1932

Abstract

Mitochondria are essential for eukaryotic life. These double-membrane organelles often form highly dynamic tubular networks interacting with many cellular structures. Their highly convoluted contiguous inner membrane compartmentalizes the organelle, which is crucial for mitochondrial function. Since the diameter of the mitochondrial tubules is generally close to the diffraction limit of light microscopy, it is often challenging, if not impossible, to visualize submitochondrial structures or protein distributions using conventional light microscopy. This renders super-resolution microscopy particularly valuable, and attractive, for studying mitochondria. Super-resolution microscopy encompasses a diverse set of approaches that extend resolution, as well as nanoscopy techniques that can even overcome the diffraction limit. In this review, we provide an overview of recent studies using super-resolution microscopy to investigate mitochondria, discuss the strengths and opportunities of the various methods in addressing specific questions in mitochondrial biology, and highlight potential future developments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-121219-081550
2020-05-06
2025-04-06
The full text of this item is not currently available.

Literature Cited

  1. 1. 
    Abbe E. 1873. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9413–68
    [Google Scholar]
  2. 2. 
    Ader NR, Hoffmann PC, Ganeva I, Borgeaud AC, Wang C et al. 2019. Molecular and topological reorganizations in mitochondrial architecture interplay during Bax-mediated steps of apoptosis. eLife 8e40712
    [Google Scholar]
  3. 3. 
    Appelhans T, Richter CP, Wilkens V, Hess ST, Piehler J, Busch KB 2012. Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy. Nano Lett 12610–16
    [Google Scholar]
  4. 4. 
    Bachmann M, Fiederling F, Bastmeyer M 2016. Practical limitations of superresolution imaging due to conventional sample preparation revealed by a direct comparison of CLSM, SIM and dSTORM. J. Microsc. 262306–15
    [Google Scholar]
  5. 5. 
    Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V et al. 2017. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355606–12
    [Google Scholar]
  6. 6. 
    Baumgart F, Arnold AM, Rossboth BK, Brameshuber M, Schütz GJ 2018. What we talk about when we talk about nanoclusters. Methods Appl. Fluoresc. 7013001
    [Google Scholar]
  7. 7. 
    Bereiter-Hahn J, Vöth M. 1994. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc. Res. Tech. 27198–219
    [Google Scholar]
  8. 8. 
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 3131642–45
    [Google Scholar]
  9. 9. 
    Born M, Wolf E. 1999. Principles of Optics Cambridge, UK: Cambridge Univ. Press 7th ed.
    [Google Scholar]
  10. 10. 
    Bottanelli F, Kromann EB, Allgeyer ES, Erdmann RS, Wood Baguley S et al. 2016. Two-colour live-cell nanoscale imaging of intracellular targets. Nat. Commun. 710778
    [Google Scholar]
  11. 11. 
    Brakemann T, Stiel AC, Weber G, Andresen M, Testa I et al. 2011. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat. Biotechnol. 29942–47
    [Google Scholar]
  12. 12. 
    Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF et al. 2011. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol. Cell Biol. 314994–5010
    [Google Scholar]
  13. 13. 
    Chan CY, Pedley AM, Kim D, Xia C, Zhuang X, Benkovic SJ 2018. Microtubule-directed transport of purine metabolons drives their cytosolic transit to mitochondria. PNAS 11513009–14
    [Google Scholar]
  14. 14. 
    Chatre L, Ricchetti M. 2013. Large heterogeneity of mitochondrial DNA transcription and initiation of replication exposed by single-cell imaging. J. Cell Sci. 126914–26
    [Google Scholar]
  15. 15. 
    Chen BC, Legant WR, Wang K, Shao L, Milkie DE et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 3461257998
    [Google Scholar]
  16. 16. 
    Chen F, Tillberg PW, Boyden ES 2015. Optical imaging: expansion microscopy. Science 347543–48
    [Google Scholar]
  17. 17. 
