1932

Abstract

A century ago, Otto Heinrich Warburg made a seminal discovery now known as the Warburg effect. This metabolic signature, prevalent across all cancer cells, is characterized by the prominent shift of glucose metabolism toward lactate production instead of oxidative respiration. Warburg's pioneering theory suggested that the induction of the Warburg effect instigates dedifferentiation and the process of tumorigenesis, illuminating a fundamental mechanism underlying cancer development. To celebrate the centennial anniversary of Warburg's monumental finding, it is an appropriate moment to reflect upon and commemorate his revolutionary contributions to the fields of metabolism and cancer research. In this review, we explore the role of mitochondria in epigenetic regulation and the decisions governing cell fate from an evolutionary standpoint. Moreover, we summarize metabolic and genetic factors that trigger the Warburg effect, underscoring the therapeutic potential of mitochondrial uncoupling as a strategy to counter this metabolic aberration. Our goal is to elucidate the means to induce tumor differentiation through metabolic therapy, thereby laying a foundation toward the cure for cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062822-120857
2024-06-12
2024-06-30
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062822-120857.html?itemId=/content/journals/10.1146/annurev-cancerbio-062822-120857&mimeType=html&fmt=ahah

Literature Cited

  1. Agathocleous M, Meacham CE, Burgess RJ, Piskounova E, Zhao Z, et al. 2017.. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. . Nature 549::47681
    [Crossref] [Google Scholar]
  2. Alasadi A, Chen M, Swapna GVT, Tao H, Guo J, et al. 2018.. Effect of mitochondrial uncouplers niclosamide ethanolamine (NEN) and oxyclozanide on hepatic metastasis of colon cancer. . Cell. Death Dis. 9::215
    [Crossref] [Google Scholar]
  3. Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, et al. 2011.. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. . J. Pathol. 224::33443
    [Crossref] [Google Scholar]
  4. Ayala FJ. 1977.. “ Nothing in biology makes sense except in the light of evolution”: Theodosius Dobzhansky: 1900–1975. . J. Hered. 68::310
    [Crossref] [Google Scholar]
  5. Barclay CJ. 2017.. Energy demand and supply in human skeletal muscle. . J. Muscle Res. Cell Motil. 38::14355
    [Crossref] [Google Scholar]
  6. Bardella C, Pollard PJ, Tomlinson I. 2011.. SDH mutations in cancer. . Biochim. Biophys. Acta 1807::143243
    [Crossref] [Google Scholar]
  7. Bartman CR, Weilandt DR, Shen Y, Lee WD, Han Y, et al. 2023.. Slow TCA flux and ATP production in primary solid tumours but not metastases. . Nature 614::34957
    [Crossref] [Google Scholar]
  8. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, et al. 2000.. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. . Science 287::84851
    [Crossref] [Google Scholar]
  9. Benard J, Raguenez G, Kauffmann A, Valent A, Ripoche H, et al. 2008.. MYCN-non-amplified metastatic neuroblastoma with good prognosis and spontaneous regression: a molecular portrait of stage 4S. . Mol. Oncol. 2::26171
    [Crossref] [Google Scholar]
  10. Bensard CL, Wisidagama DR, Olson KA, Berg JA, Krah NM, et al. 2020.. Regulation of tumor initiation by the mitochondrial pyruvate carrier. . Cell Metab. 31::284300.e7
    [Crossref] [Google Scholar]
  11. Bernstein BW, Bamburg JR. 2003.. Actin-ATP hydrolysis is a major energy drain for neurons. . J. Neurosci. 23::16
    [Crossref] [Google Scholar]
  12. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martinez JA, Goyal P, et al. 2013.. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. . Nature 500::22226
    [Crossref] [Google Scholar]
  13. Boikos SA, Pappo AS, Killian JK, LaQuaglia MP, Weldon CB, et al. 2016.. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. . JAMA Oncol. 2::92228
