1932

Abstract

This review delves into the rapidly evolving landscape of liquid biopsy technologies based on cell-free DNA (cfDNA) and cell-free RNA (cfRNA) and their increasingly prominent role in precision medicine. With the advent of high-throughput DNA sequencing, the use of cfDNA and cfRNA has revolutionized noninvasive clinical testing. Here, we explore the physical characteristics of cfDNA and cfRNA, present an overview of the essential engineering tools used by the field, and highlight clinical applications, including noninvasive prenatal testing, cancer testing, organ transplantation surveillance, and infectious disease testing. Finally, we discuss emerging technologies and the broadening scope of liquid biopsies to new areas of diagnostic medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110222-111259
2024-07-03
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-110222-111259.html?itemId=/content/journals/10.1146/annurev-bioeng-110222-111259&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mandel P, Metais P. 1948.. [Nuclear acids in human blood plasma]. . C. R. Seances Soc. Biol. Fil. 142:(3–4):24143
    [Google Scholar]
  2. 2.
    Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al. 2008.. Accurate whole human genome sequencing using reversible terminator chemistry. . Nature 456:(7218):5359
    [Crossref] [Google Scholar]
  3. 3.
    Balasubramanian S. 2015.. Solexa sequencing: decoding genomes on a population scale. . Clin. Chem. 61:(1):2124
    [Crossref] [Google Scholar]
  4. 4.
    Lo YMD, Han DSC, Jiang P, Chiu RWK. 2021.. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. . Science 372:(6538):eaaw3616
    [Crossref] [Google Scholar]
  5. 5.
    Mouliere F. 2022.. A hitchhiker's guide to cell-free DNA biology. . Neurooncol. Adv. 4:(Suppl. 2):ii614
    [Google Scholar]
  6. 6.
    Thierry AR. 2023.. Circulating DNA fragmentomics and cancer screening. . Cell Genom. 3:(1):100242
    [Crossref] [Google Scholar]
  7. 7.
    Loyfer N, Magenheim J, Peretz A, Cann G, Bredno J, et al. 2023.. A DNA methylation atlas of normal human cell types. . Nature 613::35564
    [Crossref] [Google Scholar]
  8. 8.
    Tjoa ML, Cindrova-Davies T, Spasic-Boskovic O, Bianchi DW, Burton GJ. 2006.. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. . Am. J. Pathol. 169:(2):4004
    [Crossref] [Google Scholar]
  9. 9.
    Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. 2008.. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. . PNAS 105:(42):1626671
    [Crossref] [Google Scholar]
  10. 10.
    Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. 2010.. Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing. . Clin. Chem. 56:(8):127986
    [Crossref] [Google Scholar]
  11. 11.
    Gu W, Deng X, Lee M, Sucu YD, Arevalo S, et al. 2021.. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. . Nat. Med. 27:(1):11524
    [Crossref] [Google Scholar]
  12. 12.
    Burnham P, Dadhania D, Heyang M, Chen F, Westblade LF, et al. 2018.. Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract. . Nat. Commun. 9:(1):2412
    [Crossref] [Google Scholar]
  13. 13.
    Markus H, Zhao J, Contente-Cuomo T, Stephens MD, Raupach E, et al. 2021.. Analysis of recurrently protected genomic regions in cell-free DNA found in urine. . Sci. Transl. Med. 13:(581):eaaz3088
    [Crossref] [Google Scholar]
  14. 14.
    Choy LYL, Peng W, Jiang P, Cheng SH, Yu SCY, et al. 2022.. Single-molecule sequencing enables long cell-free DNA detection and direct methylation analysis for cancer patients. . Clin. Chem. 68:(9):115163
    [Crossref] [Google Scholar]
  15. 15.
    Chan RWY, Jiang P, Peng X, Tam L-S, Liao GJW, et al. 2014.. Plasma DNA aberrations in systemic lupus erythematosus revealed by genomic and methylomic sequencing. . PNAS 111:(49):E530211
    [Crossref] [Google Scholar]
  16. 16.
    Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, et al. 2018.. Enhanced detection of circulating tumor DNA by fragment size analysis. . Sci. Transl. Med. 10:(466):eaat4921
    [Crossref] [Google Scholar]
  17. 17.
    Burnham P, Kim MS, Agbor-Enoh S, Luikart H, Valantine HA, et al. 2016.. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma. . Sci. Rep. 6::27859
    [Crossref] [Google Scholar]
  18. 18.
    Lam WKJ, Jiang P, Chan KCA, Cheng SH, Zhang H, et al. 2018.. Sequencing-based counting and size profiling of plasma Epstein-Barr virus DNA enhance population screening of nasopharyngeal carcinoma. . PNAS 115:(22):E511524
    [Crossref] [Google Scholar]
  19. 19.
    Lo YMD, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. 1999.. Rapid clearance of fetal DNA from maternal plasma. . Am. J. Hum. Genet. 64:(1):21824
    [Crossref] [Google Scholar]
  20. 20.
    Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. 2016.. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. . Cell 164:(1–2):5768
    [Crossref] [Google Scholar]
  21. 21.
    Kim SK, Hannum G, Geis J, Tynan J, Hogg G, et al. 2015.. Determination of fetal DNA fraction from the plasma of pregnant women using sequence read counts. . Prenat Diagn. 35:(8):81015
    [Crossref] [Google Scholar]
  22. 22.
    Gu W, Crawford ED, O'Donovan BD, Wilson MR, Chow ED, et al. 2016.. Depletion of abundant sequences by hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. . Genome Biol. 17::41
    [Crossref] [Google Scholar]
  23. 23.
