1932

Abstract

Lipid droplets (LDs) are dynamic storage organelles with central roles in lipid and energy metabolism. They consist of a core of neutral lipids, such as triacylglycerol, which is surrounded by a monolayer of phospholipids and specialized surface proteins. The surface composition determines many of the LD properties, such as size, subcellular distribution, and interaction with partner organelles. Considering the diverse energetic and metabolic demands of various cell types, it is not surprising that LDs are highly heterogeneous within and between cell types. Despite their diversity, all LDs share a common biogenesis mechanism. However, adipocytes have evolved specific adaptations of these basic mechanisms, enabling the regulation of lipid and energy metabolism at both the cellular and organismal levels. Here, we discuss recent advances in the understanding of both the general mechanisms of LD biogenesis and the adipocyte-specific adaptations controlling these fascinating organelles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-012624-031419
2024-10-02
2025-03-18
The full text of this item is not currently available.

Literature Cited

  1. Ahfeldt T, Schinzel RT, Lee Y-K, Hendrickson D, Kaplan A, et al. 2012.. Programming human pluripotent stem cells into white and brown adipocytes. . Nat. Cell Biol. 14:(2):20919
    [Crossref] [Google Scholar]
  2. Ajjaji D, Ben M'barek K, Mimmack ML, England C, Herscovitz H, et al. 2019.. Dual binding motifs underpin the hierarchical association of perilipins1–3 with lipid droplets. . Mol. Biol. Cell 30:(5):70316
    [Crossref] [Google Scholar]
  3. Arlt H, Sui X, Folger B, Adams C, Chen X, et al. 2022.. Seipin forms a flexible cage at lipid droplet formation sites. . Nat. Struct. Mol. Biol. 29:(3):194202
    [Crossref] [Google Scholar]
  4. Barneda D, Planas-Iglesias J, Gaspar ML, Mohammadyani D, Prasannan S, et al. 2015.. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. . eLife 4::e07485
    [Crossref] [Google Scholar]
  5. Becuwe M, Bond LM, Pinto AFM, Boland S, Mejhert N, et al. 2020.. FIT2 is an acyl–coenzyme A diphosphatase crucial for endoplasmic reticulum homeostasis. . J. Cell Biol. 219:(10):e202006111
    [Crossref] [Google Scholar]
  6. Beller M, Sztalryd C, Southall N, Bell M, Jäckle H, et al. 2008.. COPI complex is a regulator of lipid homeostasis. . PLOS Biol. 6:(11):e292
    [Crossref] [Google Scholar]
  7. Benador IY, Veliova M, Liesa M, Shirihai OS. 2019.. Mitochondria bound to lipid droplets: where mitochondrial dynamics regulate lipid storage and utilization. . Cell Metab. 29:(4):82735
    [Crossref] [Google Scholar]
  8. Benador IY, Veliova M, Mahdaviani K, Petcherski A, Wikstrom JD, et al. 2018.. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. . Cell Metab. 27:(4):86985.e6
    [Crossref] [Google Scholar]
  9. Bersuker K, Peterson CWH, To M, Sahl SJ, Savikhin V, et al. 2018.. A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. . Dev. Cell 44:(1):97112.e7
    [Crossref] [Google Scholar]
  10. Bi J, Xiang Y, Chen H, Liu Z, Grönke S, et al. 2012.. Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. . J. Cell Sci. 125:(15):356877
    [Crossref] [Google Scholar]
  11. Bond LM, Ibrahim A, Lai ZW, Walzem RL, Bronson RT, et al. 2023.. Fitm2 is required for ER homeostasis and normal function of murine liver. . J. Biol. Chem. 299:(3):103022
    [Crossref] [Google Scholar]
  12. Bouvet S, Golinelli-Cohen M-P, Contremoulins V, Jackson CL. 2013.. Targeting of the Arf-GEF GBF1 to lipid droplets and Golgi membranes. . J. Cell Sci. 126:(20):4794805
    [Google Scholar]
  13. Caillon L, Nieto V, Gehan P, Omrane M, Rodriguez N, et al. 2020.. Triacylglycerols sequester monotopic membrane proteins to lipid droplets. . Nat. Commun. 11:(1):3944
    [Crossref] [Google Scholar]
  14. Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, et al. 1998.. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. . PNAS 95:(22):1301823
    [Crossref] [Google Scholar]
  15. Cases S, Stone SJ, Zhou P, Yen E, Tow B, et al. 2001.. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. . J. Biol. Chem. 276:(42):3887076
