1932

Abstract

The treatment of acute myeloid leukemia (AML) has historically relied on cytotoxic chemotherapy, but modern understanding of AML biology has paved the way for new treatments that target the molecular pathways that drive AML, in particular FLT3, IDH1/IDH2, and BCL2. Many of these targeted therapies are effective, but responses are typically short-lived and resistance remains a ubiquitous clinical problem. Understanding the mechanisms of resistance to targeted therapy is essential to continue improving AML therapy. Recent studies have shed new light on the ways in which AML evades targeted inhibition, including on-target resistance mutations, mutations in parallel molecular pathways, and plasticity in cellular state. In this review, we outline the mechanisms of resistance to commonly used targeted therapies in AML and discuss ideas to overcome the urgent problem of resistance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062822-025055
2024-06-12
2024-06-30
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062822-025055.html?itemId=/content/journals/10.1146/annurev-cancerbio-062822-025055&mimeType=html&fmt=ahah

Literature Cited

  1. Adams JM, Cory S. 2018.. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. . Cell Death Differ. 25:(1):2736
    [Crossref] [Google Scholar]
  2. Amatangelo MD, Quek L, Shih A, Stein EM, Roshal M, et al. 2017.. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. . Blood 130:(6):73241
    [Crossref] [Google Scholar]
  3. Bhatt S, Pioso MS, Olesinski EA, Yilma B, Ryan JA, et al. 2020.. Reduced mitochondrial apoptotic priming drives resistance to BH3 mimetics in acute myeloid leukemia. . Cancer Cell 38:(6):87290.e6
    [Crossref] [Google Scholar]
  4. Blombery P, Anderson MA, Gong J, Thijssen R, Birkinshaw RW, et al. 2019.. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. . Cancer Discov. 9:(3):34253
    [Crossref] [Google Scholar]
  5. Bottomly D, Long N, Schultz AR, Kurtz SE, Tognon CE, et al. 2022.. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. . Cancer Cell 40:(8):85064.e9
    [Crossref] [Google Scholar]
  6. Brien GL, Stegmaier K, Armstrong SA. 2019.. Targeting chromatin complexes in fusion protein-driven malignancies. . Nat. Rev. Cancer 19:(5):25569
    [Crossref] [Google Scholar]
  7. Chang Y-T, Hernandez D, Alonso S, Gao M, Su M, et al. 2019.. Role of CYP3A4 in bone marrow microenvironment-mediated protection of FLT3/ITD AML from tyrosine kinase inhibitors. . Blood Adv. 3:(6):90816
    [Crossref] [Google Scholar]
  8. Chen N, Zhou Y, Tong H, Wei J, Lou Y, et al. 2023.. Gilteritinib plus azacitidine and venetoclax for FLT3-ITD mutated relapsed/refractory acute myeloid leukemia. . J. Clin. Oncol. 41:(16_Suppl.):e19024
    [Crossref] [Google Scholar]
  9. Chen X, Glytsou C, Zhou H, Narang S, Reyna DE, et al. 2019.. Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment. . Cancer Discov. 9:(7):890909
    [Crossref] [Google Scholar]
  10. Choe S, Wang H, DiNardo CD, Stein EM, de Botton S, et al. 2020.. Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML. . Blood Adv. 4:(9):1894905
    [Crossref] [Google Scholar]
  11. Cortes JE, Khaled S, Martinelli G, Perl AE, Ganguly S, et al. 2019.. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. . Lancet Oncol. 20:(7):98497
    [Crossref] [Google Scholar]
  12. Daver N, Cortes J, Ravandi F, Patel KP, Burger JA, et al. 2015.. Secondary mutations as mediators of resistance to targeted therapy in leukemia. . Blood 125:(21):323645
    [Crossref] [Google Scholar]
  13. Daver N, Perl AE, Maly J, Levis M, Ritchie E, et al. 2022.. Venetoclax plus gilteritinib for FLT3-mutated relapsed/refractory acute myeloid leukemia. . J. Clin. Oncol. 40:(35):404859
    [Crossref] [Google Scholar]
  14. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, et al. 2020a.. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. . N. Engl. J. Med. 383:(7):61729
    [Crossref] [Google Scholar]