    Chen Y, Liu W, Zhang Z, Zheng C, Huang Y et al. 2018. Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy. Nat. Commun. 94818
    [Google Scholar]
  18. 18. 
    Demmerle J, Innocent C, North AJ, Ball G, Müller M et al. 2017. Strategic and practical guidelines for successful structured illumination microscopy. Nat. Protoc. 12988–1010
    [Google Scholar]
  19. 19. 
    Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J 2009. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). PNAS 10622287–92
    [Google Scholar]
  20. 20. 
    Dlaskova A, Spacek T, Santorova J, Plecita-Hlavata L, Berkova Z et al. 2010. 4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet beta-cells, an experimental model of type-2 diabetes. Biochim. Biophys. Acta 17971327–41
    [Google Scholar]
  21. 21. 
    Donnert G, Keller J, Wurm CA, Rizzoli SO, Westphal V et al. 2007. Two-color far-field fluorescence nanoscopy. Biophys. J. 92L67–69
    [Google Scholar]
  22. 22. 
    Egner A, Jakobs S, Hell SW 2002. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. PNAS 993370–75
    [Google Scholar]
  23. 23. 
    Fallaize D, Chin LS, Li L 2015. Differential submitochondrial localization of PINK1 as a molecular switch for mediating distinct mitochondrial signaling pathways. Cell Signal 272543–54
    [Google Scholar]
  24. 24. 
    Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MG 2012. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. PNAS 1095311–15
    [Google Scholar]
  25. 25. 
    Fonseca TB, Sánchez-Guerrero A, Milosevic I, Raimundo N 2019. Mitochondrial fission requires DRP1 but not dynamins. Nature 570E34–42
    [Google Scholar]
  26. 26. 
    Frei MS, Hoess P, Lampe M, Nijmeijer B, Kueblbeck M et al. 2019. Photoactivation of silicon rhodamines via a light-induced protonation. Nat. Commun. 104580
    [Google Scholar]
  27. 27. 
    French JB, Jones SA, Deng H, Pedley AM, Kim D et al. 2016. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351733–37
    [Google Scholar]
  28. 28. 
    Frey TG, Mannella CA. 2000. The internal structure of mitochondria. Trends Biochem. Sci. 25319–24
    [Google Scholar]
  29. 29. 
    Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK 2011. ER tubules mark sites of mitochondrial division. Science 334358–62
    [Google Scholar]
  30. 30. 
    Gambarotto D, Zwettler FU, Le Guennec M, Schmidt-Cernohorska M, Fortun D et al. 2019. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat. Methods 1671–74
    [Google Scholar]
  31. 31. 
    Gibson TJ, Seiler M, Veitia RA 2013. The transience of transient overexpression. Nat. Methods 10715–21
    [Google Scholar]
  32. 32. 
    Gilkerson RW, Selker JML, Capaldi RA 2003. The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett 546355–58
    [Google Scholar]
  33. 33. 
    Gregor I, Enderlein J. 2019. Image scanning microscopy. Curr. Opin. Chem. Biol. 5174–83
    [Google Scholar]
  34. 34. 
    Grosse L, Wurm CA, Brüser C, Neumann D, Jans DC, Jakobs S 2016. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J 35402–13
    [Google Scholar]
  35. 35. 
    Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT et al. 2011. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478204–8
    [Google Scholar]
  36. 36. 
    Gugel H, Bewersdorf J, Jakobs S, Engelhardt J, Storz R, Hell SW 2004. Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy. Biophys. J. 874146–52
    [Google Scholar]
  37. 37. 
    Guo Y, Li D, Zhang S, Yang Y, Liu JJ et al. 2018. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 1751430–42.e17
    [Google Scholar]
  38. 38. 
    Gustafsson CM, Falkenberg M, Larsson NG 2016. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85133–60
    [Google Scholar]
  39. 39. 
    Gustafsson MG. 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 19882–87
    [Google Scholar]
  40. 40. 
    Gustafsson MG. 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. PNAS 10213081–86
    [Google Scholar]
  41. 41. 
    Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN et al. 2008. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 944957–70
    [Google Scholar]
  42. 42. 
    Gustafsson MGL. 1999. Extended resolution fluorescence microscopy. Curr. Opin. Struct. Biol. 9627–34
    [Google Scholar]
  43. 43. 
    Hackenbrock CR. 1968. Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. PNAS 61598–605
    [Google Scholar]
  44. 44. 
    Han Y, Li M, Qiu F, Zhang M, Zhang YH 2017. Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions. Nat. Commun. 81307
    [Google Scholar]
  45. 45. 
    Harner M, Korner C, Walther D, Mokranjac D, Kaesmacher J et al. 2011. The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J 304356–70
    [Google Scholar]
  46. 46. 
    Heintzmann R, Huser T. 2017. Super-resolution structured illumination microscopy. Chem. Rev. 11713890–908
    [Google Scholar]
  47. 47. 
    Hell SW, Dyba M, Jakobs S 2004. Concepts for nanoscale resolution in fluorescence microscopy. Curr. Opin. Neurobiol. 14599–609
    [Google Scholar]
  48. 48. 
    Hell SW, Wichmann J. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19780–82
    [Google Scholar]
  49. 49. 
    Hess ST, Girirajan TP, Mason MD 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 914258–72
    [Google Scholar]
  50. 50. 
    Hirvonen LM, Wicker K, Mandula O, Heintzmann R 2009. Structured illumination microscopy of a living cell. Eur. Biophys. J. 38807–12
    [Google Scholar]
  51. 51. 
    Hofmann M, Eggeling C, Jakobs S, Hell SW 2005. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. PNAS 10217565–69
    [Google Scholar]
  52. 52. 
    Holt IJ, He J, Mao CC, Boyd-Kirkup JD, Martinsson P et al. 2007. Mammalian mitochondrial nucleoids: organizing an independently minded genome. Mitochondrion 7311–21
    [Google Scholar]
  53. 53. 
    Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM et al. 2011. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol. 195323–40
    [Google Scholar]
  54. 54. 
    Huang B, Jones SA, Brandenburg B, Zhuang X 2008. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 51047–52
    [Google Scholar]
  55. 55. 
    Huang F, Sirinakis G, Allgeyer ES, Schroeder LK, Duim WC et al. 2016. Ultra-high resolution 3D imaging of whole cells. Cell 1661028–40
    [Google Scholar]
  56. 56. 
    Huang X, Fan J, Li L, Liu H, Wu R et al. 2018. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol. 36451–59
    [Google Scholar]
  57. 57. 
    Iborra FJ, Kimura H, Cook PR 2004. The functional organization of mitochondrial genomes in human cells. BMC Biol 29
    [Google Scholar]
  58. 58. 
    Ilgen P, Stoldt S, Conradi LC, Wurm CA, Ruschoff J et al. 2014. STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue. PLOS ONE 9e101563
    [Google Scholar]
  59. 59. 
    Jans DC, Wurm CA, Riedel D, Wenzel D, Stagge F et al. 2013. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria. PNAS 1108936–41
    [Google Scholar]
  60. 60. 
    Ji N, Shroff H, Zhong H, Betzig E 2008. Advances in the speed and resolution of light microscopy. Curr. Opin. Neurobiol. 18605–16
    [Google Scholar]
  61. 61. 
    Ji WK, Hatch AL, Merrill RA, Strack S, Higgs HN 2015. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. eLife 4e11553
    [Google Scholar]
  62. 62. 
    Jiang YF, Lin SS, Chen JM, Tsai HZ, Hsieh TS, Fu CY 2017. Directing the self-assembly of tumour spheroids by bioprinting cellular heterogeneous models with alginate/gelatin hydrogels. Sci. Rep. 745474
    [Google Scholar]
  63. 63. 
    Kalkavan H, Green DR. 2018. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 2546–55
    [Google Scholar]
  64. 64. 
