Chen J, Cheng D, Li J, Wang Y, Guo J-X, et al. 2013.. Influence of lipid composition on the phase transition temperature of liposomes composed of both DPPC and HSPC. . Drug Dev. Ind. Pharm. 39::197204
    [Crossref] [Google Scholar]
  109. 109.
    Cevc G. 1991.. How membrane chain-melting phase-transition temperature is affected by the lipid chain asymmetry and degree of unsaturation: an effective chain-length model. . Biochemistry 30:(29):718693
    [Crossref] [Google Scholar]
  110. 110.
    Delcea M, Sternberg N, Yashchenok AM, Georgieva R, Bäumler H, et al. 2012.. Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells. . ACS Nano 6::416980
    [Crossref] [Google Scholar]
  111. 111.
    Urban AS, Pfeiffer T, Fedoruk M, Lutich AA, Feldmann J. 2011.. Single-step injection of gold nanoparticles through phospholipid membranes. . ACS Nano 5::358590
    [Crossref] [Google Scholar]
  112. 112.
    Xiong H, Li X, Kang P, Perish J, Neuhaus F, et al. 2020.. Near-infrared light triggered-release in deep brain regions using ultra-photosensitive nanovesicles. . Angew. Chem. Int. Ed. Engl. 59::860815
    [Crossref] [Google Scholar]
  113. 113.
    Palankar R, Pinchasik B-E, Khlebtsov BN, Kolesnikova TA, Möhwald H, et al. 2014.. Nanoplasmonically-induced defects in lipid membrane monitored by ion current: transient nanopores versus membrane rupture. . Nano Lett. 14::427379
    [Crossref] [Google Scholar]
  114. 114.
    Maier CM, Huergo MA, Milosevic S, Pernpeintner C, Li M, et al. 2018.. Optical and thermophoretic control of Janus nanopen injection into living cells. . Nano Lett. 18::793541
    [Crossref] [Google Scholar]
  115. 115.
    Xiong H, Alberto KA, Youn J, Taura J, Morstein J, et al. 2023.. Optical control of neuronal activities with photoswitchable nanovesicles. . Nano Res. 16::103341
    [Crossref] [Google Scholar]
  116. 116.
    Li X, Kang P, Chen Z, Lal S, Zhang L, et al. 2018.. Rock the nucleus: significantly enhanced nuclear membrane permeability and gene transfection by plasmonic nanobubble induced nanomechanical transduction. . Chem. Commun. 54::247982
    [Crossref] [Google Scholar]
  117. 117.
    Moorcroft SCT, Roach L, Jayne DG, Ong ZY, Evans SD. 2020.. Nanoparticle-loaded hydrogel for the light-activated release and photothermal enhancement of antimicrobial peptides. . ACS Appl. Mater. Interfaces 12::2454454
    [Crossref] [Google Scholar]
  118. 118.
    Dave N, Liu J. 2011.. Protection and promotion of UV radiation-induced liposome leakage via DNA-directed assembly with gold nanoparticles. . Adv. Mater. 23::318286
    [Crossref] [Google Scholar]
  119. 119.
    Mathiyazhakan M, Wiraja C, Xu C. 2018.. A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. . Nanomicro Lett. 10::10
    [Google Scholar]
  120. 120.
    Randrianalisoa J, Li X, Serre M, Qin Z. 2017.. Understanding the collective optical properties of complex plasmonic vesicles. . Adv. Opt. Mater. 5::1700403
    [Crossref] [Google Scholar]
  121. 121.
    Xiong H, Lacin E, Ouyang H, Naik A, Xu X, et al. 2022.. Probing neuropeptide volume transmission in vivo by simultaneous near-infrared light-triggered release and optical sensing. . Angew. Chem. Int. Ed. Engl. 61:(34):e202206122
    [Crossref] [Google Scholar]
  122. 122.
    Rørvig-Lund A, Bahadori A, Semsey S, Bendix PM, Oddershede LB. 2015.. Vesicle fusion triggered by optically heated gold nanoparticles. . Nano Lett. 15::418388
    [Crossref] [Google Scholar]
  123. 123.
    Liu J, Xiong R, Brans T, Lippens S, Parthoens E, et al. 2018.. Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy. . Light Sci. Appl. 7::47
    [Crossref] [Google Scholar]
  124. 124.
    Raes L, Stremersch S, Fraire JC, Brans T, Goetgeluk G, De Munter S, et al. 2020.. Intracellular delivery of mRNA in adherent and suspension cells by vapor nanobubble photoporation. . Nanomicro Lett. 12::185
    [Google Scholar]
  125. 125.
    Ramon J, Xiong R, De Smedt SC, Raemdonck K, Braeckmans K. 2021.. Vapor nanobubble-mediated photoporation constitutes a versatile intracellular delivery technology. . Curr. Opin. Colloid Interface Sci. 54::101453
    [Crossref] [Google Scholar]
  126. 126.
    Houthaeve G, Xiong R, Robijns J, Luyckx B, Beulque Y, et al. 2018.. Targeted perturbation of nuclear envelope integrity with vapor nanobubble-mediated photoporation. . ACS Nano 12::7791802
    [Crossref] [Google Scholar]
  127. 127.
    Wartell RM, Benight AS. 1985.. Thermal denaturation of DNA molecules: a comparison of theory with experiment. . Phys. Rep. 126::67107
    [Crossref] [Google Scholar]
  128. 128.
    Ussery DW. 2001.. DNA denaturation. . In Encyclopedia of Genetics, ed. S Brenner, JH Miller , pp. 55053. Amsterdam:: Elsevier
    [Google Scholar]
  129. 129.
