1932

Abstract

Regeneration and cancer share genetic mechanisms and cellular processes. While highly regenerative cells are often the source of cancer, persistent injury or imperfect regeneration in the form of wound healing can lead to degenerative conditions that favor cancer development. Thus, the causal interplay between regeneration and cancer is complex. This article focuses on understanding how functional variation in regeneration and wound healing might influence the risk of cancer. Variation in regenerative capacity might create trade-offs or adaptations that significantly alter cancer risk. From this perspective, we probe the causal relationships between regeneration, wound healing, and cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062822-123558
2024-06-12
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062822-123558.html?itemId=/content/journals/10.1146/annurev-cancerbio-062822-123558&mimeType=html&fmt=ahah

Literature Cited

  1. Allegrucci C, Rushton MD, Dixon JE, Sottile V, Shah M, et al. 2011.. Epigenetic reprogramming of breast cancer cells with oocyte extracts. . Mol. Cancer 10:(1):7
    [Crossref] [Google Scholar]
  2. Ang CH, Hsu SH, Guo F, Tan CT, Yu VC, et al. 2019.. Lgr5+ pericentral hepatocytes are self-maintained in normal liver regeneration and susceptible to hepatocarcinogenesis. . PNAS 116:(39):1953040
    [Crossref] [Google Scholar]
  3. Antoniades HN, Galanopoulos T, Neville-Golden J, Kiritsy CP, Lynch SE. 1994.. p53 expression during normal tissue regeneration in response to acute cutaneous injury in swine. . J. Clin. Investig. 93:(5):220614
    [Crossref] [Google Scholar]
  4. Baker NE. 2020.. Emerging mechanisms of cell competition. . Nat. Rev. Genet. 21:(11):68397
    [Crossref] [Google Scholar]
  5. Barghouth PG, Thiruvalluvan M, LeGro M, Oviedo NJ. 2019.. DNA damage and tissue repair: what we can learn from planaria. . Semin. Cell Dev. Biol. 87::14559
    [Crossref] [Google Scholar]
  6. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, et al. 2009.. Crypt stem cells as the cells-of-origin of intestinal cancer. . Nature 457:(7229):60811
    [Crossref] [Google Scholar]
  7. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, et al. 2007.. Identification of stem cells in small intestine and colon by marker gene Lgr5. . Nature 449:(7165):10037
    [Crossref] [Google Scholar]
  8. Beckwith LG, Moore JL, Tsao-Wu GS, Harshbarger JC, Cheng KC. 2000.. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio). . Lab. Investig. 80:(3):37985
    [Crossref] [Google Scholar]
  9. Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, et al. 2005.. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. . PNAS 102:(2):40712
    [Crossref] [Google Scholar]
  10. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, et al. 2009.. Evidence for cardiomyocyte renewal in humans. . Science 324:(5923):98102
    [Crossref] [Google Scholar]
  11. Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, et al. 2012.. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. . EMBO Mol. Med. 4:(8):691704
    [Crossref] [Google Scholar]
  12. Bouzid H, Belk JA, Jan M, Qi Y, Sarnowski C, et al. 2023.. Clonal hematopoiesis is associated with protection from Alzheimer's disease. . Nat. Med. 29:(7):166270
    [Crossref] [Google Scholar]
  13. Brunner SF, Roberts ND, Wylie LA, Moore L, Aitken SJ, et al. 2019.. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. . Nature 574:(7779):53842
    [Crossref] [Google Scholar]
  14. Celen C, Chuang J-C, Shen S, Li L, Maggiore G, et al. 2022.. Arid1a loss potentiates pancreatic β-cell regeneration through activation of EGF signaling. . Cell Rep. 41:(5):111581
    [Crossref] [Google Scholar]
  15. Chan THM, Chen L, Liu M, Hu L, Zheng B, et al. 2012.. Translationally controlled tumor protein induces mitotic defects and chromosome missegregation in hepatocellular carcinoma development. . Hepatology 55:(2):491505
    [Crossref] [Google Scholar]
  16. Chen F, Jimenez RJ, Sharma K, Luu HY, Hsu BY, et al. 2020.. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. . Cell Stem Cell 26:(1):2733.e4