    Lo YMD, Patel P, Wainscoat JS, Sampietro M, Gillmer MD, Fleming KA. 1989.. Prenatal sex determination by DNA amplification from maternal peripheral blood. . Lancet 2:(8676):136365
    [Crossref] [Google Scholar]
  24. 24.
    Lo YMD, Corbetta N, Chamberlain PF, Rai V, Sargent IL, et al. 1997.. Presence of fetal DNA in maternal plasma and serum. . Lancet 350:(9076):48587
    [Crossref] [Google Scholar]
  25. 25.
    Vogelstein B, Kinzler KW. 1999.. Digital PCR. . PNAS 96:(16):923641
    [Crossref] [Google Scholar]
  26. 26.
    Lo YMD, Lun FMF, Chan KCA, Tsui NBY, Chong KC, et al. 2007.. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. . PNAS 104:(32):1311621
    [Crossref] [Google Scholar]
  27. 27.
    Fan HC, Quake SR. 2007.. Detection of aneuploidy with digital polymerase chain reaction. . Anal Chem. 79:(19):757679
    [Crossref] [Google Scholar]
  28. 28.
    White RA, Blainey PC, Fan HC, Quake SR. 2009.. Digital PCR provides sensitive and absolute calibration for high throughput sequencing. . BMC Genom. 10::116
    [Crossref] [Google Scholar]
  29. 29.
    Chiu RWK, Chan KCA, Gao Y, Lau VYM, Zheng W, et al. 2008.. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. . PNAS 105:(51):2045863
    [Crossref] [Google Scholar]
  30. 30.
    Fan HC, Gu W, Wang J, Blumenfeld YJ, El-Sayed YY, Quake SR. 2012.. Non-invasive prenatal measurement of the fetal genome. . Nature 487::32024
    [Crossref] [Google Scholar]
  31. 31.
    Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, et al. 2014.. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. . Nat. Med. 20:(5):54854
    [Crossref] [Google Scholar]
  32. 32.
    Pergament E, Cuckle H, Zimmermann B, Banjevic M, Sigurjonsson S, et al. 2014.. Single-nucleotide polymorphism-based noninvasive prenatal screening in a high-risk and low-risk cohort. . Obstet. Gynecol. 124:(2, Part 1):21018
    [Crossref] [Google Scholar]
  33. 33.
    Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. 2011.. Detection and quantification of rare mutations with massively parallel sequencing. . PNAS 108:(23):953035
    [Crossref] [Google Scholar]
  34. 34.
    Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, et al. 2014.. Detecting ultralow-frequency mutations by duplex sequencing. . Nat. Protoc. 9:(11):2586606
    [Crossref] [Google Scholar]
  35. 35.
    Jones RC, Karkanias J, Krasnow MA, Pisco AO, Quake SR, et al. 2022.. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. . Science 376:(6594):eabl4896
    [Crossref] [Google Scholar]
  36. 36.
    Vorperian SK, Moufarrej MN, Quake SR. 2022.. Cell types of origin of the cell-free transcriptome. . Nat. Biotechnol. 40:(6):85561
    [Crossref] [Google Scholar]
  37. 37.
    Bianchi DW, Chiu RWK. 2018.. Sequencing of circulating cell-free DNA during pregnancy. . N. Engl. J. Med. 379:(5):46473
    [Crossref] [Google Scholar]
  38. 38.
    Ravitsky V, Roy M-C, Haidar H, Henneman L, Marshall J, et al. 2021.. The emergence and global spread of noninvasive prenatal testing. . Annu. Rev. Genom. Hum. Genet. 22::30938
    [Crossref] [Google Scholar]
  39. 39.
    Moufarrej MN, Bianchi DW, Shaw GM, Stevenson DK, Quake SR. 2023.. Noninvasive prenatal testing using circulating DNA and RNA: advances, challenges, and possibilities. . Annu. Rev. Biomed. Data Sci. 6::397418
    [Crossref] [Google Scholar]
  40. 40.
    Alberry M, Maddocks D, Jones M, Abdel Hadi M, Abdel-Fattah S, et al. 2007.. Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. . Prenat. Diagn. 27:(5):41518
    [Crossref] [Google Scholar]
  41. 41.
    Lo YMD, Tsui NBY, Chiu RWK, Lau TK, Leung TN, et al. 2007.. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. . Nat. Med. 13:(2):21823
    [Crossref] [Google Scholar]
  42. 42.
    Norton ME, Jacobsson B, Swamy GK, Laurent LC, Ranzini AC, et al. 2015.. Cell-free DNA analysis for noninvasive examination of trisomy. . N. Engl. J. Med. 372:(17):158997
    [Crossref] [Google Scholar]
  43. 43.
    Dar P, Jacobsson B, MacPherson C, Egbert M, Malone F, et al. 2022.. Cell-free DNA screening for trisomies 21, 18, and 13 in pregnancies at low and high risk for aneuploidy with genetic confirmation. . Am. J. Obstet. Gynecol. 227:(2):259.e114
    [Crossref] [Google Scholar]
  44. 44.
    Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE. 2013.. The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. . Prenat. Diagn. 33:(7):66774
    [Crossref] [Google Scholar]
  45. 45.
    Wang E, Batey A, Struble C, Musci T, Song K, Oliphant A. 2013.. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. . Prenat. Diagn. 33:(7):66266
    [Crossref] [Google Scholar]
  46. 46.
    van Beek DM, Straver R, Weiss MM, Boon EMJ, Huijsdens-van Amsterdam K, et al. 2017.. Comparing methods for fetal fraction determination and quality control of NIPT samples. . Prenat. Diagn. 37:(8):76973
    [Crossref] [Google Scholar]
  47. 47.