    [Crossref] [Google Scholar]
  16. Castro IG, Eisenberg-Bord M, Persiani E, Rochford JJ, Schuldiner M, Bohnert M. 2019.. Promethin is a conserved seipin partner protein. . Cells 8:(3):268
    [Crossref] [Google Scholar]
  17. Chen F-J, Yin Y, Chua BT, Li P. 2020.. CIDE family proteins control lipid homeostasis and the development of metabolic diseases. . Traffic 21:(1):94105
    [Crossref] [Google Scholar]
  18. Choi YM, Ajjaji D, Fleming KD, Borbat PP, Jenkins ML, et al. 2023.. Structural insights into perilipin 3 membrane association in response to diacylglycerol accumulation. . Nat. Commun. 14:(1):3204
    [Crossref] [Google Scholar]
  19. Chorlay A, Monticelli L, Veríssimo Ferreira J, Ben M'barek K, Ajjaji D, et al. 2019.. Membrane asymmetry imposes directionality on lipid droplet emergence from the ER. . Dev. Cell 50:(1):2542.e7
    [Crossref] [Google Scholar]
  20. Chorlay A, Thiam AR. 2018.. An asymmetry in monolayer tension regulates lipid droplet budding direction. . Biophys. J. 114:(3):63140
    [Crossref] [Google Scholar]
  21. Choudhary V, Golani G, Joshi AS, Cottier S, Schneiter R, et al. 2018.. Architecture of lipid droplets in endoplasmic reticulum is determined by phospholipid intrinsic curvature. . Curr. Biol. 28:(6):91526.e9
    [Crossref] [Google Scholar]
  22. Choudhary V, Ojha N, Golden A, Prinz WA. 2015.. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. . J. Cell Biol. 211:(2):26171
    [Crossref] [Google Scholar]
  23. Chung J, Wu X, Lambert TJ, Lai ZW, Walther TC, Farese RV. 2019.. LDAF1 and seipin form a lipid droplet assembly complex. . Dev. Cell 51:(5):55163.e7
    [Crossref] [Google Scholar]
  24. Cinti S. 2018.. Adipose organ development and remodeling. . Compr. Physiol. 8:(4):1357431
    [Crossref] [Google Scholar]
  25. Čopič A, Antoine-Bally S, Giménez-Andrés M, La Torre Garay C, Antonny B, et al. 2018.. A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets. . Nat. Commun. 9:(1):1332
    [Crossref] [Google Scholar]
  26. Currie E, Guo X, Christiano R, Chitraju C, Kory N, et al. 2014.. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. . J. Lipid Res. 55:(7):146577
    [Crossref] [Google Scholar]
  27. Datta S, Liu Y, Hariri H, Bowerman J, Henne WM. 2019.. Cerebellar ataxia disease-associated Snx14 promotes lipid droplet growth at ER-droplet contacts. . J. Cell Biol. 218:(4):133551
    [Crossref] [Google Scholar]
  28. Di Mattia T, Martinet A, Ikhlef S, McEwen AG, Nominé Y, et al. 2020.. FFAT motif phosphorylation controls formation and lipid transfer function of inter-organelle contacts. . EMBO J. 39:(23):e104369
    [Crossref] [Google Scholar]
  29. Digel M, Ehehalt R, Stremmel W, Füllekrug J. 2009.. Acyl-CoA synthetases: fatty acid uptake and metabolic channeling. . Mol. Cell. Biochem. 326:(1–2):2328
    [Crossref] [Google Scholar]
  30. Eisenberg-Bord M, Mari M, Weill U, Rosenfeld-Gur E, Moldavski O, et al. 2018.. Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation. . J. Cell Biol. 217:(1):26982
    [Crossref] [Google Scholar]
  31. Enerbäck S. 2010.. Human brown adipose tissue. . Cell Metab. 11:(4):24852
    [Crossref] [Google Scholar]
  32. Enkler L, Szentgyörgyi V, Pennauer M, Prescianotto-Baschong C, Riezman I, et al. 2023.. Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis. . Nat. Cell Biol. 25:(8):115772
    [Crossref] [Google Scholar]
  33. Fei W, Shui G, Gaeta B, Du X, Kuerschner L, et al. 2008.. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. . J. Cell Biol. 180:(3):47382
    [Crossref] [Google Scholar]
  34. Foretz M, Pacot C, Dugail I, Lemarchand P, Guichard C, et al. 1999.. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. . Mol. Cell. Biol. 19:(5):376068
    [Crossref] [Google Scholar]
  35. Freyre CAC, Rauher PC, Ejsing CS, Klemm RW. 2019.. MIGA2 links mitochondria, the ER, and lipid droplets and promotes de novo lipogenesis in adipocytes. . Mol. Cell 76:(5):81125.e14
    [Crossref] [Google Scholar]
  36. Friedman JM. 2019.. Leptin and the endocrine control of energy balance. . Nat. Metab. 1:(8):75464
    [Crossref] [Google Scholar]