    [Crossref] [Google Scholar]
  17. Chen P, Chaikuad A, Bamborough P, Bantscheff M, Bountra C, et al. 2016.. Discovery and characterization of GSK2801, a selective chemical probe for the bromodomains BAZ2A and BAZ2B. . J. Med. Chem. 59:(4):141024
    [Crossref] [Google Scholar]
  18. Clark LD, Clark RK, Heber-Katz E. 1998.. A new murine model for mammalian wound repair and regeneration. . Clin. Immunol. Immunopathol. 88:(1):3545
    [Crossref] [Google Scholar]
  19. Colom B, Alcolea MP, Piedrafita G, Hall MWJ, Wabik A, et al. 2020.. Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium. . Nat. Genet. 52:(6):60414
    [Crossref] [Google Scholar]
  20. Colom B, Herms A, Hall MWJ, Dentro SC, King C, et al. 2021.. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. . Nature 598:(7881):51014
    [Crossref] [Google Scholar]
  21. Cucina A, Biava P-M, D'Anselmi F, Coluccia P, Conti F, et al. 2006.. Zebrafish embryo proteins induce apoptosis in human colon cancer cells (Caco2). . Apoptosis 11:(9):161728
    [Crossref] [Google Scholar]
  22. Davoli T, de Lange T. 2012.. Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. . Cancer Cell 21:(6):76576
    [Crossref] [Google Scholar]
  23. Demirci Y, Heger G, Katkat E, Papatheodorou I, Brazma A, Ozhan G. 2022.. Brain regeneration resembles brain cancer at its early wound healing stage and diverges from cancer later at its proliferation and differentiation stages. . Front. Cell Dev. Biol. 10::813314
    [Crossref] [Google Scholar]
  24. de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA. 2004.. Drosophila myc regulates organ size by inducing cell competition. . Cell 117:(1):10716
    [Crossref] [Google Scholar]
  25. Diehl AM, Day C. 2017.. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. . N. Engl. J. Med. 377:(21):206372
    [Crossref] [Google Scholar]
  26. Di Giovanni S, Knights CD, Rao M, Yakovlev A, Beers J, et al. 2006.. The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. . EMBO J. 25:(17):408496
    [Crossref] [Google Scholar]
  27. Dodds A, Chia A, Shumack S. 2014.. Actinic keratosis: rationale and management. . Dermatol. Ther. 4:(1):1131
    [Crossref] [Google Scholar]
  28. Domazet-Lošo T, Klimovich A, Anokhin B, Anton-Erxleben F, Hamm MJ, et al. 2014.. Naturally occurring tumours in the basal metazoan Hydra. . Nat. Commun. 5::4222
    [Crossref] [Google Scholar]
  29. Drouin L, McGrath S, Vidler LR, Chaikuad A, Monteiro O, et al. 2015.. Structure enabled design of BAZ2-ICR, a chemical probe targeting the bromodomains of BAZ2A and BAZ2B. . J. Med. Chem. 58:(5):255359
    [Crossref] [Google Scholar]
  30. Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML, et al. 2010.. The ploidy conveyor of mature hepatocytes as a source of genetic variation. . Nature 467:(7316):70710
    [Crossref] [Google Scholar]
  31. Dvorak HF. 1986.. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. . N. Engl. J. Med. 315:(26):165059
    [Crossref] [Google Scholar]
  32. Dvorak HF. 2015.. Tumors: wounds that do not heal—redux. . Cancer Immunol. Res. 3:(1):111
    [Crossref] [Google Scholar]
  33. Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, et al. 2012.. Cholangiocarcinomas can originate from hepatocytes in mice. . J. Clin. Investig. 122:(8):291115
    [Crossref] [Google Scholar]
  34. Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, et al. 2011.. Wound healing and blastema formation in regenerating digit tips of adult mice. . Dev. Biol. 350:(2):30110
    [Crossref] [Google Scholar]
  35. Forbes SJ, Newsome PN. 2016.. Liver regeneration—mechanisms and models to clinical application. . Nat. Rev. Gastroenterol. Hepatol. 13:(8):47385
    [Crossref] [Google Scholar]
  36. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. 2005.. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. . Nature 437:(7061):104347
    [Crossref] [Google Scholar]
  37. Gann PH. 2002.. Risk factors for prostate cancer. . Rev. Urol. 4:(Suppl. 5):S310
    [Google Scholar]
  38. Gann PH, Hennekens CH, Ma J, Longcope C, Stampfer MJ. 1996.. Prospective study of sex hormone levels and risk of prostate cancer. . J. Natl. Cancer Inst. 88:(16):111826