    [Crossref] [Google Scholar]
  14. Bolduc JF, Hany L, Barat C, Ouellet M, Tremblay MJ. 2017.. Epigenetic metabolite acetate inhibits class I/II histone deacetylases, promotes histone acetylation, and increases HIV-1 integration in CD4+ T cells. . J. Virol. 91::e01943-16
    [Google Scholar]
  15. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, et al. 2012.. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. . Science 337::96100
    [Crossref] [Google Scholar]
  16. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. 2015.. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. . Nature 518::41316
    [Crossref] [Google Scholar]
  17. Chaneton B, Hillmann P, Zheng L, Martin ACL, Maddocks ODK, et al. 2012.. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. . Nature 491::45862
    [Crossref] [Google Scholar]
  18. Chen L, Morcelle C, Cheng Z, Chen X, Xu Y, et al. 2022.. Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. . Nat. Cell Biol. 24:(3):35363
    [Crossref] [Google Scholar]
  19. Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, et al. 2006.. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. . Biochem. Biophys. Res. Commun. 348::147278
    [Crossref] [Google Scholar]
  20. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, et al. 2008a.. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. . Nature 452::23033
    [Crossref] [Google Scholar]
  21. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. 2008b.. Pyruvate kinase M2 is a phosphotyrosine-binding protein. . Nature 452::18186
    [Crossref] [Google Scholar]
  22. Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A. 2007.. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. . Nat. Clin. Pract. Cardiovasc. Med. 4:(Suppl. 1):S6067
    [Crossref] [Google Scholar]
  23. Cimmino L, Dolgalev I, Wang Y, Yoshimi A, Martin GH, et al. 2017.. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. . Cell 170::107995.e20
    [Crossref] [Google Scholar]
  24. Cluntun AA, Huang H, Dai L, Liu X, Zhao Y, Locasale JW. 2015.. The rate of glycolysis quantitatively mediates specific histone acetylation sites. . Cancer Metab. 3::10
    [Crossref] [Google Scholar]
  25. Comerford SA, Huang Z, Du X, Wang Y, Cai L, et al. 2014.. Acetate dependence of tumors. . Cell 159::1591602
    [Crossref] [Google Scholar]
  26. Couture JF, Collazo E, Ortiz-Tello PA, Brunzelle JS, Trievel RC. 2007.. Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. . Nat. Struct. Mol. Biol. 14::68995
    [Crossref] [Google Scholar]
  27. Cui J, Quan M, Xie D, Gao Y, Guha S, et al. 2020.. A novel KDM5A/MPC-1 signaling pathway promotes pancreatic cancer progression via redirecting mitochondrial pyruvate metabolism. . Oncogene 39::114051
    [Crossref] [Google Scholar]
  28. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, et al. 2009.. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. . Nature 462::73944
    [Crossref] [Google Scholar]
  29. Das S, Morvan F, Morozzi G, Jourde B, Minetti GC, et al. 2017.. ATP citrate lyase regulates myofiber differentiation and increases regeneration by altering histone acetylation. . Cell Rep. 21::300311
    [Crossref] [Google Scholar]
  30. DiTroia SP, Percharde M, Guerquin MJ, Wall E, Collignon E, et al. 2019.. Maternal vitamin C regulates reprogramming of DNA methylation and germline development. . Nature 573::27175
    [Crossref] [Google Scholar]
  31. Dunbar EM, Coats BS, Shroads AL, Langaee T, Lew A, et al. 2014.. Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. . Investig. New Drugs 32::45264
    [Crossref] [Google Scholar]
  32. Ebata KT, Mesh K, Liu S, Bilenky M, Fekete A, et al. 2017.. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b. . Epigenet. Chromatin 10::36
    [Crossref] [Google Scholar]
  33. Eckschlager T, Plch J, Stiborova M, Hrabeta J. 2017.. Histone deacetylase inhibitors as anticancer drugs. . Int. J. Mol. Sci. 18::1414