  37. Ganeva I, Lim K, Boulanger J, Hoffmann PC, Muriel O, et al. 2023.. The architecture of Cidec-mediated interfaces between lipid droplets. . Cell Rep. 42:(2):112107
    [Crossref] [Google Scholar]
  38. Garcia A, Subramanian V, Sekowski A, Bhattacharyya S, Love MW, Brasaemle DL. 2004.. The amino and carboxyl termini of perilipin a facilitate the storage of triacylglycerols. . J. Biol. Chem. 279:(9):840916
    [Crossref] [Google Scholar]
  39. Giménez-Andrés M, Emeršič T, Antoine-Bally S, D'Ambrosio JM, Antonny B, et al. 2021.. Exceptional stability of a perilipin on lipid droplets depends on its polar residues, suggesting multimeric assembly. . eLife 10::e61401
    [Crossref] [Google Scholar]
  40. Glatz JFC, Heather LC, Luiken JJFP. 2024.. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. . Physiol. Rev. 104:(2):72764
    [Crossref] [Google Scholar]
  41. Gong J, Sun Z, Wu L, Xu W, Schieber N, et al. 2011.. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. . J. Cell Biol. 195:(6):95363
    [Crossref] [Google Scholar]
  42. Grabner GF, Xie H, Schweiger M, Zechner R. 2021.. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. . Nat. Metab. 3:(11):144565
    [Crossref] [Google Scholar]
  43. Green H, Kehinde O. 1975.. An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. . Cell 5:(1):1927
    [Crossref] [Google Scholar]
  44. Grippa A, Buxó L, Mora G, Funaya C, Idrissi F-Z, et al. 2015.. The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites. . J. Cell Biol. 211:(4):82944
    [Crossref] [Google Scholar]
  45. Gross DA, Zhan C, Silver DL. 2011.. Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. . PNAS 108:(49):1958186
    [Crossref] [Google Scholar]
  46. Hagberg CE, Spalding KL. 2024.. White adipocyte dysfunction and obesity-associated pathologies in humans. . Nat. Rev. Mol. Cell Biol. 25::27089
    [Crossref] [Google Scholar]
  47. Hansen JB, Kristiansen K. 2006.. Regulatory circuits controlling white versus brown adipocyte differentiation. . Biochem. J. 398:(2):15368
    [Crossref] [Google Scholar]
  48. Hao J-W, Wang J, Guo H, Zhao Y-Y, Sun H-H, et al. 2020.. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. . Nat. Commun. 11:(1):4765
    [Crossref] [Google Scholar]
  49. Hariri H, Henne WM. 2022.. Filling in the gaps: SNX-RGS proteins as multiorganelle tethers. . J. Cell Biol. 221:(5):e202203061
    [Crossref] [Google Scholar]
  50. Hariri H, Speer N, Bowerman J, Rogers S, Fu G, et al. 2019.. Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. . J. Cell Biol. 218:(4):131934
    [Crossref] [Google Scholar]
  51. Harms M, Seale P. 2013.. Brown and beige fat: development, function and therapeutic potential. . Nat. Med. 19:(10):125263
    [Crossref] [Google Scholar]
  52. Hayes M, Choudhary V, Ojha N, Shin JJ, Han G-S, et al. 2017.. Fat storage-inducing transmembrane (FIT or FITM) proteins are related to lipid phosphatase/phosphotransferase enzymes. . Microb. Cell 5:(2):88103
    [Crossref] [Google Scholar]
  53. Heid H, Rickelt S, Zimbelmann R, Winter S, Schumacher H, et al. 2014.. On the formation of lipid droplets in human adipocytes: the organization of the perilipin-vimentin cortex. . PLOS ONE 9:(2):e90386
    [Crossref] [Google Scholar]
  54. Henne WM. 2023.. The (social) lives, deaths, and biophysical phases of lipid droplets. . Curr. Opin. Cell Biol. 82::102178
    [Crossref] [Google Scholar]
  55. Hilgendorf KI, Johnson CT, Mezger A, Rice SL, Norris AM, et al. 2019.. Omega-3 fatty acids activate ciliary FFAR4 to control adipogenesis. . Cell 179:(6):1289305.e21
    [Crossref] [Google Scholar]
  56. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. 2000.. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. . Am. J. Physiol. Cell Physiol. 279:(3):C67081
    [Crossref] [Google Scholar]
  57. Hong Z, Adlakha J, Wan N, Guinn E, Giska F, et al. 2022.. Mitoguardin-2-mediated lipid transfer preserves mitochondrial morphology and lipid droplet formation. . J. Cell Biol. 221:(12):e202207022
    [Crossref] [Google Scholar]
  58. Hsieh F-L, Turner L, Bolla JR, Robinson CV, Lavstsen T, Higgins MK. 2016.. The structural basis for CD36 binding by the malaria parasite. . Nat. Commun. 7::12837