    [Crossref] [Google Scholar]
  39. García-Cao I, García-Cao M, Martín-Caballero J, Criado LM, Klatt P, et al. 2002.. “ Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. . EMBO J. 21:(22):622535
    [Crossref] [Google Scholar]
  40. Gemberling M, Bailey TJ, Hyde DR, Poss KD. 2013.. The zebrafish as a model for complex tissue regeneration. . Trends Genet. 29:(11):61120
    [Crossref] [Google Scholar]
  41. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, et al. 2014.. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. . N. Engl. J. Med. 371:(26):247787
    [Crossref] [Google Scholar]
  42. Gentric G, Maillet V, Paradis V, Couton D, L'Hermitte A, et al. 2015.. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. . J. Clin. Investig. 125:(3):98192
    [Crossref] [Google Scholar]
  43. Goldman JA, Poss KD. 2020.. Gene regulatory programmes of tissue regeneration. . Nat. Rev. Genet. 21:(9):51125
    [Crossref] [Google Scholar]
  44. Goldstein BD, Patel V. 2019.. Controversy about the “bad luck” cancer hypothesis could lead to a useful tool for planning primary prevention cancer research. . Chem. Res. Toxicol. 32:(6):94951
    [Crossref] [Google Scholar]
  45. Grompe M, Lindstedt S, al-Dhalimy M, Kennaway NG, Papaconstantinou J, et al. 1995.. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. . Nat. Genet. 10:(4):45360
    [Crossref] [Google Scholar]
  46. Guerin DJ, Kha CX, Tseng KA-S. 2021.. From cell death to regeneration: rebuilding after injury. . Front. Cell Dev. Biol. 9::655048
    [Crossref] [Google Scholar]
  47. Guorgis G, Anderson CD, Lyth J, Falk M. 2020.. Actinic keratosis diagnosis and increased risk of developing skin cancer: a 10-year cohort study of 17,651 patients in Sweden. . Acta Dermato-Venereol. 100:(8):adv00128
    [Crossref] [Google Scholar]
  48. Gurtner GC, Werner S, Barrandon Y, Longaker MT. 2008.. Wound repair and regeneration. . Nature 453:(7193):31421
    [Crossref] [Google Scholar]
  49. Hale AJ, Kiai A, Sikkens J, den Hertog J. 2017.. Impaired caudal fin-fold regeneration in zebrafish deficient for the tumor suppressor. Pten. Regeneration 4:(4):21726
    [Crossref] [Google Scholar]
  50. Hall F, Morita M, Best JB. 1986.. Neoplastic transformation in the planarian. I. Cocarcinogenesis and histopathology. . J. Exp. Zool. 240:(2):21127
    [Crossref] [Google Scholar]
  51. Harshbarger JC, Chang SC, DeLanney LE, Rose FL, Green DE. 1999.. Cutaneous mastocytomas in the neotenic caudate amphibians Ambystoma mexicanum (axolotl) and Ambystoma tigrinum (tiger salamander). . J. Cancer Res. Clin. Oncol. 125:(3/4):18792
    [Crossref] [Google Scholar]
  52. Hartmann D, Srivastava U, Thaler M, Kleinhans KN, N'kontchou G, et al. 2011.. Telomerase gene mutations are associated with cirrhosis formation. . Hepatology 53:(5):160817
    [Crossref] [Google Scholar]
  53. Henderson BE, Feigelson HS. 2000.. Hormonal carcinogenesis. . Carcinogenesis 21:(3):42733
    [Crossref] [Google Scholar]
  54. Hendrix MJC, Seftor EA, Seftor REB, Kasemeier-Kulesa J, Kulesa PM, Postovit L-M. 2007.. Reprogramming metastatic tumour cells with embryonic microenvironments. . Nat. Rev. Cancer 7:(4):24655
    [Crossref] [Google Scholar]
  55. Holohan B, Wright WE, Shay JW. 2014.. Cell biology of disease. Telomeropathies: an emerging spectrum disorder. . J. Cell Biol. 205:(3):28999
    [Crossref] [Google Scholar]
  56. Ingram AJ. 1971.. The reactions to carcinogens in the axolotl (Ambystoma mexicanum) in relation to the “regeneration field control” hypothesis. . J. Embryol. Exp. Morphol. 26:(3):42541
    [Google Scholar]
  57. Ito M, Yang Z, Andl T, Cui C, Kim N, et al. 2007.. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. . Nature 447:(7142):31620
    [Crossref] [Google Scholar]
  58. Jaiswal S, Ebert BL. 2019.. Clonal hematopoiesis in human aging and disease. . Science 366:(6465):eaan4673
    [Crossref] [Google Scholar]
  59. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, et al. 2014.. Age-related clonal hematopoiesis associated with adverse outcomes. . N. Engl. J. Med. 371:(26):248898