    [Crossref] [Google Scholar]
  34. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, et al. 2010.. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. . Cancer Cell 18::55367
    [Crossref] [Google Scholar]
  35. Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, et al. 2011.. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. . Cell Metab. 14::26471
    [Crossref] [Google Scholar]
  36. Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, et al. 2011.. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. . Nature 477::22528
    [Crossref] [Google Scholar]
  37. Gao X, Lin SH, Ren F, Li JT, Chen JJ, et al. 2016.. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. . Nat. Commun. 7::11960
    [Crossref] [Google Scholar]
  38. Garcia-Manero G, Griffiths EA, Steensma DP, Roboz GJ, Wells R, et al. 2020.. Oral cedazuridine/decitabine for MDS and CMML: a phase 2 pharmacokinetic/pharmacodynamic randomized crossover study. . Blood 136::67483
    [Crossref] [Google Scholar]
  39. Golub D, Iyengar N, Dogra S, Wong T, Bready D, et al. 2019.. Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics. . Front. Oncol. 9::417
    [Crossref] [Google Scholar]
  40. Gustafsson CM, Falkenberg M, Larsson NG. 2016.. Maintenance and expression of mammalian mitochondrial DNA. . Annu. Rev. Biochem. 85::13360
    [Crossref] [Google Scholar]
  41. Hague A, Elder DJ, Hicks DJ, Paraskeva C. 1995.. Apoptosis in colorectal tumour cells: induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. . Int. J. Cancer 60::4006
    [Crossref] [Google Scholar]
  42. Harding JJ, Lowery MA, Shih AH, Schvartzman JM, Hou S, et al. 2018.. Isoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibition. . Cancer Discov. 8::154047
    [Crossref] [Google Scholar]
  43. Hero B, Simon T, Spitz R, Ernestus K, Gnekow AK, et al. 2008.. Localized infant neuroblastomas often show spontaneous regression: results of the prospective trials NB95-S and NB97. . J. Clin. Oncol. 26::150410
    [Crossref] [Google Scholar]
  44. Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, et al. 2009.. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. . Sci. Signal. 2::ra73
    [Crossref] [Google Scholar]
  45. Intlekofer AM, Dematteo RG, Venneti S, Finley LW, Lu C, et al. 2015.. Hypoxia induces production of l-2-hydroxyglutarate. . Cell Metab. 22::30411
    [Crossref] [Google Scholar]
  46. Intlekofer AM, Finley LWS. 2019.. Metabolic signatures of cancer cells and stem cells. . Nat. Metab. 1::17788
    [Crossref] [Google Scholar]
  47. Intlekofer AM, Shih AH, Wang B, Nazir A, Rustenburg AS, et al. 2018.. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. . Nature 559::12529
    [Crossref] [Google Scholar]
  48. Intlekofer AM, Wang B, Liu H, Shah H, Carmona-Fontaine C, et al. 2017.. l-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. . Nat. Chem. Biol. 13::494500
    [Crossref] [Google Scholar]
  49. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, et al. 2005.. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. . Cancer Cell 8::14353
    [Crossref] [Google Scholar]
  50. Ishak Gabra MB, Yang Y, Li H, Senapati P, Hanse EA, et al. 2020.. Dietary glutamine supplementation suppresses epigenetically-activated oncogenic pathways to inhibit melanoma tumour growth. . Nat. Commun. 11::3326
    [Crossref] [Google Scholar]
  51. Izzo LT, Affronti HC, Wellen KE. 2021.. The bidirectional relationship between cancer epigenetics and metabolism. . Annu. Rev. Cancer Biol. 5::23557
    [Crossref] [Google Scholar]
  52. Jiang H, Greathouse RL, Tiche SJ, Zhao M, He B, et al. 2023a.. Mitochondrial uncoupling induces epigenome remodeling and promotes differentiation in neuroblastoma. . Cancer Res. 83::18194
    [Crossref] [Google Scholar]
  53. Jiang H, He CJ, Li AM, He B, Li Y, et al. 2023b.. Mitochondrial uncoupling inhibits reductive carboxylation in cancer cells. . Mol. Cancer Res. 21::101016