    Kehrein K, Schilling R, Möller-Hergt BV, Wurm CA, Jakobs S et al. 2015. Organization of mitochondrial gene expression in two distinct ribosome-containing assemblies. Cell Rep 10843–53
    [Google Scholar]
  65. 65. 
    Kilian N, Goryaynov A, Lessard MD, Hooker G, Toomre D et al. 2018. Assessing photodamage in live-cell STED microscopy. Nat. Methods 15755–56
    [Google Scholar]
  66. 66. 
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW 2000. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. PNAS 978206–10
    [Google Scholar]
  67. 67. 
    Klotzsch E, Smorodchenko A, Löfler L, Moldzio R, Parkinson E et al. 2015. Superresolution microscopy reveals spatial separation of UCP4 and F0F1-ATP synthase in neuronal mitochondria. PNAS 112130–35
    [Google Scholar]
  68. 68. 
    Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF 2012. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. PNAS 1096136–41
    [Google Scholar]
  69. 69. 
    Korobova F, Gauvin TJ, Higgs HN 2014. A role for myosin II in mammalian mitochondrial fission. Curr. Biol. 24409–14
    [Google Scholar]
  70. 70. 
    Korobova F, Ramabhadran V, Higgs HN 2013. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INf2. Science 339464–67
    [Google Scholar]
  71. 71. 
    Kraus F, Miron E, Demmerle J, Chitiashvili T, Budco A et al. 2017. Quantitative 3D structured illumination microscopy of nuclear structures. Nat. Protoc. 121011–28
    [Google Scholar]
  72. 72. 
    Kukat C, Davies KM, Wurm CA, Spåhr H, Bonekamp NA et al. 2015. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. PNAS 11211288–93
    [Google Scholar]
  73. 73. 
    Kukat C, Wurm CA, Spåhr H, Falkenberg M, Larsson NG, Jakobs S 2011. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. PNAS 10813534–39
    [Google Scholar]
  74. 74. 
    Lackner LL. 2019. The expanding and unexpected functions of mitochondria contact sites. Trends Cell Biol 29580–90
    [Google Scholar]
  75. 75. 
    Laissue PP, Alghamdi RA, Tomancak P, Reynaud EG, Shroff H 2017. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14657–61
    [Google Scholar]
  76. 76. 
    Lau L, Lee YL, Sahl SJ, Stearns T, Moerner WE 2012. STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophys. J. 1022926–35
    [Google Scholar]
  77. 77. 
    Lawrence EJ, Boucher E, Mandato CA 2016. Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div 113
    [Google Scholar]
  78. 78. 
    Legros F, Malka F, Frachon P, Lombès A, Rojo M 2004. Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 1172653–62
    [Google Scholar]
  79. 79. 
    Li D, Shao L, Chen BC, Zhang X, Zhang M et al. 2015. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349aab3500
    [Google Scholar]
  80. 80. 
    Li Y, Almassalha LM, Chandler JE, Zhou X, Stypula-Cyrus YE et al. 2017. The effects of chemical fixation on the cellular nanostructure. Exp. Cell Res. 358253–59
    [Google Scholar]
  81. 81. 
    Liu W, Liu Q, Zhang Z, Han Y, Kuang C et al. 2019. Three-dimensional super-resolution imaging of live whole cells using galvanometer-based structured illumination microscopy. Opt. Express 277237–48
    [Google Scholar]
  82. 82. 
    Lukinavicius G, Umezawa K, Olivier N, Honigmann A, Yang G et al. 2013. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5132–39
    [Google Scholar]
  83. 83. 
    Mannella CA, Marko M, Penczek P, Barnard D, Frank J 1994. The internal compartmentation of rat-liver mitochondria: tomographic study using the high-voltage transmission electron microscope. Microsc. Res. Tech. 27278–83
    [Google Scholar]
  84. 84. 