    [Crossref] [Google Scholar]
  60. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, et al. 2017.. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. . N. Engl. J. Med. 377:(2):11121
    [Crossref] [Google Scholar]
  61. Jia Y, Li L, Lin Y-H, Gopal P, Shen S, et al. 2022.. In vivo CRISPR screening identifies BAZ2 chromatin remodelers as druggable regulators of mammalian liver regeneration. . Cell Stem Cell 29:(3):37285.e8
    [Crossref] [Google Scholar]
  62. Juliano C, Wang J, Lin H. 2011.. Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. . Annu. Rev. Genet. 45::44769
    [Crossref] [Google Scholar]
  63. Kakiuchi N, Yoshida K, Uchino M, Kihara T, Akaki K, et al. 2020.. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. . Nature 577:(7789):26065
    [Crossref] [Google Scholar]
  64. Key TJ, Pike MC. 1988.. The dose-effect relationship between “unopposed” oestrogens and endometrial mitotic rate: its central role in explaining and predicting endometrial cancer risk. . Br. J. Cancer 57:(2):20512
    [Crossref] [Google Scholar]
  65. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, et al. 2008.. Senescence of activated stellate cells limits liver fibrosis. . Cell 134:(4):65767
    [Crossref] [Google Scholar]
  66. Kurinna S, Stratton SA, Coban Z, Schumacher JM, Grompe M, et al. 2013.. p53 regulates a mitotic transcription program and determines ploidy in normal mouse liver. . Hepatology 57:(5):200413
    [Crossref] [Google Scholar]
  67. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, et al. 2003.. Myc-induced T cell leukemia in transgenic zebrafish. . Science 299:(5608):88790
    [Crossref] [Google Scholar]
  68. Lawson ARJ, Abascal F, Coorens THH, Hooks Y, O'Neill L, et al. 2020.. Extensive heterogeneity in somatic mutation and selection in the human bladder. . Science 370:(6512):7582
    [Crossref] [Google Scholar]
  69. Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA, et al. 2019.. The landscape of somatic mutation in normal colorectal epithelial cells. . Nature 574:(7779):53237
    [Crossref] [Google Scholar]
  70. Lee LMJ, Seftor EA, Bonde G, Cornell RA, Hendrix MJC. 2005.. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. . Dev. Dyn. 233:(4):156070
    [Crossref] [Google Scholar]
  71. Leferovich JM, Bedelbaeva K, Samulewicz S, Zhang XM, Zwas D, et al. 2001.. Heart regeneration in adult MRL mice. . PNAS 98:(17):983035
    [Crossref] [Google Scholar]
  72. Lewandowska A, Rudzki G, Lewandowski T, Stryjkowska-Góra A, Rudzki S. 2022.. Risk factors for the diagnosis of colorectal cancer. . Cancer Control 29:. https://doi.org/10.1177/0732748211056692
    [Crossref] [Google Scholar]
  73. Li C-C, Chu H-Y, Yang C-W, Chou C-K, Tsai T-F. 2009.. Aurora-A overexpression in mouse liver causes p53-dependent premitotic arrest during liver regeneration. . Mol. Cancer Res. 7:(5):67888
    [Crossref] [Google Scholar]
  74. Liang R, Lin Y-H, Zhu H. 2021.. Genetic and cellular contributions to liver regeneration. . Cold Spring Harb. Perspect. Biol. 14:(9):a040832
    [Crossref] [Google Scholar]
  75. Lin Y-H, Wei Y, Zeng Q, Wang Y, Pagani CA, et al. 2023.. IGFBP2 expressing midlobular hepatocytes preferentially contribute to liver homeostasis and regeneration. . Cell Stem Cell 30:(5):66576.e4
    [Crossref] [Google Scholar]
  76. Lin Y-H, Zhang S, Zhu M, Lu T, Chen K, et al. 2020.. Mice with increased numbers of polyploid hepatocytes maintain regenerative capacity but develop fewer hepatocellular carcinomas following chronic liver injury. . Gastroenterology 158:(6):1698712.e14
    [Crossref] [Google Scholar]
  77. Liu S, Leach SD. 2011.. Zebrafish models for cancer. . Annu. Rev. Pathol. Mech. Dis. 6::7193
    [Crossref] [Google Scholar]
  78. Liu SY, Selck C, Friedrich B, Lutz R, Vila-Farré M, et al. 2013.. Reactivating head regrowth in a regeneration-deficient planarian species. . Nature 500:(7460):8184
    [Crossref] [Google Scholar]
  79. Lo DC, Allen F, Brockes JP. 1993.. Reversal of muscle differentiation during urodele limb regeneration. . PNAS 90:(15):723034