    [Crossref] [Google Scholar]
  54. Jiang H, Li AM, Ye J. 2022.. The magic bullet: niclosamide. . Front. Oncol. 12::1004978
    [Crossref] [Google Scholar]
  55. Jones PA. 2012.. Functions of DNA methylation: islands, start sites, gene bodies and beyond. . Nat. Rev. Genet. 13::48492
    [Crossref] [Google Scholar]
  56. Jones PA, Issa JP, Baylin S. 2016.. Targeting the cancer epigenome for therapy. . Nat. Rev. Genet. 17::63041
    [Crossref] [Google Scholar]
  57. Kaelin WG Jr., McKnight SL. 2013.. Influence of metabolism on epigenetics and disease. . Cell 153::5669
    [Crossref] [Google Scholar]
  58. Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. 2014.. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. . Cancer Metab. 2::23
    [Crossref] [Google Scholar]
  59. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, et al. 2015.. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. . Cancer Res. 75::54453
    [Crossref] [Google Scholar]
  60. Kantorovich V, King KS, Pacak K. 2010.. SDH-related pheochromocytoma and paraganglioma. . Best Pract. Res. Clin. Endocrinol. Metab. 24::41524
    [Crossref] [Google Scholar]
  61. Killian JK, Kim SY, Miettinen M, Smith C, Merino M, et al. 2013.. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. . Cancer Discov. 3::64857
    [Crossref] [Google Scholar]
  62. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. 2006.. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. . Cell Metab. 3::17785
    [Crossref] [Google Scholar]
  63. Kinnaird A, Zhao S, Wellen KE, Michelakis ED. 2016.. Metabolic control of epigenetics in cancer. . Nat. Rev. Cancer 16::694707
    [Crossref] [Google Scholar]
  64. Kipp BR, Voss JS, Kerr SE, Barr Fritcher EG, Graham RP, et al. 2012.. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. . Hum. Pathol. 43::155258
    [Crossref] [Google Scholar]
  65. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, et al. 2012.. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. . Nature 483::48488
    [Crossref] [Google Scholar]
  66. Kondoh H, Lleonart ME, Nakashima Y, Yokode M, Tanaka M, et al. 2007.. A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. . Antioxid. Redox Signal. 9::29399
    [Crossref] [Google Scholar]
  67. Koppenol WH, Bounds PL, Dang CV. 2011.. Otto Warburg's contributions to current concepts of cancer metabolism. . Nat. Rev. Cancer 11::32537
    [Crossref] [Google Scholar]
  68. Kowallik KV, Martin WF. 2021.. The origin of symbiogenesis: an annotated English translation of Mereschkowsky's 1910 paper on the theory of two plasma lineages. . Biosystems 199::104281
    [Crossref] [Google Scholar]
  69. Kung C, Hixon J, Choe S, Marks K, Gross S, et al. 2012.. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. . Chem. Biol. 19::118798
    [Crossref] [Google Scholar]
  70. Labuschagne CF, Zani F, Vousden KH. 2018.. Control of metabolism by p53: cancer and beyond. . Biochim. Biophys. Acta Rev. Cancer 1870::3242
    [Crossref] [Google Scholar]
  71. Lan A, Lagadic-Gossmann D, Lemaire C, Brenner C, Jan G. 2007.. Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. . Apoptosis 12::57391
    [Crossref] [Google Scholar]
  72. Laukka T, Mariani CJ, Ihantola T, Cao JZ, Hokkanen J, et al. 2016.. Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. . J. Biol. Chem. 291::425665
    [Crossref] [Google Scholar]
  73. Lee JV, Berry CT, Kim K, Sen P, Kim T, et al. 2018.. Acetyl-CoA promotes glioblastoma cell adhesion and migration through Ca2+-NFAT signaling. . Genes Dev. 32::497511
    [Crossref] [Google Scholar]
  74. Lee JV, Carrer A, Shah S, Snyder NW, Wei S, et al. 2014.. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. . Cell Metab. 20::30619
    [Crossref] [Google Scholar]
  75. Lehtonen R, Kiuru M, Vanharanta S, Sjoberg J, Aaltonen LM, et al. 2004.. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. . Am. J. Pathol. 164::1722
    [Crossref] [Google Scholar]