  15. DiNardo CD, Schuh AC, Stein EM, Montesinos P, Wei AH, et al. 2021.. Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): a single-arm, phase 1b and randomised, phase 2 trial. . Lancet Oncol. 22:(11):1597608
    [Crossref] [Google Scholar]
  16. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, et al. 2018.. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. . N. Engl. J. Med. 378:(25):238698
    [Crossref] [Google Scholar]
  17. DiNardo CD, Tiong IS, Quaglieri A, MacRaild S, Loghavi S, et al. 2020b.. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. . Blood 135:(11):791803
    [Crossref] [Google Scholar]
  18. Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, et al. 2022.. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. . Blood 140:(12):134577
    [Crossref] [Google Scholar]
  19. Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, et al. 2015.. International phase 3 study of azacitidine versus conventional care regimens in older patients with newly diagnosed AML with >30% blasts. . Blood 126:(3):29199
    [Crossref] [Google Scholar]
  20. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, et al. 2010.. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. . Cancer Cell 18:(6):55367
    [Crossref] [Google Scholar]
  21. Fournier E, Duployez N, Ducourneau B, Raffoux E, Turlure P, et al. 2020.. Mutational profile and benefit of gemtuzumab ozogamicin in acute myeloid leukemia. . Blood 135:(8):54246
    [Crossref] [Google Scholar]
  22. Galanis A, Ma H, Rajkhowa T, Ramachandran A, Small D, et al. 2014.. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. . Blood 123:(1):94100
    [Crossref] [Google Scholar]
  23. Gale RE, Popa T, Wright M, Khan N, Freeman SD, et al. 2018.. No evidence that CD33 splicing SNP impacts the response to GO in younger adults with AML treated on UK MRC/NCRI trials. . Blood 131:(4):46871
    [Crossref] [Google Scholar]
  24. Gbadamosi MO, Shastri VM, Meshinchi S, Lamba JK. 2021.. The rs35112940 CD33 polymorphism reduces CD33 internalization and efficacy of CD33-directed gemtuzumab ozogamicin. . Blood 138:(Suppl. 1):2247
    [Crossref] [Google Scholar]
  25. Guièze R, Liu VM, Rosebrock D, Jourdain AA, Hernández-Sánchez M, et al. 2019.. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies. . Cancer Cell 36:(4):36984.e13
    [Crossref] [Google Scholar]
  26. Hanahan D, Weinberg RA. 2011.. Hallmarks of cancer: the next generation. . Cell 144:(5):64674
    [Crossref] [Google Scholar]
  27. Harding JJ, Lowery MA, Shih AH, Schvartzman JM, Hou S, et al. 2018.. Isoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibition. . Cancer Discov. 8:(12):154047
    [Crossref] [Google Scholar]
  28. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, et al. 2000.. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. . Oncogene 19:(5):62431
    [Crossref] [Google Scholar]
  29. Hunter HM, Pallis M, Seedhouse CH, Grundy M, Gray C, Russell NH. 2004.. The expression of P-glycoprotein in AML cells with FLT3 internal tandem duplications is associated with reduced apoptosis in response to FLT3 inhibitors. . Br. J. Haematol. 127:(1):2633
    [Crossref] [Google Scholar]
  30. Intlekofer AM, Shih AH, Wang B, Nazir A, Rustenburg AS, et al. 2018.. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. . Nature 559:(7712):12529
    [Crossref] [Google Scholar]
  31. Issa GC, Aldoss I, DiPersio J, Cuglievan B, Stone R, et al. 2023.. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. . Nature 615:(7954):92024
    [Crossref] [Google Scholar]
  32. Jabbour E, Paul S, Kantarjian H. 2021.. The clinical development of antibody-drug conjugates—lessons from leukaemia. . Nat. Rev. Clin. Oncol. 18:(7):41833
    [Crossref] [Google Scholar]
  33. Jacobi A, Thieme S, Lehmann R, Ugarte F, Malech HL, et al. 2010.. Impact of CXCR4 inhibition on FLT3-ITD−positive human AML blasts. . Exp. Hematol. 38:(3):18090
    [Crossref] [Google Scholar]
  34. Javidi-Sharifi N, Martinez J, English I, Joshi SK, Scopim-Ribeiro R, et al. 2019.. FGF2-FGFR1 signaling regulates release of leukemia-protective exosomes from bone marrow stromal cells. . eLife 8::e40033