    [Crossref] [Google Scholar]
  59. Ingelmo-Torres M, González-Moreno E, Kassan A, Hanzal-Bayer M, Tebar F, et al. 2009.. Hydrophobic and basic domains target proteins to lipid droplets. . Traffic 10:(12):1785801
    [Crossref] [Google Scholar]
  60. Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R. 2011.. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. . J. Cell Sci. 124:(14):242437
    [Crossref] [Google Scholar]
  61. Jambunathan S, Yin J, Khan W, Tamori Y, Puri V. 2011.. FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. . PLOS ONE 6:(12):e28614
    [Crossref] [Google Scholar]
  62. Kadereit B, Kumar P, Wang W-J, Miranda D, Snapp EL, et al. 2008.. Evolutionarily conserved gene family important for fat storage. . PNAS 105:(1):9499
    [Crossref] [Google Scholar]
  63. Kassan A, Herms A, Fernández-Vidal A, Bosch M, Schieber NL, et al. 2013.. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. . J. Cell Biol. 203:(6):9851001
    [Crossref] [Google Scholar]
  64. Khandelia H, Duelund L, Pakkanen KI, Ipsen JH. 2010.. Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes. . PLOS ONE 5:(9):e12811
    [Crossref] [Google Scholar]
  65. Kim H, Lee S, Jun Y, Lee C. 2022.. Structural basis for mitoguardin-2 mediated lipid transport at ER-mitochondrial membrane contact sites. . Nat. Commun. 13:(1):3702
    [Crossref] [Google Scholar]
  66. Kim JB, Wright HM, Wright M, Spiegelman BM. 1998.. ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. . PNAS 95:(8):433337
    [Crossref] [Google Scholar]
  67. Kim S, Chung J, Arlt H, Pak AJ, Farese RV, et al. 2022.. Seipin transmembrane segments critically function in triglyceride nucleation and lipid droplet budding from the membrane. . eLife 11::e75808
    [Crossref] [Google Scholar]
  68. Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C. 2010.. Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. . J. Lipid Res. 51:(3):46871
    [Crossref] [Google Scholar]
  69. Kimmel AR, Sztalryd C. 2016.. The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. . Annu. Rev. Nutr. 36::471509
    [Crossref] [Google Scholar]
  70. Klug YA, Deme JC, Corey RA, Renne MF, Stansfeld PJ, et al. 2021.. Mechanism of lipid droplet formation by the yeast Sei1/Ldb16 Seipin complex. . Nat. Commun. 12:(1):5892
    [Crossref] [Google Scholar]
  71. Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, et al. 2011.. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. . Cell Metab. 14:(4):50415
    [Crossref] [Google Scholar]
  72. Krahmer N, Hilger M, Kory N, Wilfling F, Stoehr G, et al. 2013.. Protein correlation profiles identify lipid droplet proteins with high confidence. . Mol. Cell. Proteom. 12:(5):111526
    [Crossref] [Google Scholar]
  73. Krahmer N, Najafi B, Schueder F, Quagliarini F, Steger M, et al. 2018.. Organellar proteomics and phospho-proteomics reveal subcellular reorganization in diet-induced hepatic steatosis. . Dev. Cell 47:(2):20521.e7
    [Crossref] [Google Scholar]
  74. Le Lay S, Lefrère I, Trautwein C, Dugail I, Krief S. 2002.. Insulin and sterol-regulatory element-binding protein-1c (SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes: identification of CCAAT/enhancer-binding protein β as an SREBP-1C target. . J. Biol. Chem. 277:(38):3562534
    [Crossref] [Google Scholar]
  75. Li D, Zhao YG, Li D, Zhao H, Huang J, et al. 2019.. The ER-localized protein DFCP1 modulates ER-lipid droplet contact formation. . Cell Rep. 27:(2):34358.e5
    [Crossref] [Google Scholar]
  76. Lobo S, Wiczer BM, Smith AJ, Hall AM, Bernlohr DA. 2007.. Fatty acid metabolism in adipocytes: functional analysis of fatty acid transport proteins 1 and 4. . J. Lipid Res. 48:(3):60920
    [Crossref] [Google Scholar]
  77. Londos C, Sztalryd C, Tansey JT, Kimmel AR. 2005.. Role of PAT proteins in lipid metabolism. . Biochimie 87:(1):4549
    [Crossref] [Google Scholar]
  78. Long T, Liu Y, Li X. 2021.. Molecular structures of human ACAT2 disclose mechanism for selective inhibition. . Structure 29:(12):141018.e4
    [Crossref] [Google Scholar]