  76. Leone RD, Zhao L, Englert JM, Sun IM, Oh MH, et al. 2019.. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. . Science 366::101321
    [Crossref] [Google Scholar]
  77. Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, et al. 2013.. SDH mutations establish a hypermethylator phenotype in paraganglioma. . Cancer Cell 23::73952
    [Crossref] [Google Scholar]
  78. Li AM, He B, Karagiannis D, Li Y, Jiang H, et al. 2023.. Serine starvation silences estrogen receptor signaling through histone hypoacetylation. . PNAS 120::e2302489120
    [Crossref] [Google Scholar]
  79. Li Y, Gruber JJ, Litzenburger UM, Zhou Y, Miao YR, et al. 2020.. Acetate supplementation restores chromatin accessibility and promotes tumor cell differentiation under hypoxia. . Cell Death Dis. 11::102
    [Crossref] [Google Scholar]
  80. Linehan WM, Rouault TA. 2013.. Molecular pathways: fumarate hydratase–deficient kidney cancer—targeting the Warburg effect in cancer. . Clin. Cancer Res. 19::334552
    [Crossref] [Google Scholar]
  81. Long PM, Tighe SW, Driscoll HE, Fortner KA, Viapiano MS, Jaworski DM. 2015.. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. . J. Cell Physiol. 230::192943
    [Crossref] [Google Scholar]
  82. Long PM, Tighe SW, Driscoll HE, Moffett JR, Namboodiri AM, et al. 2013.. Acetate supplementation induces growth arrest of NG2/PDGFRα-positive oligodendroglioma-derived tumor-initiating cells. . PLOS ONE 8::e80714
    [Crossref] [Google Scholar]
  83. Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, et al. 2013.. (R)-2-Hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. . Science 339::162125
    [Crossref] [Google Scholar]
  84. Lu C, Thompson CB. 2012.. Metabolic regulation of epigenetics. . Cell Metab. 16::917
    [Crossref] [Google Scholar]
  85. Lu C, Venneti S, Akalin A, Fang F, Ward PS, et al. 2013.. Induction of sarcomas by mutant IDH2. . Genes Dev. 27::198698
    [Crossref] [Google Scholar]
  86. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, et al. 2012.. IDH mutation impairs histone demethylation and results in a block to cell differentiation. . Nature 483::47478
    [Crossref] [Google Scholar]
  87. Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ. 2008.. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. . J. Biol. Chem. 283::2810614
    [Crossref] [Google Scholar]
  88. Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, et al. 2021.. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. . Mol. Cell 81::691707.e6
    [Crossref] [Google Scholar]
  89. May JL, Kouri FM, Hurley LA, Liu J, Tommasini-Ghelfi S, et al. 2019.. IDH3α regulates one-carbon metabolism in glioblastoma. . Sci. Adv. 5::eaat0456
    [Crossref] [Google Scholar]
  90. McWhinney SR, Pasini B, Stratakis CA, Int. Carney Triad & Carney-Stratakis Syndr. Consort. 2007.. Familial gastrointestinal stromal tumors and germ-line mutations. . N. Engl. J. Med. 357::105456
    [Crossref] [Google Scholar]
  91. Mentch SJ, Mehrmohamadi M, Huang L, Liu XJ, Gupta D, et al. 2015.. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. . Cell Metab. 22::86173
    [Crossref] [Google Scholar]
  92. Moreno-Yruela C, Zhang D, Wei W, Baek M, Liu W, et al. 2022.. Class I histone deacetylases (HDAC1–3) are histone lysine delactylases. . Sci. Adv. 8::eabi6696
    [Crossref] [Google Scholar]
  93. Morin A, Goncalves J, Moog S, Castro-Vega LJ, Job S, et al. 2020.. TET-mediated hypermethylation primes SDH-deficient cells for HIF2α-driven mesenchymal transition. . Cell Rep. 30::455166.e7
    [Crossref] [Google Scholar]
  94. Morris JP IV, Yashinskie JJ, Koche R, Chandwani R, Tian S, et al. 2019.. α-Ketoglutarate links p53 to cell fate during tumour suppression. . Nature 573::59599
    [Crossref] [Google Scholar]
  95. Mukhopadhyay S, Vander Heiden MG, McCormick F. 2021.. The metabolic landscape of RAS-driven cancers from biology to therapy. . Nat. Cancer 2::27183