    Bianchi DW, Chudova D, Sehnert AJ, Bhatt S, Murray K, et al. 2015.. Noninvasive prenatal testing and incidental detection of occult maternal malignancies. . JAMA 314:(2):16269
    [Crossref] [Google Scholar]
  48. 48.
    Dharajiya NG, Grosu DS, Farkas DH, McCullough RM, Almasri E, et al. 2018.. Incidental detection of maternal neoplasia in noninvasive prenatal testing. . Clin. Chem. 64:(2):32935
    [Crossref] [Google Scholar]
  49. 49.
    Scotchman E, Chandler NJ, Mellis R, Chitty LS. 2020.. Noninvasive prenatal diagnosis of single-gene diseases: the next frontier. . Clin. Chem. 66:(1):5360
    [Crossref] [Google Scholar]
  50. 50.
    Lo YMD, Chan KCA, Sun H, Chen EZ, Jiang P, et al. 2010.. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. . Sci. Transl. Med. 2:(61):61ra91
    [Crossref] [Google Scholar]
  51. 51.
    Kitzman JO, Snyder MW, Ventura M, Lewis AP, Qiu R, et al. 2012.. Noninvasive whole-genome sequencing of a human fetus. . Sci. Transl. Med. 4:(137):137ra76
    [Crossref] [Google Scholar]
  52. 52.
    Gu W, Koh W, Blumenfeld YJ, El-Sayed YY, Hudgins L, et al. 2014.. Noninvasive prenatal diagnosis in a fetus at risk for methylmalonic acidemia. . Genet. Med. 16:(7):56467
    [Crossref] [Google Scholar]
  53. 53.
    Camunas-Soler J, Lee H, Hudgins L, Hintz SR, Blumenfeld YJ, et al. 2018.. Noninvasive prenatal diagnosis of single-gene disorders by use of droplet digital PCR. . Clin. Chem. 64:(2):33645
    [Crossref] [Google Scholar]
  54. 54.
    Koh W, Pan W, Gawad C, Fan HC, Kerchner GA, et al. 2014.. Noninvasive in vivo monitoring of tissue-specific global gene expression in humans. . PNAS 111:(20):736166
    [Crossref] [Google Scholar]
  55. 55.
    Tsui NBY, Jiang P, Wong YF, Leung TY, Chan KCA, et al. 2014.. Maternal plasma RNA sequencing for genome-wide transcriptomic profiling and identification of pregnancy-associated transcripts. . Clin. Chem. 60:(7):95462
    [Crossref] [Google Scholar]
  56. 56.
    Moufarrej MN, Vorperian SK, Wong RJ, Campos AA, Quaintance CC, et al. 2022.. Early prediction of preeclampsia in pregnancy with cell-free RNA. . Nature 602:(7898):68994
    [Crossref] [Google Scholar]
  57. 57.
    Huang L, Bogale B, Tang Y, Lu S, Xie XS, Racowsky C. 2019.. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. . PNAS 116:(28):1410512
    [Crossref] [Google Scholar]
  58. 58.
    Cabel L, Proudhon C, Romano E, Girard N, Lantz O, et al. 2018.. Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy. . Nat. Rev. Clin. Oncol. 15:(10):63950
    [Crossref] [Google Scholar]
  59. 59.
    Corcoran RB, Chabner BA. 2018.. Application of cell-free DNA analysis to cancer treatment. . N. Engl. J. Med. 379:(18):175465
    [Crossref] [Google Scholar]
  60. 60.
    Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, et al. 2018.. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. . J. Clin. Oncol. 36:(16):163141
    [Crossref] [Google Scholar]
  61. 61.
    Moding EJ, Nabet BY, Alizadeh AA, Diehn M. 2021.. Detecting liquid remnants of solid tumors: circulating tumor DNA minimal residual disease. . Cancer Discov. 11:(12):296886
    [Crossref] [Google Scholar]
  62. 62.
    Ignatiadis M, Sledge GW, Jeffrey SS. 2021.. Liquid biopsy enters the clinic—implementation issues and future challenges. . Nat. Rev. Clin. Oncol. 18:(5):297312
    [Crossref] [Google Scholar]
  63. 63.
    Siravegna G, Mussolin B, Venesio T, Marsoni S, Seoane J, et al. 2019.. How liquid biopsies can change clinical practice in oncology. . Ann. Oncol. 30:(10):158090
    [Crossref] [Google Scholar]
  64. 64.
    Tivey A, Church M, Rothwell D, Dive C, Cook N. 2022.. Circulating tumour DNA—looking beyond the blood. . Nat. Rev. Clin. Oncol. 19:(9):60012
    [Crossref] [Google Scholar]
  65. 65.
    Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. 1977.. Free DNA in the serum of cancer patients and the effect of therapy. . Cancer Res. 37:(3):64650
    [Google Scholar]
  66. 66.
    Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, et al. 2020.. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. . Ann. Oncol. 31:(11):1491505
    [Crossref] [Google Scholar]
  67. 67.
    Nangalia J, Campbell PJ. 2019.. Genome sequencing during a patient's journey through cancer. . N. Engl. J. Med. 381:(22):214556
    [Crossref] [Google Scholar]
  68. 68.
    Dawson S-J, Tsui DWY, Murtaza M, Biggs H, Rueda OM, et al. 2013.. Analysis of circulating tumor DNA to monitor metastatic breast cancer. . N. Engl. J. Med. 368:(13):1199209
    [Crossref] [Google Scholar]
  69. 69.