  79. Long T, Sun Y, Hassan A, Qi X, Li X. 2020.. Structure of nevanimibe-bound tetrameric human ACAT1. . Nature 581:(7808):33943
    [Crossref] [Google Scholar]
  80. Lyu X, Wang J, Wang J, Yin Y-S, Zhu Y, et al. 2021.. A gel-like condensation of Cidec generates lipid-permeable plates for lipid droplet fusion. . Dev. Cell 56:(18):2592606.e7
    [Crossref] [Google Scholar]
  81. Magré J, Delépine M, Khallouf E, Gedde-Dahl T, Van Maldergem L, et al. 2001.. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. . Nat. Genet. 28:(4):36570
    [Crossref] [Google Scholar]
  82. Majchrzak M, Stojanović O, Ajjaji D, M'barek KB, Omrane M, et al. 2024.. Perilipin membrane integration determines lipid droplet heterogeneity in differentiating adipocytes. . Cell Rep. 43:(4):114093
    [Crossref] [Google Scholar]
  83. Mathiowetz AJ, Olzmann JA. 2024.. Lipid droplets and cellular lipid flux. . Nat. Cell Biol. 26::33145
    [Crossref] [Google Scholar]
  84. Matthaeus C, Lahmann I, Kunz S, Jonas W, Melo AA, et al. 2020.. EHD2-mediated restriction of caveolar dynamics regulates cellular fatty acid uptake. . PNAS 117:(13):747181
    [Crossref] [Google Scholar]
  85. Matthaeus C, Taraska JW. 2020.. Energy and dynamics of caveolae trafficking. . Front. Cell Dev. Biol. 8::614472
    [Crossref] [Google Scholar]
  86. Mejhert N, Gabriel KR, Frendo-Cumbo S, Krahmer N, Song J, et al. 2022.. The Lipid Droplet Knowledge Portal: a resource for systematic analyses of lipid droplet biology. . Dev. Cell 57:(3):38797.e4
    [Crossref] [Google Scholar]
  87. Miner GE, So CM, Edwards W, Ragusa JV, Wine JT, et al. 2023.. PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport. . Dev. Cell 58:(14):125065.e6
    [Crossref] [Google Scholar]
  88. Miranda DA, Kim J-H, Nguyen LN, Cheng W, Tan BC, et al. 2014.. Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue. . J. Biol. Chem. 289:(14):956072
    [Crossref] [Google Scholar]
  89. Morigny P, Boucher J, Arner P, Langin D. 2021.. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. . Nat. Rev. Endocrinol. 17:(5):27695
    [Crossref] [Google Scholar]
  90. Novikoff AB, Novikoff PM, Rosen OM, Rubin CS. 1980.. Organelle relationships in cultured 3T3-L1 preadipocytes. . J. Cell Biol. 87:(1):18096
    [Crossref] [Google Scholar]
  91. Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL. 2002.. The DGA1 gene determines a second triglyceride synthetic pathway in yeast. . J. Biol. Chem. 277:(11):887781
    [Crossref] [Google Scholar]
  92. Olarte M-J, Kim S, Sharp ME, Swanson JMJ, Farese RV, Walther TC. 2020.. Determinants of endoplasmic reticulum-to-lipid droplet protein targeting. . Dev. Cell 54:(4):47187.e7
    [Crossref] [Google Scholar]
  93. Olarte M-J, Swanson JMJ, Walther TC, Farese RV. 2022.. The CYTOLD and ERTOLD pathways for lipid droplet-protein targeting. . Trends Biochem. Sci. 47:(1):3951
    [Crossref] [Google Scholar]
  94. Olzmann JA, Carvalho P. 2019.. Dynamics and functions of lipid droplets. . Nat. Rev. Mol. Cell Biol. 20:(3):13755
    [Crossref] [Google Scholar]
  95. Olzmann JA, Richter CM, Kopito RR. 2013.. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. . PNAS 110:(4):134550
    [Crossref] [Google Scholar]
  96. Osman C, Voelker DR, Langer T. 2011.. Making heads or tails of phospholipids in mitochondria. . J. Cell Biol. 192:(1):716
    [Crossref] [Google Scholar]
  97. Pataki CI, Rodrigues J, Zhang L, Qian J, Efron B, et al. 2018.. Proteomic analysis of monolayer-integrated proteins on lipid droplets identifies amphipathic interfacial α-helical membrane anchors. . PNAS 115:(35):E817280
    [Crossref] [Google Scholar]
  98. Peirce V, Carobbio S, Vidal-Puig A. 2014.. The different shades of fat. . Nature 510:(7503):7683
    [Crossref] [Google Scholar]
  99. Pepino MY, Kuda O, Samovski D, Abumrad NA. 2014.. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. . Annu. Rev. Nutr. 34::281303
    [Crossref] [Google Scholar]
  100. Piccolis M, Bond LM, Kampmann M, Pulimeno P, Chitraju C, et al. 2019.. Probing the global cellular responses to lipotoxicity caused by saturated fatty acids. . Mol. Cell 74:(1):3244.e8
    [Crossref] [Google Scholar]