    [Crossref] [Google Scholar]
  35. Jones CL, Stevens BM, Pollyea DA, Culp-Hill R, Reisz JA, et al. 2020.. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells. . Cell Stem Cell 27:(5):74864.e4
    [Crossref] [Google Scholar]
  36. Kantarjian HM, Thomas XG, Dmoszynska A, Wierzbowska A, Mazur G, et al. 2012.. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. . J. Clin. Oncol. 30:(21):267077
    [Crossref] [Google Scholar]
  37. Kennedy VE, Peretz C, Lee P, Chyla B, Sun Y, et al. 2022.. Multi-omic single-cell sequencing reveals genetic and immunophenotypic clonal selection in patients with FLT3-mutated AML treated with gilteritinib/venetoclax. . Blood 140:(Suppl. 1):224446
    [Crossref] [Google Scholar]
  38. Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, et al. 2016.. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. . Cancer Discov. 6:(10):110617
    [Crossref] [Google Scholar]
  39. Kuusanmäki H, Dufva O, Vähä-Koskela M, Leppä A-M, Huuhtanen J, et al. 2023.. Erythroid/megakaryocytic differentiation confers BCL-XL dependency and venetoclax resistance in acute myeloid leukemia. . Blood 141:(13):161025
    [Crossref] [Google Scholar]
  40. Kuusanmäki H, Leppä AM, Pölönen P, Kontro M, Dufva O, et al. 2020.. Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. . Haematologica 105:(3):70820
    [Crossref] [Google Scholar]
  41. Lamba JK, Chauhan L, Shin M, Loken MR, Pollard JA, et al. 2017.. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: report from randomized phase III Children's Oncology Group Trial AAML0531. . J. Clin. Oncol. 35:(23):267482
    [Crossref] [Google Scholar]
  42. Larrosa-Garcia M, Baer MR. 2017.. FLT3 inhibitors in acute myeloid leukemia: current status and future directions. . Mol. Cancer Ther. 16:(6):9911001
    [Crossref] [Google Scholar]
  43. Lee LY, Hernandez D, Rajkhowa T, Smith SC, Raman JR, et al. 2017.. Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. . Blood 129:(2):25760
    [Crossref] [Google Scholar]
  44. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, et al. 2012.. IDH mutation impairs histone demethylation and results in a block to cell differentiation. . Nature 483:(7390):47478
    [Crossref] [Google Scholar]
  45. Man CH, Fung TK, Ho C, Han HHC, Chow HCH, et al. 2012.. Sorafenib treatment of FLT3-ITD+ acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. . Blood 119:(22):513343
    [Crossref] [Google Scholar]
  46. McMahon CM, Ferng T, Canaani J, Wang ES, Morrissette JJD, et al. 2019.. Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia. . Cancer Discov. 9:(8):105063
    [Crossref] [Google Scholar]
  47. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, et al. 2000.. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. . Blood 96:(12):390714
    [Crossref] [Google Scholar]
  48. Moujalled DM, Brown FC, Chua CC, Dengler MA, Pomilio G, et al. 2023.. Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia. . Blood 141:(6):63444
    [Crossref] [Google Scholar]
  49. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, et al. 1996.. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. . Leukemia 10:(12):191118
    [Google Scholar]
  50. Nechiporuk T, Kurtz SE, Nikolova O, Liu T, Jones CL, et al. 2019.. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells. . Cancer Discov. 9:(7):91025
    [Crossref] [Google Scholar]
  51. Orr SJ, Morgan NM, Elliott J, Burrows JF, Scott CJ, et al. 2007.. CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. . Blood 109:(3):106168
    [Crossref] [Google Scholar]
  52. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, et al. 2016.. Genomic classification and prognosis in acute myeloid leukemia. . N. Engl. J. Med. 374:(23):220921
    [Crossref] [Google Scholar]
  53. Park I-K, Mundy-Bosse B, Whitman SP, Zhang X, Warner SL, et al. 2015.. Receptor tyrosine kinase Axl is required for resistance of leukemic cells to FLT3-targeted therapy in acute myeloid leukemia. . Leukemia 29:(12):238289
    [Crossref] [Google Scholar]