    [Crossref] [Google Scholar]
  96. Oldham WM, Clish Clary B, Yang Y, Loscalzo J. 2015.. Hypoxia-mediated increases in l-2-hydroxyglutarate coordinate the metabolic response to reductive stress. . Cell Metab. 22::291303
    [Crossref] [Google Scholar]
  97. Pan M, Reid MA, Lowman XH, Kulkarni RP, Tran TQ, et al. 2016.. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. . Nat. Cell Biol. 18::1090101
    [Crossref] [Google Scholar]
  98. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. 2006.. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. . Cell Metab. 3::18797
    [Crossref] [Google Scholar]
  99. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, et al. 2008.. An integrated genomic analysis of human glioblastoma multiforme. . Science 321:(5897):1807
    [Crossref] [Google Scholar]
  100. Platzbecker U, Wermke M, Radke J, Oelschlaegel U, Seltmann F, et al. 2012.. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. . Leukemia 26::38189
    [Crossref] [Google Scholar]
  101. Popovici-Muller J, Lemieux RM, Artin E, Saunders JO, Salituro FG, et al. 2018.. Discovery of AG-120 (ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers. . ACS Med. Chem. Lett. 9::3005
    [Crossref] [Google Scholar]
  102. Powell SF, Mazurczak M, Dib EG, Bleeker JS, Geeraerts LH, et al. 2022.. Phase II study of dichloroacetate, an inhibitor of pyruvate dehydrogenase, in combination with chemoradiotherapy for unresected, locally advanced head and neck squamous cell carcinoma. . Invest. New Drugs 40::62233
    [Crossref] [Google Scholar]
  103. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. 2010.. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. . Stem Cells 28::72133
    [Crossref] [Google Scholar]
  104. Reid MA, Dai Z, Locasale JW. 2017.. The impact of cellular metabolism on chromatin dynamics and epigenetics. . Nat. Cell Biol. 19::1298306
    [Crossref] [Google Scholar]
  105. Reid MA, Wang WI, Rosales KR, Welliver MX, Pan M, Kong M. 2013.. The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation. . Mol. Cell 50::20011
    [Crossref] [Google Scholar]
  106. Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, et al. 2021.. Cell-programmed nutrient partitioning in the tumour microenvironment. . Nature 593::28288
    [Crossref] [Google Scholar]
  107. Reisenauer CJ, Bhatt DP, Mitteness DJ, Slanczka ER, Gienger HM, et al. 2011.. Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation. . J. Neurochem. 117::26474
    [Crossref] [Google Scholar]
  108. Ricketts CJ, Shuch B, Vocke CD, Metwalli AR, Bratslavsky G, et al. 2012.. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. . J. Urol. 188::206371
    [Crossref] [Google Scholar]
  109. Rodenfels J, Neugebauer KM, Howard J. 2019.. Heat oscillations driven by the embryonic cell cycle reveal the energetic costs of signaling. . Dev. Cell 48::64658.e6
    [Crossref] [Google Scholar]
  110. Sanderson SM, Gao X, Dai ZW, Locasale JW. 2019.. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. . Nat. Rev. Cancer 19::62537
    [Crossref] [Google Scholar]
  111. Schell JC, Olson KA, Jiang L, Hawkins AJ, Van Vranken JG, et al. 2014.. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. . Mol. Cell 56::40013
    [Crossref] [Google Scholar]
  112. Schell JC, Wisidagama DR, Bensard C, Zhao H, Wei P, et al. 2017.. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. . Nat. Cell Biol. 19::102736
    [Crossref] [Google Scholar]
  113. Schmidt C, Sciacovelli M, Frezza C. 2020.. Fumarate hydratase in cancer: a multifaceted tumour suppressor. . Semin. Cell Dev. Biol. 98::1525
    [Crossref] [Google Scholar]
  114. Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, et al. 2015.. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. . Cancer Cell 27::5771
    [Crossref] [Google Scholar]
  115. Schvartzman JM, Reuter VP, Koche RP, Thompson CB. 2019.. 2-Hydroxyglutarate inhibits MyoD-mediated differentiation by preventing H3K9 demethylation. . PNAS 116::1285156