  101. Prasanna X, Salo VT, Li S, Ven K, Vihinen H, et al. 2021.. Seipin traps triacylglycerols to facilitate their nanoscale clustering in the endoplasmic reticulum membrane. . PLOS Biol. 19:(1):e3000998
    [Crossref] [Google Scholar]
  102. Prévost C, Sharp ME, Kory N, Lin Q, Voth GA, et al. 2018.. Mechanism and determinants of amphipathic helix-containing protein targeting to lipid droplets. . Dev. Cell 44:(1):7386.e4
    [Crossref] [Google Scholar]
  103. Qian K, Tol MJ, Wu J, Uchiyama LF, Xiao X, et al. 2023.. CLSTN3β enforces adipocyte multilocularity to facilitate lipid utilization. . Nature 613:(7942):16068
    [Crossref] [Google Scholar]
  104. Rambold AS, Cohen S, Lippincott-Schwartz J. 2015.. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. . Dev. Cell 32:(6):67892
    [Crossref] [Google Scholar]
  105. Razani B, Combs TP, Wang XB, Frank PG, Park DS, et al. 2002.. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. . J. Biol. Chem. 277:(10):863547
    [Crossref] [Google Scholar]
  106. Renne MF, Corey RA, Ferreira JV, Stansfeld PJ, Carvalho P. 2022.. Seipin concentrates distinct neutral lipids via interactions with their acyl chain carboxyl esters. . J. Cell Biol. 221:(9):e202112068
    [Crossref] [Google Scholar]
  107. Roberts MA, Deol KK, Mathiowetz AJ, Lange M, Leto DE, et al. 2023.. Parallel CRISPR-Cas9 screens identify mechanisms of PLIN2 and lipid droplet regulation. . Dev. Cell 58:(18):1782800.e10
    [Crossref] [Google Scholar]
  108. Roden M, Shulman GI. 2019.. The integrative biology of type 2 diabetes. . Nature 576:(7785):5160
    [Crossref] [Google Scholar]
  109. Rosen ED, MacDougald OA. 2006.. Adipocyte differentiation from the inside out. . Nat. Rev. Mol. Cell Biol. 7:(12):88596
    [Crossref] [Google Scholar]
  110. Rosen ED, Spiegelman BM. 2006.. Adipocytes as regulators of energy balance and glucose homeostasis. . Nature 444:(7121):84753
    [Crossref] [Google Scholar]
  111. Rosen ED, Spiegelman BM. 2014.. What we talk about when we talk about fat. . Cell 156:(1–2):2044
    [Crossref] [Google Scholar]
  112. Rosenwald M, Wolfrum C. 2014.. The origin and definition of brite versus white and classical brown adipocytes. . Adipocyte 3:(1):49
    [Crossref] [Google Scholar]
  113. Rowe ER, Mimmack ML, Barbosa AD, Haider A, Isaac I, et al. 2016.. Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1–3. . J. Biol. Chem. 291:(13):666478
    [Crossref] [Google Scholar]
  114. Ruggiano A, Mora G, Buxó L, Carvalho P. 2016.. Spatial control of lipid droplet proteins by the ERAD ubiquitin ligase Doa10. . EMBO J. 35:(15):164455
    [Crossref] [Google Scholar]
  115. Salo VT, Belevich I, Li S, Karhinen L, Vihinen H, et al. 2016.. Seipin regulates ER-lipid droplet contacts and cargo delivery. . EMBO J. 35:(24):2699716
    [Crossref] [Google Scholar]
  116. Salo VT, Li S, Vihinen H, Hölttä-Vuori M, Szkalisity A, et al. 2019.. Seipin facilitates triglyceride flow to lipid droplet and counteracts droplet ripening via endoplasmic reticulum contact. . Dev. Cell 50:(4):47893.e9
    [Crossref] [Google Scholar]
  117. Samuel VT, Shulman GI. 2012.. Mechanisms for insulin resistance: common threads and missing links. . Cell 148:(5):85271
    [Crossref] [Google Scholar]
  118. Santoro A, McGraw TE, Kahn BB. 2021.. Insulin action in adipocytes, adipose remodeling, and systemic effects. . Cell Metab. 33:(4):74857
    [Crossref] [Google Scholar]
  119. Saukko-Paavola AJ, Klemm RW. 2024.. Remodelling of mitochondrial function by import of specific lipids at multiple membrane-contact sites. . FEBS Lett. 598:(10):127491
    [Crossref] [Google Scholar]
  120. Schaffer JE, Lodish HF. 1994.. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. . Cell 79:(3):42736
    [Crossref] [Google Scholar]
  121. Scheja L, Heeren J. 2019.. The endocrine function of adipose tissues in health and cardiometabolic disease. . Nat. Rev. Endocrinol. 15:(9):50724
    [Crossref] [Google Scholar]
  122. Schrul B, Kopito RR. 2016.. Peroxin-dependent targeting of a lipid-droplet-destined membrane protein to ER subdomains. . Nat. Cell Biol. 18::74051
    [Crossref] [Google Scholar]