    Mannella CA, Pfeiffer DR, Bradshaw PC, Moraru II, Slepchenko B et al. 2001. Topology of the mitochondrial inner membrane: dynamics and bioenergetics implications. IUBMB Life 5293–100
    [Google Scholar]
  85. 85. 
    Manor U, Bartholomew S, Golani G, Christenson E, Kozlov M et al. 2015. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 4e08828
    [Google Scholar]
  86. 86. 
    McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS et al. 2018. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359eaao6047
    [Google Scholar]
  87. 87. 
    Messina A, Reina S, Guarino F, De Pinto V 2012. VDAC isoforms in mammals. Biochim. Biophys. Acta 18181466–76
    [Google Scholar]
  88. 88. 
    Model K, Meisinger C, Kühlbrandt W 2008. Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. J. Mol. Biol. 3831049–57
    [Google Scholar]
  89. 89. 
    Müller CB, Enderlein J. 2010. Image scanning microscopy. Phys. Rev. Lett. 104198101
    [Google Scholar]
  90. 90. 
    Murley A, Lackner LL, Osman C, West M, Voeltz GK et al. 2013. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. eLife 2e00422
    [Google Scholar]
  91. 91. 
    Murley A, Nunnari J. 2016. The emerging network of mitochondria-organelle contacts. Mol. Cell 61648–53
    [Google Scholar]
  92. 92. 
    Nass MM. 1969. Mitochondrial DNA. I. Intramitochondrial distribution and structural relations of single- and double-length circular DNA. J. Mol. Biol. 42521–28
    [Google Scholar]
  93. 93. 
    Nass MM, Nass S. 1963. Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J. Cell Biol. 19593–611
    [Google Scholar]
  94. 94. 
    Nechushtan A, Smith CL, Lamensdorf I, Yoon SH, Youle RJ 2001. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J. Cell Biol. 1531265–76
    [Google Scholar]
  95. 95. 
    Neumann D, Bückers J, Kastrup L, Hell SW, Jakobs S 2010. Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys 34
    [Google Scholar]
  96. 96. 
    Nunnari J, Marshall WF, Straight A, Murray A, Sedat JW, Walter P 1997. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell. 81233–42
    [Google Scholar]
  97. 97. 
    Nunnari J, Suomalainen A. 2012. Mitochondria: in sickness and in health. Cell 1481145–59
    [Google Scholar]
  98. 98. 
    Opstad IS, Wolfson DL, Øie CI, Ahluwalia BS 2018. Multi-color imaging of sub-mitochondrial structures in living cells using structured illumination microscopy. Nanophotonics 7935–47
    [Google Scholar]
  99. 99. 
    Palade GE. 1952. The fine structure of mitochondria. Anat. Rec. 114427–51
    [Google Scholar]
  100. 100. 
    Park CB, Larsson NG. 2011. Mitochondrial DNA mutations in disease and aging. J. Cell Biol. 193809–18
    [Google Scholar]
  101. 101. 
    Park S, Kang W, Kwon YD, Shim J, Kim S et al. 2018. Superresolution fluorescence microscopy for 3D reconstruction of thick samples. Mol. Brain 1117
    [Google Scholar]
  102. 102. 
    Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA et al. 2014. Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J. Cell Biol. 2041083–86
    [Google Scholar]
  103. 103. 
    Rabl R, Soubannier V, Scholz R, Vogel F, Mendl N et al. 2009. Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J. Cell Biol. 1851047–63
    [Google Scholar]
  104. 104. 
    Rajala N, Gerhold JM, Martinsson P, Klymov A, Spelbrink JN 2014. Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication. Nucleic Acids Res 42952–67
    [Google Scholar]
  105. 105. 
    Rampelt H, Zerbes RM, van der Laan M, Pfanner N 2017. Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochim. Biophys. Acta 1864737–46
    [Google Scholar]
  106. 106. 
    Ratz M, Testa I, Hell SW, Jakobs S 2015. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Sci. Rep. 59592
    [Google Scholar]
  107. 107. 