    [Crossref] [Google Scholar]
  80. Lovas JR, Yuste R. 2022.. Dissociation and reaggregation of Hydra vulgaris for studies of self-organization. . STAR Protoc. 3:(3):101504
    [Crossref] [Google Scholar]
  81. Lu Y, Brommer B, Tian X, Krishnan A, Meer M, et al. 2020.. Reprogramming to recover youthful epigenetic information and restore vision. . Nature 588:(7836):12429
    [Crossref] [Google Scholar]
  82. Malhotra J, Malvezzi M, Negri E, La Vecchia C, Boffetta P. 2016.. Risk factors for lung cancer worldwide. . Eur. Respir. J. 48:(3):889902
    [Crossref] [Google Scholar]
  83. Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, et al. 2018.. Somatic mutant clones colonize the human esophagus with age. . Science 362:(6417):91117
    [Crossref] [Google Scholar]
  84. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, et al. 2015.. High burden and pervasive positive selection of somatic mutations in normal human skin. . Science 348:(6237):88086
    [Crossref] [Google Scholar]
  85. Matsumoto T, Wakefield L, Peters A, Peto M, Spellman P, Grompe M. 2021.. Proliferative polyploid cells give rise to tumors via ploidy reduction. . Nat. Commun. 12::646
    [Crossref] [Google Scholar]
  86. McGann CJ, Odelberg SJ, Keating MT. 2001.. Mammalian myotube dedifferentiation induced by newt regeneration extract. . PNAS 98:(24):13699704
    [Crossref] [Google Scholar]
  87. McGlynn KA, Petrick JL, El-Serag HB. 2021.. Epidemiology of hepatocellular carcinoma. . Hepatology 73:(Suppl. 1):413
    [Crossref] [Google Scholar]
  88. Menger B, Vogt PM, Jacobsen ID, Allmeling C, Kuhbier JW, et al. 2010.. Resection of a large intra-abdominal tumor in the Mexican axolotl: a case report. . Vet. Surg. 39:(2):23233
    [Crossref] [Google Scholar]
  89. Millane RC, Kanska J, Duffy DJ, Seoighe C, Cunningham S, et al. 2011.. Induced stem cell neoplasia in a cnidarian by ectopic expression of a POU domain transcription factor. . Development 138:(12):242939
    [Crossref] [Google Scholar]
  90. Modesto F, Nicolier A, Hurtrel C, Benoît J. 2021.. Excisional biopsy and radiotherapy for management of an olfactory neuroblastoma in an axolotl (Ambystoma mexicanum). . J. Am. Vet. Med. Assoc. 260:(4):43641
    [Crossref] [Google Scholar]
  91. Moore L, Leongamornlert D, Coorens THH, Sanders MA, Ellis P, et al. 2020.. The mutational landscape of normal human endometrial epithelium. . Nature 580:(7805):64046
    [Crossref] [Google Scholar]
  92. Morata G, Ripoll P. 1975.. Minutes: mutants of Drosophila autonomously affecting cell division rate. . Dev. Biol. 42:(2):21121
    [Crossref] [Google Scholar]
  93. Moya IM, Castaldo SA, Van den Mooter L, Soheily S, Sansores-Garcia L, et al. 2019.. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. . Science 366:(6468):102934
    [Crossref] [Google Scholar]
  94. Nanki K, Fujii M, Shimokawa M, Matano M, Nishikori S, et al. 2020.. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. . Nature 577:(7789):25459
    [Crossref] [Google Scholar]
  95. Narayanan DL, Saladi RN, Fox JL. 2010.. Ultraviolet radiation and skin cancer. . Int. J. Dermatol. 49:(9):97886
    [Crossref] [Google Scholar]
  96. Nevzorova YA, Tolba R, Trautwein C, Liedtke C. 2015.. Partial hepatectomy in mice. . Lab. Anim. 49:(Suppl. 1):8188
    [Crossref] [Google Scholar]
  97. Ng SWK, Rouhani FJ, Brunner SF, Brzozowska N, Aitken SJ, et al. 2021.. Convergent somatic mutations in metabolism genes in chronic liver disease. . Nature 598:(7881):47378
    [Crossref] [Google Scholar]
  98. Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, et al. 2016.. In vivo amelioration of age-associated hallmarks by partial reprogramming. . Cell 167:(7):171933.e12
    [Crossref] [Google Scholar]
  99. Oertel M, Menthena A, Dabeva MD, Shafritz DA. 2006.. Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. . Gastroenterology 130:(2):50720
    [Crossref] [Google Scholar]
  100. Okamoto M. 1997.. Simultaneous demonstration of lens regeneration from dorsal iris and tumour production from ventral iris in the same newt eye after carcinogen administration. . Differentiation 61:(5):28592