    Zhang Q, Luo J, Wu S, Si H, Gao C, et al. 2020.. Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade. . Cancer Discov. 10:(12):184253
    [Crossref] [Google Scholar]
  70. 70.
    Murtaza M, Dawson S-J, Tsui DWY, Gale D, Forshew T, et al. 2013.. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. . Nature 497:(7447):10812
    [Crossref] [Google Scholar]
  71. 71.
    Jaiswal S, Ebert BL. 2019.. Clonal hematopoiesis in human aging and disease. . Science 366:(6465):eaan4673
    [Crossref] [Google Scholar]
  72. 72.
    Zhang BM, Aleshin A, Lin CY, Ford J, Zehnder JL, Suarez CJ. 2017.. IDH2 mutation in a patient with metastatic colon cancer. . N. Engl. J. Med. 376:(20):199192
    [Crossref] [Google Scholar]
  73. 73.
    Weeks LD, Niroula A, Neuberg D, Wong W, Lindsley RC, et al. 2023.. Prediction of risk for myeloid malignancy in clonal hematopoiesis. . NEJM Evid. 2:(5). https://doi.org/10.1056/evidoa2200310
    [Crossref] [Google Scholar]
  74. 74.
    Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, et al. 2017.. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. . Cancer Discov. 7:(12):1394403
    [Crossref] [Google Scholar]
  75. 75.
    Song C, Liu Y, Fontana R, Makrigiorgos A, Mamon H, et al. 2016.. Elimination of unaltered DNA in mixed clinical samples via nuclease-assisted minor-allele enrichment. . Nucleic Acids Res. 44:(19):e146
    [Google Scholar]
  76. 76.
    Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, et al. 2016.. Integrated digital error suppression for improved detection of circulating tumor DNA. . Nat. Biotechnol. 34:(5):54755
    [Crossref] [Google Scholar]
  77. 77.
    Kurtz DM, Soo J, Co Ting Keh L, Alig S, Chabon JJ, et al. 2021.. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. . Nat. Biotechnol. 39:(12):153747
    [Crossref] [Google Scholar]
  78. 78.
    Jamshidi A, Liu MC, Klein EA, Venn O, Hubbell E, et al. 2022.. Evaluation of cell-free DNA approaches for multi-cancer early detection. . Cancer Cell 40:(12):153749.e12
    [Crossref] [Google Scholar]
  79. 79.
    Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, et al. 2020.. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. . Science 369:(6499):eabb9601
    [Crossref] [Google Scholar]
  80. 80.
    Hori SS, Lutz AM, Paulmurugan R, Gambhir SS. 2017.. A model-based personalized cancer screening strategy for detecting early-stage tumors using blood-borne biomarkers. . Cancer Res. 77:(10):257084
    [Crossref] [Google Scholar]
  81. 81.
    Klein EA, Richards D, Cohn A, Tummala M, Lapham R, et al. 2021.. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. . Ann. Oncol. 32:(9):116777
    [Crossref] [Google Scholar]
  82. 82.
    Chan KCA, Woo JKS, King A, Zee BCY, Lam WKJ, et al. 2017.. Analysis of plasma Epstein-Barr virus DNA to screen for nasopharyngeal cancer. . N. Engl. J. Med. 377:(6):51322
    [Crossref] [Google Scholar]
  83. 83.
    Neal RD, Johnson P, Clarke CA, Hamilton SA, Zhang N, et al. 2022.. Cell-free DNA-based multi-cancer early detection test in an asymptomatic screening population (NHS-Galleri): design of a pragmatic, prospective randomised controlled trial. . Cancers 14:(19): 4818.
    [Crossref] [Google Scholar]
  84. 84.
    Pan W, Gu W, Nagpal S, Gephart MH, Quake SR. 2015.. Brain tumor mutations detected in cerebral spinal fluid. . Clin. Chem. 61:(3):51422
    [Crossref] [Google Scholar]
  85. 85.
    Springer SU, Chen C-H, Rodriguez Pena MDC, Li L, Douville C, et al. 2018.. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. . eLife 7::e32143
    [Crossref] [Google Scholar]
  86. 86.
    Miller AM, Shah RH, Pentsova EI, Pourmaleki M, Briggs S, et al. 2019.. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. . Nature 565:(7741):65458
    [Crossref] [Google Scholar]
  87. 87.
    Dudley JC, Schroers-Martin J, Lazzareschi DV, Shi WY, Chen SB, et al. 2019.. Detection and surveillance of bladder cancer using urine tumor DNA. . Cancer Discov. 9:(4):5009
    [Crossref] [Google Scholar]
  88. 88.
    Springer S, Masica DL, Dal Molin M, Douville C, Thoburn CJ, et al. 2019.. A multimodality test to guide the management of patients with a pancreatic cyst. . Sci. Transl. Med. 11:(501):eaav4772
    [Crossref] [Google Scholar]
  89. 89.
    Gu W, Talevich E, Hsu E, Qi Z, Urisman A, et al. 2021.. Detection of cryptogenic malignancies from metagenomic whole genome sequencing of body fluids. . Genome Med. 13:(1):98
    [Crossref] [Google Scholar]
  90. 90.
    Liu APY, Smith KS, Kumar R, Paul L, Bihannic L, et al. 2021.. Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. . Cancer Cell 39:(11):151930.e4
    [Crossref] [Google Scholar]
  91. 91.
    Gu W, Rauschecker AM, Hsu E, Zorn KC, Sucu Y, et al. 2021.. Detection of neoplasms by metagenomic next-generation sequencing of cerebrospinal fluid. . JAMA Neurol. 78:(11):135566
    [Crossref] [Google Scholar]
  92. 92.
    Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, et al. 2014.. Multitarget stool DNA testing for colorectal-cancer screening. . N. Engl. J. Med. 370:(14):128797
    [Crossref] [Google Scholar]
  93. 93.
    Zenner K, Jensen DM, Cook TT, Dmyterko V, Bly RA, et al. 2021.. Cell-free DNA as a diagnostic analyte for molecular diagnosis of vascular malformations. . Genet Med. 23:(1):12330
    [Crossref] [Google Scholar]
  94. 94.
    Lo YMD, Tein MSC, Pang CCP, Yeung CK, Tong K-L, Hjelm NM. 2016.. Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. . Lancet 351:(9112):132930
    [Crossref] [Google Scholar]
  95. 95.
    Zhang J, Tong K-L, Li PK, Chan AY, Yeung C-K, et al. 1999.. Presence of donor- and recipient-derived DNA in cell-free urine samples of renal transplantation recipients: urinary DNA chimerism. . Clin. Chem. 45:(10):174146
    [Crossref] [Google Scholar]
  96. 96.
    Snyder TM, Khush KK, Valantine HA, Quake SR. 2011.. Universal noninvasive detection of solid organ transplant rejection. . PNAS 108:(15):622934
    [Crossref] [Google Scholar]
  97. 97.
    Agbor-Enoh S, Tunc I, De Vlaminck I, Fideli U, Davis A, et al. 2017.. Applying rigor and reproducibility standards to assay donor-derived cell-free DNA as a non-invasive method for detection of acute rejection and graft injury after heart transplantation. . J. Heart Lung Transplant. 36:(9):100412
    [Crossref] [Google Scholar]
  98. 98.
    Grskovic M, Hiller DJ, Eubank LA, Sninsky JJ, Christopherson C, et al. 2016.. Validation of a clinical-grade assay to measure donor-derived cell-free DNA in solid organ transplant recipients. . J. Mol. Diagnost. 18:(6):890902
    [Crossref] [Google Scholar]
  99. 99.
    De Vlaminck I, Martin L, Kertesz M, Patel K, Kowarsky M, et al. 2015.. Noninvasive monitoring of infection and rejection after lung transplantation. . PNAS 112:(43):1333641
    [Crossref] [Google Scholar]
  100. 100.
    Vlaminck ID, Valantine HA, Snyder TM, Strehl C, Cohen G, et al. 2014.. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. . Sci. Transl. Med. 6:(241):241ra77
    [Crossref] [Google Scholar]
  101. 101.
    Knight SR, Thorne A, Lo Faro ML. 2019.. Donor-specific cell-free DNA as a biomarker in solid organ transplantation. A systematic review. . Transplantation 103:(2):27383
    [Crossref] [Google Scholar]
  102. 102.
    Holzhauser L, DeFilippis EM, Nikolova A, Byku M, Contreras JP, et al. 2023.. The end of endomyocardial biopsy?: A practical guide for noninvasive heart transplant rejection surveillance. . JACC Heart Fail. 11:(3):26376
    [Crossref] [Google Scholar]
  103. 103.
    Sharon E, Shi H, Kharbanda S, Koh W, Martin LR, et al. 2017.. Quantification of transplant-derived circulating cell-free DNA in absence of a donor genotype. . PLOS Comput. Biol. 13:(8):e1005629
    [Crossref] [Google Scholar]
  104. 104.
    Oellerich M, Budde K, Osmanodja B, Bornemann-Kolatzki K, Beck J, et al. 2022.. Donor-derived cell-free DNA as a diagnostic tool in transplantation. . Front. Genet. 13::1031894
    [Crossref] [Google Scholar]
  105. 105.
    Bu L, Gupta G, Pai A, Anand S, Stites E, et al. 2022.. Clinical outcomes from the Assessing Donor-Derived Cell-Free DNA Monitoring Insights of Kidney Allografts with Longitudinal Surveillance (ADMIRAL) study. . Kidney Int. 101:(4):793803
    [Crossref] [Google Scholar]
  106. 106.
    Beck J, Bierau S, Balzer S, Andag R, Kanzow P, et al. 2013.. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. . Clin. Chem. 59:(12):173241
    [Crossref] [Google Scholar]
  107. 107.
    Ekkehard S, Thomas A, Julia B, Verena S, Nina M, et al. 2020.. Time-dependent apparent increase in dd-cfDNA percentage in clinically stable 3 patients between one and five years following kidney transplantation. . Clin. Chem. 66:(10):129099
    [Crossref] [Google Scholar]
  108. 108.
    Burnham P, Khush K, De Vlaminck I. 2017.. Myriad applications of circulating cell-free DNA in precision organ transplant monitoring. . Ann. Am. Thorac. Soc. 14::S23741
    [Crossref] [Google Scholar]
  109. 109.
    De Vlaminck I, Khush KK, Strehl C, Kohli B, Luikart H, et al. 2013.. Temporal response of the human virome to immunosuppression and antiviral therapy. . Cell 155:(5):117887
    [Crossref] [Google Scholar]
  110. 110.
    Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, et al. 2019.. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. . Nat. Microbiol. 4:(4):66374
    [Crossref] [Google Scholar]
  111. 111.
    Goggin KP, Gonzalez-Pena V, Inaba Y, Allison KJ, Hong DK, et al. 2020.. Evaluation of plasma microbial cell-free DNA sequencing to predict bloodstream infection in pediatric patients with relapsed or refractory cancer. . JAMA Oncol. 6:(4):55256
    [Crossref] [Google Scholar]
  112. 112.