    Richter KN, Revelo NH, Seitz KJ, Helm MS, Sarkar D et al. 2018. Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy. EMBO J 37139–59
    [Google Scholar]
  108. 108. 
    Riley JS, Quarato G, Cloix C, Lopez J, O'Prey J et al. 2018. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J 37e99238
    [Google Scholar]
  109. 109. 
    Rust M, Bates M, Zhuang X 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3793–95
    [Google Scholar]
  110. 110. 
    Sahl SJ, Hell SW, Jakobs S 2017. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18685–701
    [Google Scholar]
  111. 111. 
    Salvador-Gallego R, Mund M, Cosentino K, Schneider J, Unsay J et al. 2016. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J 35389–401
    [Google Scholar]
  112. 112. 
    Scheffler IE. 2008. Mitochondria Hoboken, NJ: Wiley, 2nd ed..
    [Google Scholar]
  113. 113. 
    Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M et al. 2019. Super-resolution microscopy demystified. Nat. Cell Biol. 2172–84
    [Google Scholar]
  114. 114. 
    Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW 2008. Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 5539–44
    [Google Scholar]
  115. 115. 
    Schmidt R, Wurm CA, Punge A, Egner A, Jakobs S, Hell SW 2009. Mitochondrial cristae revealed with focused light. Nano Lett 92508–10
    [Google Scholar]
  116. 116. 
    Schueder F, Lara-Gutierrez J, Beliveau BJ, Saka SK, Sasaki HM et al. 2017. Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. Nat. Commun. 82090
    [Google Scholar]
  117. 117. 
    Sesso A, Belizario JE, Marques MM, Higuchi ML, Schumacher RI et al. 2012. Mitochondrial swelling and incipient outer membrane rupture in preapoptotic and apoptotic cells. Anat. Rec. 2951647–59
    [Google Scholar]
  118. 118. 
    Shao L, Kner P, Rego EH, Gustafsson MG 2011. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods 81044–46
    [Google Scholar]
  119. 119. 
    Sharonov A, Hochstrasser RM. 2006. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. PNAS 10318911–16
    [Google Scholar]
  120. 120. 
    Sheppard CJR. 1988. Super-resolution in confocal imaging. Optik 8053–54
    [Google Scholar]
  121. 121. 
    Shim SH, Xia C, Zhong G, Babcock HP, Vaughan JC et al. 2012. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. PNAS 10913978–83
    [Google Scholar]
  122. 122. 
    Sigal YM, Zhou R, Zhuang X 2018. Visualizing and discovering cellular structures with super-resolution microscopy. Science 361880–87
    [Google Scholar]
  123. 123. 
    Silva Ramos E, Motori E, Bruser C, Kuhl I, Yeroslaviz A et al. 2019. Mitochondrial fusion is required for regulation of mitochondrial DNA replication. PLOS Genet 15e1008085
    [Google Scholar]
  124. 124. 
    Sjöstrand FS. 1953. Electron microscopy of mitochondria and cytoplasmic double membranes. Nature 17130–32
    [Google Scholar]
  125. 125. 
    Smirnova E, Griparic L, Shurland DL, van der Bliek AM 2001. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 122245–56
    [Google Scholar]
  126. 126. 
    Stephan T, Roesch A, Riedel D, Jakobs S 2019. Live-cell STED nanoscopy of mitochondrial cristae. Sci. Rep. 912419
    [Google Scholar]
  127. 127. 
    Stoldt S, Stephan T, Jans DC, Brüser C, Lange F et al. 2019. Mic60 exhibits a coordinated clustered distribution along and across yeast and mammalian mitochondria. PNAS 1169853–58
    [Google Scholar]
  128. 128. 
    Stoldt S, Wenzel D, Hildenbeutel M, Wurm CA, Herrmann JM, Jakobs S 2012. The inner-mitochondrial distribution of Oxa1 depends on the growth conditions and on the availability of substrates. Mol. Biol. Cell 232292–301
    [Google Scholar]
  129. 129. 