    Williams MC, Rouzina I, Bloomfield VA. 2002.. Thermodynamics of DNA interactions from single molecule stretching experiments. . Acc. Chem. Res. 35::15966
    [Crossref] [Google Scholar]
  130. 130.
    Petralia S, Forte G, Aiello M, Nocito G, Conoci S. 2021.. Photothermal-triggered system for oligonucleotides delivery from cationic gold nanorods surface: a molecular dynamic investigation. . Colloids Surf. B Biointerfaces 201::111654
    [Crossref] [Google Scholar]
  131. 131.
    Lafontaine I, Lavery R. 2000.. Optimization of nucleic acid sequences. . Biophys. J. 79::68085
    [Crossref] [Google Scholar]
  132. 132.
    Barhoumi A, Huschka R, Bardhan R, Knight MW, Halas NJ. 2009.. Light-induced release of DNA from plasmon-resonant nanoparticles: towards light-controlled gene therapy. . Chem. Phys. Lett. 482::17179
    [Crossref] [Google Scholar]
  133. 133.
    You M, Li Z, Feng S, Gao B, Yao C, et al. 2020.. Ultrafast photonic PCR based on photothermal nanomaterials. . Trends Biotechnol. 38::63749
    [Crossref] [Google Scholar]
  134. 134.
    Reismann M, Bretschneider JC, von Plessen G, Simon U. 2008.. Reversible photothermal melting of DNA in DNA-gold-nanoparticle networks. . Small 4::60710
    [Crossref] [Google Scholar]
  135. 135.
    Sun Y, Harris NC, Kiang C-H. 2005.. Melting transition of directly linked gold nanoparticle DNA assembly. . Physica A Stat. Mech. Appl. 350::8994
    [Crossref] [Google Scholar]
  136. 136.
    Stehr J, Hrelescu C, Sperling RA, Raschke G, Wunderlich M, et al. 2008.. Gold nanostoves for microsecond DNA melting analysis. . Nano Lett. 8::61923
    [Crossref] [Google Scholar]
  137. 137.
    Goodman AM, Hogan NJ, Gottheim S, Li C, Clare SE, Halas NJ. 2017.. Understanding resonant light-triggered DNA release from plasmonic nanoparticles. . ACS Nano 11::17179
    [Crossref] [Google Scholar]
  138. 138.
    Ávalos-Ovando O, Besteiro LV, Movsesyan A, Markovich G, Liedl T, et al. 2021.. Chiral photomelting of DNA-nanocrystal assemblies utilizing plasmonic photoheating. . Nano Lett. 21::7298308
    [Crossref] [Google Scholar]
  139. 139.
    Huschka R, Zuloaga J, Knight MW, Brown LV, Nordlander P, Halas NJ. 2011.. Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. . J. Am. Chem. Soc. 133::1224755
    [Crossref] [Google Scholar]
  140. 140.
    Son JH, Cho B, Hong S, Lee SH, Hoxha O, et al. 2015.. Ultrafast photonic PCR. . Light Sci. Appl. 4::e280
    [Crossref] [Google Scholar]
  141. 141.
    Ottesen EA, Hong JW, Quake SR, Leadbetter JR. 2006.. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. . Science 314::146467
    [Crossref] [Google Scholar]
  142. 142.
    Smith CJ, Osborn AM. 2009.. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. . FEMS Microbiol. Ecol. 67::620
    [Crossref] [Google Scholar]
  143. 143.
    Lee SH, Park S-M, Kim BN, Kwon OS, Rho W-Y, Jun B-H. 2019.. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. . Biosens. Bioelectron. 141::111448
    [Crossref] [Google Scholar]
  144. 144.
    Jalili A, Bagheri M, Shamloo A, Kazemipour Ashkezari AH. 2021.. A plasmonic gold nanofilm-based microfluidic chip for rapid and inexpensive droplet-based photonic PCR. . Sci. Rep. 11::23338
    [Crossref] [Google Scholar]
  145. 145.
    Mohammadyousef P, Paliouras M, Trifiro MA, Kirk AG. 2021.. Plasmonic and label-free real-time quantitative PCR for point-of-care diagnostics. . Analyst 146::561930
    [Crossref] [Google Scholar]
  146. 146.
    Cheong J, Yu H, Lee CY, Lee J-U, Choi H-J, et al. 2020.. Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. . Nat. Biomed. Eng. 4::115967
    [Crossref] [Google Scholar]
  147. 147.
    Lee SE, Liu GL, Kim F, Lee LP. 2009.. Remote optical switch for localized and selective control of gene interference. . Nano Lett. 9::56270
    [Crossref] [Google Scholar]
  148. 148.
    Huschka R, Barhoumi A, Liu Q, Roth JA, Ji L, Halas NJ. 2012.. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. . ACS Nano 6::768191
    [Crossref] [Google Scholar]
  149. 149.
    Yamashita S, Fukushima H, Akiyama Y, Niidome Y, Mori T, et al. 2011.. Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. . Bioorg. Med. Chem. 19::213035
    [Crossref] [Google Scholar]
  150. 150.
    Wang D, Xu Z, Yu H, Chen X, Feng B, et al. 2014.. Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods. . Biomaterials 35::837484
    [Crossref] [Google Scholar]
  151. 151.
    Li X, Cai Q, Wilson BA, Fan H, Dave H, Giannotta M, et al. 2023.. Mechanobiological modulation of blood-brain barrier permeability by laser stimulation of endothelial-targeted nanoparticles. . Nanoscale 15::338797
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110222-105043
Loading
/content/journals/10.1146/annurev-bioeng-110222-105043
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error