  123. Skinner JR, Harris L-ALS, Shew TM, Abumrad NA, Wolins NE. 2013.. Perilipin 1 moves between the fat droplet and the endoplasmic reticulum. . Adipocyte 2:(2):8086
    [Crossref] [Google Scholar]
  124. Song J, Mizrak A, Lee C-W, Cicconet M, Lai ZW, et al. 2022.. Identification of two pathways mediating protein targeting from ER to lipid droplets. . Nat. Cell Biol. 24:(9):136477
    [Crossref] [Google Scholar]
  125. Sui X, Arlt H, Brock KP, Lai ZW, DiMaio F, et al. 2018.. Cryo–electron microscopy structure of the lipid droplet–formation protein seipin. . J. Cell Biol. 217:(12):408091
    [Crossref] [Google Scholar]
  126. Sui X, Wang K, Gluchowski NL, Elliott SD, Liao M, et al. 2020.. Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme. . Nature 581:(7808):32328
    [Crossref] [Google Scholar]
  127. Sui X, Wang K, Song K, Xu C, Song J, et al. 2023.. Mechanism of action for small-molecule inhibitors of triacylglycerol synthesis. . Nat. Commun. 14:(1):3100
    [Crossref] [Google Scholar]
  128. Sztalryd C, Kimmel AR. 2014.. Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. . Biochimie 96::96101
    [Crossref] [Google Scholar]
  129. Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA, et al. 2003.. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. . J. Cell Biol. 161:(6):1093103
    [Crossref] [Google Scholar]
  130. Szymanski KM, Binns D, Bartz R, Grishin NV, Li W-P, et al. 2007.. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. . PNAS 104:(52):2089095
    [Crossref] [Google Scholar]
  131. Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, et al. 2001.. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. . PNAS 98:(11):649499
    [Crossref] [Google Scholar]
  132. Teixeira V, Johnsen L, Martínez-Montañés F, Grippa A, Buxó L, et al. 2018.. Regulation of lipid droplets by metabolically controlled Ldo isoforms. . J. Cell Biol. 217:(1):12738
    [Crossref] [Google Scholar]
  133. Thiam AR, Antonny B, Wang J, Delacotte J, Wilfling F, et al. 2013a.. COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function. . PNAS 110:(33):1324449
    [Crossref] [Google Scholar]
  134. Thiam AR, Beller M. 2017.. The why, when and how of lipid droplet diversity. . J. Cell Sci. 130:(2):31524
    [Crossref] [Google Scholar]
  135. Thiam AR, Farese RV, Walther TC. 2013b.. The biophysics and cell biology of lipid droplets. . Nat. Rev. Mol. Cell Biol. 14:(12):77586
    [Crossref] [Google Scholar]
  136. Thiam AR, Ikonen E. 2021.. Lipid droplet nucleation. . Trends Cell Biol. 31:(2):10818
    [Crossref] [Google Scholar]
  137. Tontonoz P, Spiegelman BM. 2008.. Fat and beyond: the diverse biology of PPARγ. . Annu. Rev. Biochem. 77::289312
    [Crossref] [Google Scholar]
  138. Ugrankar R, Bowerman J, Hariri H, Chandra M, Chen K, et al. 2019.. Drosophila Snazarus regulates a lipid droplet population at plasma membrane-droplet contacts in adipocytes. . Dev. Cell 50:(5):55772.e5
    [Crossref] [Google Scholar]
  139. Um JW, Pramanik G, Ko JS, Song M-Y, Lee D, et al. 2014.. Calsyntenins function as synaptogenic adhesion molecules in concert with neurexins. . Cell Rep. 6:(6):1096109
    [Crossref] [Google Scholar]
  140. Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, et al. 2023.. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. . EMBO J. 42:(24):e114054
    [Crossref] [Google Scholar]
  141. Walther TC, Kim S, Arlt H, Voth GA, Farese RV. 2023.. Structure and function of lipid droplet assembly complexes. . Curr. Opin. Struct. Biol. 80::102606
    [Crossref] [Google Scholar]
  142. Wang C-W, Miao Y-H, Chang Y-S. 2014.. Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16. . J. Cell Sci. 127:(6):121428
    [Google Scholar]
  143. Wang H, Becuwe M, Housden BE, Chitraju C, Porras AJ, et al. 2016.. Seipin is required for converting nascent to mature lipid droplets. . eLife 5::e16582
    [Crossref] [Google Scholar]
  144. Wang H, Sreenivasan U, Hu H, Saladino A, Polster BM, et al. 2011.. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. . J. Lipid Res. 52:(12):215968
    [Crossref] [Google Scholar]