    [Crossref] [Google Scholar]
  116. Schvartzman JM, Thompson CB, Finley LWS. 2018.. Metabolic regulation of chromatin modifications and gene expression. . J. Cell Biol. 217::224759
    [Crossref] [Google Scholar]
  117. Sciacovelli M, Goncalves E, Johnson TI, Zecchini VR, da Costa AS, et al. 2016.. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. . Nature 537::54447
    [Crossref] [Google Scholar]
  118. Segel R, Anikster Y, Zevin S, Steinberg A, Gahl WA, et al. 2011.. A safety trial of high dose glyceryl triacetate for Canavan disease. . Mol. Genet. Metab. 103::2036
    [Crossref] [Google Scholar]
  119. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, et al. 2005.. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. . Cancer Cell 7::7785
    [Crossref] [Google Scholar]
  120. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, et al. 2004.. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. . Cell 119::94153
    [Crossref] [Google Scholar]
  121. Shim EH, Livi CB, Rakheja D, Tan J, Benson D, et al. 2014.. l-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. . Cancer Discov. 4::129098
    [Crossref] [Google Scholar]
  122. Shrestha R, Johnson E, Byrne FL. 2021.. Exploring the therapeutic potential of mitochondrial uncouplers in cancer. . Mol. Metab. 51::101222
    [Crossref] [Google Scholar]
  123. Shyh-Chang N, Daley GQ, Cantley LC. 2013.. Stem cell metabolism in tissue development and aging. . Development 140::253547
    [Crossref] [Google Scholar]
  124. Simmons JM, Muller TA, Hausinger RP. 2008.. Fe(II)/α-ketoglutarate hydroxylases involved in nucleobase, nucleoside, nucleotide, and chromatin metabolism. . Dalton Trans. 2008::513242
    [Crossref] [Google Scholar]
  125. Smith EH, Janknecht R, Maher LJ 3rd. 2007.. Succinate inhibition of α-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. . Hum. Mol. Genet. 16::313648
    [Crossref] [Google Scholar]
  126. Stacpoole PW. 1989.. The pharmacology of dichloroacetate. . Metabolism 38::112444
    [Crossref] [Google Scholar]
  127. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. 2015.. MYC, metabolism, and cancer. . Cancer Discov. 5::102439
    [Crossref] [Google Scholar]
  128. Tataranni T, Piccoli C. 2019.. Dichloroacetate (DCA) and cancer: an overview towards clinical applications. . Oxid. Med. Cell Longev. 2019::8201079
    [Crossref] [Google Scholar]
  129. Taub M, Mahmoudzadeh NH, Tennessen JM, Sudarshan S. 2022.. Renal oncometabolite l-2-hydroxyglutarate imposes a block in kidney tubulogenesis: evidence for an epigenetic basis for the l-2HG-induced impairment of differentiation. . Front. Endocrinol. 13::932286
    [Crossref] [Google Scholar]
  130. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, et al. 2002.. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. . Nat. Genet. 30::40610
    [Crossref] [Google Scholar]
  131. Tran TQ, Hanse EA, Habowski AN, Li H, Ishak Gabra MB, et al. 2020.. α-Ketoglutarate attenuates Wnt signaling and drives differentiation in colorectal cancer. . Nat. Cancer 1::34558
    [Crossref] [Google Scholar]
  132. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, et al. 2012.. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. . Nature 483::47983
    [Crossref] [Google Scholar]
  133. Tyrakis PA, Yurkovich ME, Sciacovelli M, Papachristou EK, Bridges HR, et al. 2017.. Fumarate hydratase loss causes combined respiratory chain defects. . Cell Rep. 21::103647
    [Crossref] [Google Scholar]
  134. Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA 4th, et al. 2011.. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. . PLOS ONE 6::e20914
    [Crossref] [Google Scholar]
  135. Wallace DC. 2005.. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. . Annu. Rev. Genet. 39::359407
    [Crossref] [Google Scholar]