    [Crossref] [Google Scholar]
  101. Overturf K, Al-Dhalimy M, Tanguay R, Brantly M, Ou CN, et al. 1996.. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. . Nat. Genet. 12:(3):26673
    [Crossref] [Google Scholar]
  102. Oviedo NJ, Pearson BJ, Levin M, Sánchez Alvarado A. 2008.. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling. . Dis. Models Mech. 1:(2/3):13143
    [Crossref] [Google Scholar]
  103. Pearson BJ, Sánchez Alvarado A. 2010.. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. . Development 137:(2):21321
    [Crossref] [Google Scholar]
  104. Plusquin M, Stevens A-S, Van Belleghem F, Degheselle O, Van Roten A, et al. 2012.. Physiological and molecular characterisation of cadmium stress in Schmidtea mediterranea. . Int. J. Dev. Biol. 56:(1–3):18391
    [Crossref] [Google Scholar]
  105. Rathje K, Mortzfeld B, Hoeppner MP, Taubenheim J, Bosch TCG, Klimovich A. 2020.. Dynamic interactions within the host-associated microbiota cause tumor formation in the basal metazoan Hydra. . PLOS Pathog. 16:(3):e1008375
    [Crossref] [Google Scholar]
  106. Reddien PW. 2018.. The cellular and molecular basis for planarian regeneration. . Cell 175:(2):32745
    [Crossref] [Google Scholar]
  107. Reddy PC, Gungi A, Unni M. 2019.. Cellular and molecular mechanisms of Hydra regeneration. . Results Probl. Cell Differ. 68::25990
    [Crossref] [Google Scholar]
  108. Rink JC. 2013.. Stem cell systems and regeneration in planaria. . Dev. Genes Evol. 223:(1/2):6784
    [Crossref] [Google Scholar]
  109. Rose SM, Wallingford HM. 1948.. Transformation of renal tumors of frogs to normal tissues in regenerating limbs of salamanders. . Science 107:(2784):457
    [Crossref] [Google Scholar]
  110. Rossiter H, Barresi C, Pammer J, Rendl M, Haigh J, et al. 2004.. Loss of vascular endothelial growth factor A activity in murine epidermal keratinocytes delays wound healing and inhibits tumor formation. . Cancer Res. 64:(10):350816
    [Crossref] [Google Scholar]
  111. Sahu S, Dattani A, Aboobaker AA. 2017.. Secrets from immortal worms: What can we learn about biological ageing from the planarian model system?. Semin. Cell Dev. Biol. 70::10821
    [Crossref] [Google Scholar]
  112. Sakamoto T, Liu Z, Murase N, Ezure T, Yokomuro S, et al. 1999.. Mitosis and apoptosis in the liver of interleukin-6-deficient mice after partial hepatectomy. . Hepatology 29:(2):40311
    [Crossref] [Google Scholar]
  113. Sarin KY, Cheung P, Gilison D, Lee E, Tennen RI, et al. 2005.. Conditional telomerase induction causes proliferation of hair follicle stem cells. . Nature 436:(7053):104852
    [Crossref] [Google Scholar]
  114. Schuh AC, Keating SJ, Monteclaro FS, Vogt PK, Breitman ML. 1990.. Obligatory wounding requirement for tumorigenesis in v-jun transgenic mice. . Nature 346:(6286):75660
    [Crossref] [Google Scholar]
  115. Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M. 2012.. Skin shedding and tissue regeneration in African spiny mice (Acomys). . Nature 489:(7417):56165
    [Crossref] [Google Scholar]
  116. Shih IM, Wang TL, Traverso G, Romans K, Hamilton SR, et al. 2001.. Top-down morphogenesis of colorectal tumors. . PNAS 98:(5):264045
    [Crossref] [Google Scholar]
  117. Shoshani O, Massalha H, Shani N, Kagan S, Ravid O, et al. 2012.. Polyploidization of murine mesenchymal cells is associated with suppression of the long noncoding RNA H19 and reduced tumorigenicity. . Cancer Res. 72:(24):640313
    [Crossref] [Google Scholar]
  118. Shyh-Chang N, Zhu H, Yvanka de Soysa T, Shinoda G, Seligson MT, et al. 2013.. Lin28 enhances tissue repair by reprogramming cellular metabolism. . Cell 155:(4):77892
    [Crossref] [Google Scholar]
  119. Siegel RL, Miller KD, Wagle NS, Jemal A. 2023.. Cancer statistics, 2023. . CA Cancer J. Clin. 73:(1):1748
    [Crossref] [Google Scholar]
  120. Sikes JM, Newmark PA. 2013.. Restoration of anterior regeneration in a planarian with limited regenerative ability. . Nature 500:(7460):7780
    [Crossref] [Google Scholar]