    Gu W, Miller S, Chiu CY. 2019.. Clinical metagenomic next-generation sequencing for pathogen detection. . Annu. Rev. Pathol. Mech. Dis. 14::31938
    [Crossref] [Google Scholar]
  113. 113.
    Heldman MR, Ahmed AA, Liu W, Vo A, Keane-Candib J, et al. 2023.. Serial quantitation of plasma microbial cell-free DNA before and after diagnosis of pulmonary invasive mold infections in hematopoietic cell transplant recipients. . J. Infect. Dis. https://doi.org/10.1093/infdis/jiad255
    [Google Scholar]
  114. 114.
    Senchyna F, Hogan CA, Murugesan K, Moreno A, Ho DY, et al. 2021.. Clinical accuracy and impact of plasma cell-free DNA fungal polymerase chain reaction panel for noninvasive diagnosis of fungal infection. . Clin. Infect. Dis. 73:(9):167784
    [Crossref] [Google Scholar]
  115. 115.
    Galeano Niño JL, Wu H, LaCourse KD, Kempchinsky AG, Baryiames A, et al. 2022.. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. . Nature 611:(7937):81017
    [Crossref] [Google Scholar]
  116. 116.
    Fu A, Yao B, Dong T, Chen Y, Yao J, et al. 2022.. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. . Cell 185:(8):135672.e26
    [Crossref] [Google Scholar]
  117. 117.
    Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS. 2018.. Precision identification of diverse bloodstream pathogens in the gut microbiome. . Nat. Med. 24:(12):180914
    [Crossref] [Google Scholar]
  118. 118.
    Mzava O, Cheng AP, Chang A, Smalling S, Djomnang L-AK, et al. 2022.. A metagenomic DNA sequencing assay that is robust against environmental DNA contamination. . Nat. Commun. 13:(1):4197
    [Crossref] [Google Scholar]
  119. 119.
    Chuah CS, Fischer L, Ho G-T. 2023.. Circulating cell-free DNA in inflammatory bowel disease: liquid biopsies with mechanistic and translational implications. . Fac. Rev. 12::14
    [Crossref] [Google Scholar]
  120. 120.
    Chang A, Mzava O, Lenz JS, Cheng AP, Burnham P, et al. 2022.. Measurement biases distort cell-free DNA fragmentation profiles and define the sensitivity of metagenomic cell-free DNA sequencing assays. . Clin. Chem. 68:(1):16371
    [Crossref] [Google Scholar]
  121. 121.
    Gihawi A, Cooper CS, Brewer DS. 2023.. Caution regarding the specificities of pan-cancer microbial structure. . Microb. Genom. 9::001088
    [Google Scholar]
  122. 122.
    Wang G, Lam WKJ, Ling L, Ma M-JL, Ramakrishnan S, et al. 2023.. Fragment ends of circulating microbial DNA as signatures for pathogen detection in sepsis. . Clin. Chem. 69:(2):189201
    [Crossref] [Google Scholar]
  123. 123.
    Jing Q, Leung CHC, Wu AR. 2022.. Cell-free DNA as biomarker for sepsis by integration of microbial and host information. . Clin. Chem. 68:(9):118495
    [Crossref] [Google Scholar]
  124. 124.
    Cheng AP, Burnham P, Lee JR, Cheng MP, Suthanthiran M, et al. 2019.. A cell-free DNA metagenomic sequencing assay that integrates the host injury response to infection. . PNAS 116:(37):1873844
    [Crossref] [Google Scholar]
  125. 125.
    Cheng AP, Cheng MP, Gu W, Lenz JS, Hsu E, et al. 2021.. Cell-free DNA tissues-of-origin by methylation profiling reveals significant cell, tissue and organ-specific injury related to COVID-19 severity. . Med 2:(4):41122.e5
    [Crossref] [Google Scholar]
  126. 126.
    Kalantar KL, Neyton L, Abdelghany M, Mick E, Jauregui A, et al. 2022.. Integrated host-microbe plasma metagenomics for sepsis diagnosis in a prospective cohort of critically ill adults. . Nat. Microbiol. 7:(11):180516
    [Crossref] [Google Scholar]
  127. 127.
    Cheng HK, Tan SK, Sweeney TE, Jeganathan P, Briese T, et al. 2019.. Combined use of metagenomic sequencing and host response profiling for the diagnosis of suspected sepsis. . bioRxiv 854182. https://doi.org/10.1101/854182
  128. 128.
    Dor Y, Cedar H. 2018.. Principles of DNA methylation and their implications for biology and medicine. . Lancet 392:(10149):77786
    [Crossref] [Google Scholar]
  129. 129.
    Fisher IF, Shemer R, Dor Y. 2023.. Epigenetic liquid biopsies: a novel putative biomarker in immunology and inflammation. . Trends Immunol. 44::35664
    [Crossref] [Google Scholar]
  130. 130.
    Moss J, Magenheim J, Neiman D, Zemmour H, Loyfer N, et al. 2018.. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. . Nat. Commun. 9:(1):5068
    [Crossref] [Google Scholar]
  131. 131.
    Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, et al. 2021.. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. . Genome Res. 31::128089
    [Crossref] [Google Scholar]
  132. 132.
    Liu Y, Siejka-Zielińska P, Velikova G, Bi Y, Yuan F, et al. 2019.. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. . Nat. Biotechnol. 37::42429
    [Crossref] [Google Scholar]
  133. 133.
    Wang T, Fowler JM, Liu L, Loo CE, Luo M, et al. 2023.. Direct enzymatic sequencing of 5-methylcytosine at single-base resolution. . Nat. Chem. Biol. 19::100412
    [Crossref] [Google Scholar]
  134. 134.