  136. Wang T, Chen K, Zeng X, Yang J, Wu Y, et al. 2011.. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. . Cell Stem Cell 9::57587
    [Crossref] [Google Scholar]
  137. Warburg O. 1956.. On the origin of cancer cells. . Science 123::30914
    [Crossref] [Google Scholar]
  138. Warburg O, Posener K, Negelein E. 1924.. On the metabolism of carcinoma cells. . Biochem. Z. 152::30944
    [Google Scholar]
  139. Warburg O, Wind F, Negelein E. 1927.. The metabolism of tumors in the body. . J. Gen. Physiol. 8::51930
    [Crossref] [Google Scholar]
  140. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, et al. 2010.. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. . Cancer Cell 17::22534
    [Crossref] [Google Scholar]
  141. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. 2009.. ATP-citrate lyase links cellular metabolism to histone acetylation. . Science 324::107680
    [Crossref] [Google Scholar]
  142. West AC, Johnstone RW. 2014.. New and emerging HDAC inhibitors for cancer treatment. . J. Clin. Investig. 124::3039
    [Crossref] [Google Scholar]
  143. Wu D, Hu D, Chen H, Shi G, Fetahu IS, et al. 2018.. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. . Nature 559::63741
    [Crossref] [Google Scholar]
  144. Wu X, Zhang Y. 2017.. TET-mediated active DNA demethylation: mechanism, function and beyond. . Nat. Rev. Genet. 18::51734
    [Crossref] [Google Scholar]
  145. Xiao MT, Yang H, Xu W, Ma SH, Lin HP, et al. 2012.. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. . Genes Dev. 26::132638
    [Crossref] [Google Scholar]
  146. Xu W, Yang H, Liu Y, Yang Y, Wang P, et al. 2011.. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. . Cancer Cell 19::1730
    [Crossref] [Google Scholar]
  147. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, et al. 2009.. IDH1 and IDH2 mutations in gliomas. . N. Engl. J. Med. 360::76573
    [Crossref] [Google Scholar]
  148. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. 2014.. Gene body methylation can alter gene expression and is a therapeutic target in cancer. . Cancer Cell 26::57790
    [Crossref] [Google Scholar]
  149. Ye D, Guan KL, Xiong Y. 2018.. Metabolism, activity, and targeting of d- and l-2-hydroxyglutarates. . Trends Cancer 4::15165
    [Crossref] [Google Scholar]
  150. Ye J, Mancuso A, Tong X, Ward PS, Fan J, et al. 2012.. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. . PNAS 109::69049
    [Crossref] [Google Scholar]
  151. Yen K, Travins J, Wang F, David MD, Artin E, et al. 2017.. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. . Cancer Discov. 7::47893
    [Crossref] [Google Scholar]
  152. Yin R, Mao SQ, Zhao B, Chong Z, Yang Y, et al. 2013.. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. . J. Am. Chem. Soc. 135::10396403
    [Crossref] [Google Scholar]
  153. Yu J, Chai P, Xie M, Ge S, Ruan J, et al. 2021.. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. . Genome Biol. 22::85
    [Crossref] [Google Scholar]
  154. Zecchini V, Paupe V, Herranz-Montoya I, Janssen J, Wortel IMN, et al. 2023.. Fumarate induces vesicular release of mtDNA to drive innate immunity. . Nature 615::499506
    [Crossref] [Google Scholar]
  155. Zhang D, Tang Z, Huang H, Zhou G, Cui C, et al. 2019.. Metabolic regulation of gene expression by histone lactylation. . Nature 574::57580
    [Crossref] [Google Scholar]
  156. Zhang JJ, Fan TT, Mao YZ, Hou JL, Wang M, et al. 2021.. Nuclear dihydroxyacetone phosphate signals nutrient sufficiency and cell cycle phase to global histone acetylation. . Nat. Metab. 3::85975
    [Crossref] [Google Scholar]
  157. Zhao S, Torres A, Henry RA, Trefely S, Wallace M, et al. 2016.. ATP-citrate lyase controls a glucose-to-acetate metabolic switch. . Cell Rep. 17::103752
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062822-120857
Loading
/content/journals/10.1146/annurev-cancerbio-062822-120857
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error