  121. Sladky VC, Eichin F, Reiberger T, Villunger A. 2021.. Polyploidy control in hepatic health and disease. . J. Hepatol. 75:(5):117791
    [Crossref] [Google Scholar]
  122. Spitsbergen JM, Tsai HW, Reddy A, Miller T, Arbogast D, et al. 2000a.. Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N′nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. . Toxicol. Pathol. 28:(5):71625
    [Crossref] [Google Scholar]
  123. Spitsbergen JM, Tsai HW, Reddy A, Miller T, Arbogast D, et al. 2000b.. Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. . Toxicol. Pathol. 28:(5):70515
    [Crossref] [Google Scholar]
  124. Stephan F. 1962.. [Spontaneous tumors in the planarian Dugesia tigrina.. ] C. R. Séances Soc. Biol. Fil. 156::92022 (in French)
    [Google Scholar]
  125. Suleiman S, Di Fiore R, Cassar A, Formosa MM, Schembri-Wismayer P, Calleja-Agius J. 2020.. Axolotl Ambystoma mexicanum extract induces cell cycle arrest and differentiation in human acute myeloid leukemia HL-60 cells. . Tumour Biol. 42:(9):1010428320954735
    [Crossref] [Google Scholar]
  126. Sun X, Chuang J-C, Kanchwala M, Wu L, Celen C, et al. 2016.. Suppression of the SWI/SNF component arid1a promotes mammalian regeneration. . Cell Stem Cell 18:(4):45666
    [Crossref] [Google Scholar]
  127. Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. 2022.. Wound healing, fibroblast heterogeneity, and fibrosis. . Cell Stem Cell 29:(8):116180
    [Crossref] [Google Scholar]
  128. Tammela T. 2023.. Tissue-regeneration program underlies lung-cancer suppression. . Nature. In press. https://www.nature.com/articles/d41586-023-02025-6
    [Google Scholar]
  129. Tan TCJ, Rahman R, Jaber-Hijazi F, Felix DA, Chen C, et al. 2012.. Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms. . PNAS 109:(11):420914
    [Crossref] [Google Scholar]
  130. Technau U, Holstein TW. 1992.. Cell sorting during the regeneration of Hydra from reaggregated cells. . Dev. Biol. 151:(1):11727
    [Crossref] [Google Scholar]
  131. Tomás-Loba A, Flores I, Fernández-Marcos PJ, Cayuela ML, Maraver A, et al. 2008.. Telomerase reverse transcriptase delays aging in cancer-resistant mice. . Cell 135:(4):60922
    [Crossref] [Google Scholar]
  132. Tomasetti C, Vogelstein B. 2015.. Cancer etiology: Variation in cancer risk among tissues can be explained by the number of stem cell divisions. . Science 347:(6217):7881
    [Crossref] [Google Scholar]
  133. Tummala KS, Brandt M, Teijeiro A, Graña O, Schwabe RF, et al. 2017.. Hepatocellular carcinomas originate predominantly from hepatocytes and benign lesions from hepatic progenitor cells. . Cell Rep. 19:(3):584600
    [Crossref] [Google Scholar]
  134. Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, et al. 2002.. p53 mutant mice that display early ageing–associated phenotypes. . Nature 415:(6867):4553
    [Crossref] [Google Scholar]
  135. Ueno M, Lyons BL, Burzenski LM, Gott B, Shaffer DJ, et al. 2005.. Accelerated wound healing of alkali-burned corneas in MRL mice is associated with a reduced inflammatory signature. . Investig. Ophthalmol. Vis. Sci. 46:(11):4097106
    [Crossref] [Google Scholar]
  136. Umesono Y, Tasaki J, Nishimura Y, Hrouda M, Kawaguchi E, et al. 2013.. The molecular logic for planarian regeneration along the anterior–posterior axis. . Nature 500:(7460):7376
    [Crossref] [Google Scholar]
  137. Villiard E, Brinkmann H, Moiseeva O, Mallette FA, Ferbeyre G, Roy S. 2007.. Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer. . BMC Evol. Biol. 7::180
    [Crossref] [Google Scholar]
  138. Visvader JE. 2011.. Cells of origin in cancer. . Nature 469:(7330):31422
    [Crossref] [Google Scholar]
  139. Viswanathan SR, Daley GQ, Gregory RI. 2008.. Selective blockade of microRNA processing by Lin28. . Science 320:(5872):97100
    [Crossref] [Google Scholar]
  140. Vogg MC, Galliot B, Tsiairis CD. 2019.. Model systems for regeneration: Hydra. . Development 146:(21):dev177212
    [Crossref] [Google Scholar]
  141. Voura EB, Montalvo MJ, Dela Roca KT, Fisher JM, Defamie V, et al. 2017.. Planarians as models of cadmium-induced neoplasia provide measurable benchmarks for mechanistic studies. . Ecotoxicol. Environ. Saf. 142::54454