    Stoldt S, Wenzel D, Kehrein K, Riedel D, Ott M, Jakobs S 2018. Spatial orchestration of mitochondrial translation and OXPHOS complex assembly. Nat. Cell Biol. 20528–34
    [Google Scholar]
  130. 130. 
    Suppanz IE, Wurm CA, Wenzel D, Jakobs S 2009. The m-AAA protease processes cytochrome c peroxidase preferentially at the inner boundary membrane of mitochondria. Mol. Biol. Cell 20572–80
    [Google Scholar]
  131. 131. 
    Tait SW, Green DR. 2010. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11621–32
    [Google Scholar]
  132. 132. 
    Tatsuta T, Model K, Langer T 2005. Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol. Biol. Cell 16248–59
    [Google Scholar]
  133. 133. 
    van de Linde S, Sauer M, Heilemann M 2008. Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. J. Struct. Biol. 164250–54
    [Google Scholar]
  134. 134. 
    Vangindertael J, Camacho R, Sempels W, Mizuno H, Dedecker P, Janssen KPF 2018. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl. Fluoresc. 6022003
    [Google Scholar]
  135. 135. 
    Vogel F, Bornhövd C, Neupert W, Reichert AS 2006. Dynamic subcompartmentalization of the mitochondrial inner membrane. J. Cell Biol. 175237–47
    [Google Scholar]
  136. 136. 
    von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P et al. 2011. Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell 21694–707
    [Google Scholar]
  137. 137. 
    Wäldchen S, Lehmann J, Klein T, van de Linde S, Sauer M 2015. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep. 515348
    [Google Scholar]
  138. 138. 
    Wang C, Taki M, Sato Y, Tamura Y, Yaginuma H et al. 2019. A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae. PNAS 11615817–22
    [Google Scholar]
  139. 139. 
    Wassie AT, Zhao Y, Boyden ES 2019. Expansion microscopy: principles and uses in biological research. Nat. Methods 1633–41
    [Google Scholar]
  140. 140. 
    Werner S, Neupert W. 1972. Functional and biogenetical heterogeneity of the inner membrane of rat-liver mitochondria. Eur. J. Biochem. 25379–96
    [Google Scholar]
  141. 141. 
    Westermann B. 2010. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11872–84
    [Google Scholar]
  142. 142. 
    Whelan DR, Bell TD. 2015. Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci. Rep. 57924
    [Google Scholar]
  143. 143. 
    Wolf DM, Segawa M, Kondadi AK, Anand R, Bailey ST et al. 2019. Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J 38e101056
    [Google Scholar]
  144. 144. 
    Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ 1997. Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 1391281–92
    [Google Scholar]
  145. 145. 
    Wong YC, Ysselstein D, Krainc D 2018. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554382–86
    [Google Scholar]
  146. 146. 
    Wurm CA, Jakobs S. 2006. Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast. FEBS Lett 5805628–34
    [Google Scholar]
  147. 147. 
    Wurm CA, Neumann D, Lauterbach MA, Harke B, Egner A et al. 2011. Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient. PNAS 10813546–51
    [Google Scholar]
  148. 148. 
    Wurm CA, Neumann D, Schmidt R, Egner A, Jakobs S 2010. Sample preparation for STED microscopy. Live Cell Imaging: Methods and Protocols DB Papkovsky 185–99 Berlin: Springer
    [Google Scholar]
  149. 149. 
    Zhou W, Ma D, Sun AX, Tran HD, Ma DL et al. 2019. PD-linked CHCHD2 mutations impair CHCHD10 and MICOS complex leading to mitochondria dysfunction. Hum. Mol. Genet. 281100–16
    [Google Scholar]
  150. 150. 
    Zick M, Rabl R, Reichert AS 2009. Cristae formation-linking ultrastructure and function of mitochondria. Biochim. Biophys. Acta 17935–19
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-121219-081550
Loading
/content/journals/10.1146/annurev-biophys-121219-081550
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error