    Liu MC, Oxnard GR, Klein EA, Swanton C, Seiden MV, et al. 2020.. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. . Ann. Oncol. 31:(6):74559
    [Crossref] [Google Scholar]
  135. 135.
    Wen L, Li J, Guo H, Liu X, Zheng S, et al. 2015.. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients. . Cell Res. 25:(11):125064
    [Crossref] [Google Scholar]
  136. 136.
    Stackpole ML, Zeng W, Li S, Liu C-C, Zhou Y, et al. 2022.. Cost-effective methylome sequencing of cell-free DNA for accurately detecting and locating cancer. . Nat. Commun. 13:(1):5566
    [Crossref] [Google Scholar]
  137. 137.
    Van Paemel R, De Koker A, Vandeputte C, van Zogchel L, Lammens T, et al. 2021.. Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA: a proof-of-principle study. . Epigenetics 16:(2):196208
    [Crossref] [Google Scholar]
  138. 138.
    Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, et al. 2018.. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. . Nature 563:(7732):57983
    [Crossref] [Google Scholar]
  139. 139.
    Katsman E, Orlanski S, Martignano F, Fox-Fisher I, Shemer R, et al. 2022.. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from nanopore sequencing. . Genome Biol. 23:(1):158
    [Crossref] [Google Scholar]
  140. 140.
    Li W, Zhang X, Lu X, You L, Song Y, et al. 2017.. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. . Cell Res. 27:(10):124357
    [Crossref] [Google Scholar]
  141. 141.
    Song C-X, Yin S, Ma L, Wheeler A, Chen Y, et al. 2017.. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. . Cell Res. 27:(10):123142
    [Crossref] [Google Scholar]
  142. 142.
    Caggiano C, Celona B, Garton F, Mefford J, Black BL, et al. 2021.. Comprehensive cell type decomposition of circulating cell-free DNA with CelFiE. . Nat. Commun. 12:(1):2717
    [Crossref] [Google Scholar]
  143. 143.
    Houseman EA, Kile ML, Christiani DC, Ince TA, Kelsey KT, Marsit CJ. 2016.. Reference-free deconvolution of DNA methylation data and mediation by cell composition effects. . BMC Bioinform. 17:(1):259
    [Crossref] [Google Scholar]
  144. 144.
    Shearstone JR, Pop R, Bock C, Boyle P, Meissner A, Socolovsky M. 2011.. Global DNA demethylation during mouse erythropoiesis in vivo. . Science 334:(6057):799802
    [Crossref] [Google Scholar]
  145. 145.
    Sadeh R, Sharkia I, Fialkoff G, Rahat A, Gutin J, et al. 2021.. ChIP-seq of plasma cell-free nucleosomes identifies gene expression programs of the cells of origin. . Nat. Biotechnol. 39:(5):58698
    [Crossref] [Google Scholar]
  146. 146.
    Qi T, Pan M, Shi H, Wang L, Bai Y, Ge Q. 2023.. Cell-free DNA fragmentomics: the novel promising biomarker. . Int. J. Mol. Sci. 24:(2):1503
    [Crossref] [Google Scholar]
  147. 147.
    Jiang P, Sun K, Peng W, Cheng SH, Ni M, et al. 2020.. Plasma DNA end-motif profiling as a fragmentomic marker in cancer, pregnancy, and transplantation. . Cancer Discov. 10:(5):66473
    [Crossref] [Google Scholar]
  148. 148.
    Zhou Z, Ma M-JL, Chan RWY, Lam WKJ, Peng W, et al. 2023.. Fragmentation landscape of cell-free DNA revealed by deconvolutional analysis of end motifs. . PNAS 120:(17):e2220982120
    [Crossref] [Google Scholar]
  149. 149.
    Ulz P, Perakis S, Zhou Q, Moser T, Belic J, et al. 2019.. Inference of transcription factor binding from cell-free DNA enables tumor subtype prediction and early detection. . Nat. Commun. 10::4666
    [Crossref] [Google Scholar]
  150. 150.
    Ulz P, Thallinger GG, Auer M, Graf R, Kashofer K, et al. 2016.. Inferring expressed genes by whole-genome sequencing of plasma DNA. . Nat. Genet. 48::127378
    [Crossref] [Google Scholar]
  151. 151.
    Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, et al. 2019.. Genome-wide cell-free DNA fragmentation in patients with cancer. . Nature 570:(7761):38589
    [Crossref] [Google Scholar]
  152. 152.
    Esfahani MS, Hamilton EG, Mehrmohamadi M, Nabet BY, Alig SK, et al. 2022.. Inferring gene expression from cell-free DNA fragmentation profiles. . Nat. Biotechnol. 40:(4):58597
    [Crossref] [Google Scholar]
  153. 153.
    An Y, Zhao X, Zhang Z, Xia Z, Yang M, et al. 2023.. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. . Nat. Commun. 14:(1):287
    [Crossref] [Google Scholar]
  154. 154.
    Loy CJ, Sotomayor-Gonzalez A, Servellita V, Nguyen J, Lenz J, et al. 2023.. Nucleic acid biomarkers of immune response and cell and tissue damage in children with COVID-19 and MIS-C. . Cell Rep. Med. 4::101034
    [Crossref] [Google Scholar]
  155. 155.
    Ngo TTM, Moufarrej MN, Rasmussen M-LH, Camunas-Soler J, Pan W, et al. 2018.. Noninvasive blood tests for fetal development predict gestational age and preterm delivery. . Science 360:(6393):113336
    [Crossref] [Google Scholar]
  156. 156.