    [Crossref] [Google Scholar]
  142. Wagner DE, Wang IE, Reddien PW. 2011.. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. . Science 332:(6031):81116
    [Crossref] [Google Scholar]
  143. Wang Z, Zhu S, Jia Y, Wang Y, Kubota N, et al. 2023.. Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease. . Cell 186:(9):196884.e20
    [Crossref] [Google Scholar]
  144. Wangensteen KJ, Wang YJ, Dou Z, Wang AW, Mosleh-Shirazi E, et al. 2018.. Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platform. . Hepatology 68:(2):66376
    [Crossref] [Google Scholar]
  145. Wangensteen KJ, Zhang S, Greenbaum LE, Kaestner KH. 2015.. A genetic screen reveals Foxa3 and TNFR1 as key regulators of liver repopulation. . Genes Dev. 29:(9):9049
    [Crossref] [Google Scholar]
  146. Wei Y, Wang YG, Jia Y, Li L, Yoon J, et al. 2021.. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. . Science 371:(6532):eabb1625
    [Crossref] [Google Scholar]
  147. Weiderpass E, Adami HO, Baron JA, Magnusson C, Bergström R, et al. 1999.. Risk of endometrial cancer following estrogen replacement with and without progestins. . J. Natl. Cancer Inst. 91:(13):113137
    [Crossref] [Google Scholar]
  148. White R, Rose K, Zon L. 2013.. Zebrafish cancer: the state of the art and the path forward. . Nat. Rev. Cancer 13:(9):62436
    [Crossref] [Google Scholar]
  149. Wilkinson PD, Delgado ER, Alencastro F, Leek MP, Roy N, et al. 2019.. The polyploid state restricts hepatocyte proliferation and liver regeneration in mice. . Hepatology 69:(3):124258
    [Crossref] [Google Scholar]
  150. Wong AY, Whited JL. 2020.. Parallels between wound healing, epimorphic regeneration and solid tumors. . Development 147:(1):dev181636
    [Crossref] [Google Scholar]
  151. Wong WJ, Emdin C, Bick AG, Zekavat SM, Niroula A, et al. 2023.. Clonal haematopoiesis and risk of chronic liver disease. . Nature 616:(7958):74754
    [Crossref] [Google Scholar]
  152. Wu S, Powers S, Zhu W, Hannun YA. 2016.. Substantial contribution of extrinsic risk factors to cancer development. . Nature 529:(7584):4347
    [Crossref] [Google Scholar]
  153. Wuestefeld T, Pesic M, Rudalska R, Dauch D, Longerich T, et al. 2013.. A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. . Cell 153:(2):389401
    [Crossref] [Google Scholar]
  154. Yanger K, Knigin D, Zong Y, Maggs L, Gu G, et al. 2014.. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. . Cell Stem Cell 15:(3):34049
    [Crossref] [Google Scholar]
  155. Yoshida K, Gowers KHC, Lee-Six H, Chandrasekharan DP, Coorens T, et al. 2020.. Tobacco smoking and somatic mutations in human bronchial epithelium. . Nature 578:(7794):26672
    [Crossref] [Google Scholar]
  156. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, et al. 2007.. Induced pluripotent stem cell lines derived from human somatic cells. . Science 318:(5858):191720
    [Crossref] [Google Scholar]
  157. Zhang S, Nguyen LH, Zhou K, Tu H-C, Sehgal A, et al. 2018a.. Knockdown of anillin actin binding protein blocks cytokinesis in hepatocytes and reduces liver tumor development in mice without affecting regeneration. . Gastroenterology 154:(5):142134
    [Crossref] [Google Scholar]
  158. Zhang S, Zhou K, Luo X, Li L, Tu H-C, et al. 2018b.. The polyploid state plays a tumor-suppressive role in the liver. . Dev. Cell 44:(4):44759.e5
    [Crossref] [Google Scholar]
  159. Zhu L, Finkelstein D, Gao C, Shi L, Wang Y, et al. 2016.. Multi-organ mapping of cancer risk. . Cell 166:(5):113246.e7
    [Crossref] [Google Scholar]
  160. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, et al. 2009.. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. . Nature 457:(7229):6037
    [Crossref] [Google Scholar]
  161. Zhu M, Lu T, Jia Y, Luo X, Gopal P, et al. 2019.. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. . Cell 177:(3):60821.e12
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062822-123558
Loading
/content/journals/10.1146/annurev-cancerbio-062822-123558
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error