  54. Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, et al. 2020.. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. . Cancer Discov. 10:(4):53651
    [Crossref] [Google Scholar]
  55. Peretz CAC, McGary LHF, Kumar T, Jackson H, Jacob J, et al. 2021.. Single-cell DNA sequencing reveals complex mechanisms of resistance to quizartinib. . Blood Adv. 5:(5):143741
    [Crossref] [Google Scholar]
  56. Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, et al. 2019.. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. . N. Engl. J. Med. 381:(18):172840
    [Crossref] [Google Scholar]
  57. Perner F, Stein EM, Wenge DV, Singh S, Kim J, et al. 2023.. MEN1 mutations mediate clinical resistance to menin inhibition. . Nature 615:(7954):91319
    [Crossref] [Google Scholar]
  58. Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, et al. 2018.. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. . Nat. Med. 24:(12):185966
    [Crossref] [Google Scholar]
  59. Pollyea DA, Tallman MS, de Botton S, Kantarjian HM, Collins R, et al. 2019.. Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia. . Leukemia 33:(11):257584
    [Crossref] [Google Scholar]
  60. Rafiee R, Chauhan L, Alonzo TA, Wang Y-C, Elmasry A, et al. 2019.. ABCB1 SNP predicts outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin: a report from Children's Oncology Group AAML0531 trial. . Blood Cancer J. 9:(6):51
    [Crossref] [Google Scholar]
  61. Roboz GJ, DiNardo CD, Stein EM, de Botton S, Mims AS, et al. 2020.. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. . Blood 135:(7):46371
    [Crossref] [Google Scholar]
  62. Rosen DB, Harrington KH, Cordeiro JA, Leung LY, Putta S, et al. 2013.. AKT signaling as a novel factor associated with in vitro resistance of human AML to gemtuzumab ozogamicin. . PLOS ONE 8:(1):e53518
    [Crossref] [Google Scholar]
  63. Sato T, Yang X, Knapper S, White P, Smith BD, et al. 2011.. FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. . Blood 117:(12):328693
    [Crossref] [Google Scholar]
  64. Short NJ, Richard-Carpentier G, Kanagal-Shamanna R, Patel KP, Konopleva M, et al. 2020.. Impact of CD33 and ABCB1 single nucleotide polymorphisms in patients with acute myeloid leukemia and advanced myeloid malignancies treated with decitabine plus gemtuzumab ozogamicin. . Am. J. Hematol. 95:(9):E22528
    [Crossref] [Google Scholar]
  65. Singh Mali R, Zhang Q, DeFilippis RA, Cavazos A, Kuruvilla VM, et al. 2020.. Venetoclax combines synergistically with FLT3 inhibition to effectively target leukemic cells in FLT3-ITD+ acute myeloid leukemia models. . Haematologica 106:(4):103446
    [Crossref] [Google Scholar]
  66. Smith CC, Lasater EA, Lin KC, Wang Q, McCreery MQ, et al. 2014.. Crenolanib is a selective type I pan-FLT3 inhibitor. . PNAS 111:(14):531924
    [Crossref] [Google Scholar]
  67. Smith CC, Paguirigan A, Jeschke GR, Lin KC, Massi E, et al. 2017.. Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis. . Blood 130:(1):4858
    [Crossref] [Google Scholar]
  68. Smith CC, Wang Q, Chin C-S, Salerno S, Damon LE, et al. 2012.. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. . Nature 485:(7397):26063
    [Crossref] [Google Scholar]
  69. Stein EM, DiNardo CD, Fathi AT, Mims AS, Pratz KW, et al. 2021.. Ivosidenib or enasidenib combined with intensive chemotherapy in patients with newly diagnosed AML: a phase 1 study. . Blood 137:(13):1792803
    [Crossref] [Google Scholar]
  70. Stein EM, DiNardo CD, Fathi AT, Pollyea DA, Stone RM, et al. 2019.. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. . Blood 133:(7):67687
    [Crossref] [Google Scholar]
  71. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, et al. 2017.. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. . Blood 130:(6):72231
    [Crossref] [Google Scholar]
  72. Stevens BM, Jones CL, Pollyea DA, Culp-Hill R, D'Alessandro A, et al. 2020.. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells. . Nat. Cancer 1:(12):117687
    [Crossref] [Google Scholar]