    Rasmussen M, Reddy M, Nolan R, Camunas-Soler J, Khodursky A, et al. 2022.. RNA profiles reveal signatures of future health and disease in pregnancy. . Nature 601:(7893):42227
    [Crossref] [Google Scholar]
  157. 157.
    Chaddha M, Rai H, Gupta R, Thakral D. 2023.. Integrated analysis of circulating cell free nucleic acids for cancer genotyping and immune phenotyping of tumor microenvironment. . Front. Genet. 14::1138625
    [Crossref] [Google Scholar]
  158. 158.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, et al. 2008.. Circulating microRNAs as stable blood-based markers for cancer detection. . PNAS 105:(30):1051318
    [Crossref] [Google Scholar]
  159. 159.
    Bersani F, Picca F, Morena D, Righi L, Napoli F, et al. 2023.. Exploring circular MET RNA as a potential biomarker in tumors exhibiting high MET activity. . J. Exp. Clin. Cancer Res. 42:(1):120
    [Crossref] [Google Scholar]
  160. 160.
    Fish L, Zhang S, Yu JX, Culbertson B, Zhou AY, et al. 2018.. Cancer cells exploit an orphan RNA to drive metastatic progression. . Nat. Med. 24:(11):174351
    [Crossref] [Google Scholar]
  161. 161.
    Albrecht LJ, Höwner A, Griewank K, Lueong SS, von Neuhoff N, et al. 2022.. Circulating cell-free messenger RNA enables non-invasive pan-tumour monitoring of melanoma therapy independent of the mutational genotype. . Clin. Transl. Med. 12:(11):e1090
    [Crossref] [Google Scholar]
  162. 162.
    Larson MH, Pan W, Kim HJ, Mauntz RE, Stuart SM, et al. 2021.. A comprehensive characterization of the cell-free transcriptome reveals tissue- and subtype-specific biomarkers for cancer detection. . Nat. Commun. 12:(1):2357
    [Crossref] [Google Scholar]
  163. 163.
    Roskams-Hieter B, Kim HJ, Anur P, Wagner JT, Callahan R, et al. 2022.. Plasma cell-free RNA profiling distinguishes cancers from pre-malignant conditions in solid and hematologic malignancies. . NPJ Precis. Oncol. 6:(1):28
    [Crossref] [Google Scholar]
  164. 164.
    Pan W, Ngo TTM, Camunas-Soler J, Song C-X, Kowarsky M, et al. 2017.. Simultaneously monitoring immune response and microbial infections during pregnancy through plasma cfRNA sequencing. . Clin. Chem. 63:(11):1695704
    [Crossref] [Google Scholar]
  165. 165.
    Wang Y, Li J, Zhang L, Sun H-X, Zhang Z, et al. 2022.. Plasma cell-free RNA characteristics in COVID-19 patients. . Genome Res. 32:(2):22841
    [Crossref] [Google Scholar]
  166. 166.
    Zhou Z, Wu Q, Yan Z, Zheng H, Chen C-J, et al. 2019.. Extracellular RNA in a single droplet of human serum reflects physiologic and disease states. . PNAS 116:(38):192008
    [Crossref] [Google Scholar]
  167. 167.
    Verwilt J, Trypsteen W, Van Paemel R, De Preter K, Giraldez MD, et al. 2020.. When DNA gets in the way: a cautionary note for DNA contamination in extracellular RNA-seq studies. . PNAS 117:(32):1893436
    [Crossref] [Google Scholar]
  168. 168.
    Moufarrej MN, Wong RJ, Shaw GM, Stevenson DK, Quake SR. 2020.. Investigating pregnancy and its complications using circulating cell-free RNA in women's blood during gestation. . Front. Pediatr. 8::605219
    [Crossref] [Google Scholar]
  169. 169.
    Barbitoff YA, Polev DE, Glotov AS, Serebryakova EA, Shcherbakova IV, et al. 2020.. Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of coding sequence coverage. . Sci. Rep. 10:(1):2057
    [Crossref] [Google Scholar]
  170. 170.
    Liu Z, Wang T, Yang X, Zhou Q, Zhu S, et al. 2022.. Polyadenylation ligation-mediated sequencing (PALM-seq) characterizes cell-free coding and non-coding RNAs in human biofluids. . Clin. Transl. Med. 12:(7):e987
    [Crossref] [Google Scholar]
  171. 171.
    Ibarra A, Zhuang J, Zhao Y, Salathia NS, Huang V, et al. 2020.. Non-invasive characterization of human bone marrow stimulation and reconstitution by cell-free messenger RNA sequencing. . Nat. Commun. 11:(1):400
    [Crossref] [Google Scholar]
  172. 172.
    Toden S, Zhuang J, Acosta AD, Karns AP, Salathia NS, et al. 2020.. Noninvasive characterization of Alzheimer's disease by circulating, cell-free messenger RNA next-generation sequencing. . Sci. Adv. 6:(50):eabb1654
    [Crossref] [Google Scholar]
  173. 173.
    Chalasani N, Toden S, Sninsky JJ, Rava RP, Braun JV, et al. 2021.. Noninvasive stratification of nonalcoholic fatty liver disease by whole transcriptome cell-free mRNA characterization. . Am. J. Physiol. Gastrointest. Liver Physiol. 320:(4):G43949
    [Crossref] [Google Scholar]
  174. 174.
    DeFrancesco L. 2020.. The making of the Biohub. . Nat. Biotechnol. 38:(10):111620
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110222-111259
Loading
/content/journals/10.1146/annurev-bioeng-110222-111259
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error