  145. Wang L, Qian H, Nian Y, Han Y, Ren Z, et al. 2020.. Structure and mechanism of human diacylglycerol O-acyltransferase 1. . Nature 581:(7808):32932
    [Crossref] [Google Scholar]
  146. Welte MA, Gould AP. 2017.. Lipid droplet functions beyond energy storage. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:(10, Part B):126072
    [Crossref] [Google Scholar]
  147. Wilfling F, Thiam AR, Olarte M-J, Wang J, Beck R, et al. 2014.. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. . eLife 3::e01607
    [Crossref] [Google Scholar]
  148. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, et al. 2013.. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. . Dev. Cell 24:(4):38499
    [Crossref] [Google Scholar]
  149. Wolfrum C, Gerhart-Hines Z. 2022.. Fueling the fire of adipose thermogenesis. . Science 375:(6586):122931
    [Crossref] [Google Scholar]
  150. Wolins NE, Quaynor BK, Skinner JR, Schoenfish MJ, Tzekov A, Bickel PE. 2005.. S3-12, Adipophilin, and TIP47 package lipid in adipocytes. . J. Biol. Chem. 280:(19):1914655
    [Crossref] [Google Scholar]
  151. Wolins NE, Quaynor BK, Skinner JR, Tzekov A, Park C, et al. 2006.. OP9 mouse stromal cells rapidly differentiate into adipocytes: characterization of a useful new model of adipogenesis. . J. Lipid Res. 47:(2):45060
    [Crossref] [Google Scholar]
  152. Wolinski H, Hofbauer HF, Hellauer K, Cristobal-Sarramian A, Kolb D, et al. 2015.. Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851:(11):145064
    [Crossref] [Google Scholar]
  153. Wu J, Boström P, Sparks LM, Ye L, Choi JH, et al. 2012.. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. . Cell 150:(2):36676
    [Crossref] [Google Scholar]
  154. Wu L, Xu D, Zhou L, Xie B, Yu L, et al. 2014.. Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. . Dev. Cell 30:(4):37893
    [Crossref] [Google Scholar]
  155. Xu D, Li Y, Wu L, Li Y, Zhao D, et al. 2018.. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. . J. Cell Biol. 217:(3):97595
    [Crossref] [Google Scholar]
  156. Xu L, Wang X, Zhou J, Qiu Y, Shang W, et al. 2020.. Miga-mediated endoplasmic reticulum–mitochondria contact sites regulate neuronal homeostasis. . eLife 9::e56584
    [Crossref] [Google Scholar]
  157. Yan R, Qian H, Lukmantara I, Gao M, Du X, et al. 2018.. Human SEIPIN binds anionic phospholipids. . Dev. Cell 47:(2):24856.e4
    [Crossref] [Google Scholar]
  158. Zadoorian A, Du X, Yang H. 2023.. Lipid droplet biogenesis and functions in health and disease. . Nat. Rev. Endocrinol. 19:(8):44359
    [Crossref] [Google Scholar]
  159. Zeng X, Ye M, Resch JM, Jedrychowski MP, Hu B, et al. 2019.. Innervation of thermogenic adipose tissue via a calsyntenin 3β–S100b axis. . Nature 569:(7755):22935
    [Crossref] [Google Scholar]
  160. Zhan T, Poppelreuther M, Ehehalt R, Füllekrug J. 2012.. Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes. . PLOS ONE 7:(9):e45087
    [Crossref] [Google Scholar]
  161. Zhang C, Liu P. 2019.. The new face of the lipid droplet: lipid droplet proteins. . Proteomics 19:(10):e1700223
    [Crossref] [Google Scholar]
  162. Zhang C, Ye M, Melikov K, Yang D, Dias do Vale G, et al. 2024.. CLSTN3B enhances adipocyte lipid droplet structure and function via endoplasmic reticulum contact. . bioRxiv 2024.01.20.576491. https://doi.org/10.1101/2024.01.20.576491
  163. Zhang Y, Liu X, Bai J, Tian X, Zhao X, et al. 2016.. Mitoguardin regulates mitochondrial fusion through MitoPLD and is required for neuronal homeostasis. . Mol. Cell 61:(1):11124
    [Crossref] [Google Scholar]
  164. Zoni V, Khaddaj R, Campomanes P, Thiam AR, Schneiter R, Vanni S. 2021a.. Pre-existing bilayer stresses modulate triglyceride accumulation in the ER versus lipid droplets. . eLife 10::e62886
    [Crossref] [Google Scholar]
  165. Zoni V, Khaddaj R, Lukmantara I, Shinoda W, Yang H, et al. 2021b.. Seipin accumulates and traps diacylglycerols and triglycerides in its ring-like structure. . PNAS 118:(10):e2017205118
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-012624-031419
Loading
/content/journals/10.1146/annurev-cellbio-012624-031419
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error