  73. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, et al. 2017.. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. . N. Engl. J. Med. 377:(5):45464
    [Crossref] [Google Scholar]
  74. Stuani L, Sabatier M, Saland E, Cognet G, Poupin N, et al. 2021.. Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. . J. Exp. Med. 218:(5):e20200924
    [Crossref] [Google Scholar]
  75. Tausch E, Close W, Dolnik A, Bloehdorn J, Chyla B, et al. 2019.. Venetoclax resistance and acquired BCL2 mutations in chronic lymphocytic leukemia. . Haematologica 104:(9):e43437
    [Crossref] [Google Scholar]
  76. The Cancer Genome Atlas Research Network. 2013.. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. . N. Engl. J. Med. 368:(22):205974
    [Crossref] [Google Scholar]
  77. Thijssen R, Tian L, Anderson MA, Flensburg C, Jarratt A, et al. 2022.. Single-cell multiomics reveal the scale of multilayered adaptations enabling CLL relapse during venetoclax therapy. . Blood 140:(20):212741
    [Crossref] [Google Scholar]
  78. Thomalla D, Beckmann L, Grimm C, Oliverio M, Meder L, et al. 2022.. Deregulation and epigenetic modification of BCL2-family genes cause resistance to venetoclax in hematologic malignancies. . Blood 140:(20):211326
    [Crossref] [Google Scholar]
  79. Traer E, Martinez J, Javidi-Sharifi N, Agarwal A, Dunlap J, et al. 2016.. FGF2 from marrow microenvironment promotes resistance to FLT3 inhibitors in acute myeloid leukemia. . Cancer Res. 76:(22):647182
    [Crossref] [Google Scholar]
  80. Vo T-T, Ryan J, Carrasco R, Neuberg D, Rossi DJ, et al. 2012.. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. . Cell 151:(2):34455
    [Crossref] [Google Scholar]
  81. Waldeck S, Rassner M, Keye P, Follo M, Herchenbach D, et al. 2020.. CCL5 mediates target-kinase independent resistance to FLT3 inhibitors in FLT3-ITD-positive AML. . Mol. Oncol. 14(4):77994
    [Google Scholar]
  82. Walter RB, Gooley TA, Van Der Velden VHJ, Loken MR, Van Dongen JJM, et al. 2007.. CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. . Blood 109:(10):416870
    [Crossref] [Google Scholar]
  83. Wang F, Morita K, DiNardo CD, Furudate K, Tanaka T, et al. 2021.. Leukemia stemness and co-occurring mutations drive resistance to IDH inhibitors in acute myeloid leukemia. . Nat. Commun. 12:(1):2607
    [Crossref] [Google Scholar]
  84. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, et al. 2010.. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. . Cancer Cell 17:(3):22534
    [Crossref] [Google Scholar]
  85. Yang X, Sexauer A, Levis M. 2014.. Bone marrow stroma-mediated resistance to FLT3 inhibitors in FLT3-ITD AML is mediated by persistent activation of extracellular regulated kinase. . Br. J. Haematol. 164:(1):6172
    [Crossref] [Google Scholar]
  86. Yates JW, Wallace HJ, Ellison RR, Holland JF. 1973.. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. . Cancer Chemother. Rep. 57:(4):48588
    [Google Scholar]
  87. Yen K, Travins J, Wang F, David MD, Artin E, et al. 2017.. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. . Cancer Discov. 7:(5):47893
    [Crossref] [Google Scholar]
  88. Young DJ, Nguyen B, Li L, Higashimoto T, Levis MJ, et al. 2021.. A method for overcoming plasma protein inhibition of tyrosine kinase inhibitors. . Blood Cancer Discov. 2:(5):53247
    [Crossref] [Google Scholar]
  89. Zeng Z, Xi Shi Y, Samudio IJ, Wang R-Y, Ling X, et al. 2009.. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. . Blood 113:(24):621524
    [Crossref] [Google Scholar]
  90. Zhang H, Nakauchi Y, Köhnke T, Stafford M, Bottomly D, et al. 2020.. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. . Nat. Cancer 1:(8):82639
    [Crossref] [Google Scholar]
  91. Zhang H, Savage S, Schultz AR, Bottomly D, White L, et al. 2019.. Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. . Nat. Commun. 10:(1):244
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062822-025055
Loading
/content/journals/10.1146/annurev-cancerbio-062822-025055
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error