1932

Abstract

Arnold Sommerfeld (1868–1951), one of the founders of modern theoretical physics and a pioneer of quantum theory, was no condensed matter physicist. He nevertheless played a crucial role for the history of the field. Besides his important contributions to the study of condensed matter systems, among which his seminal electron gas theory of metallic conduction probably stands out, he influenced the field through his very approach to science, through his way of “doing” physics. Sommerfeld's specific style permeated not only his research but also his teaching and his promoting of physics. This has had a lasting influence on the practices of physicists to this day, and not only, but importantly, on those of condensed matter physicists. This article aims to provide a concise account of Sommerfeld's influence on the study of condensed matter systems, with regard to both his research and his practice.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025418
2017-03-31
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/8/1/annurev-conmatphys-031016-025418.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025418&mimeType=html&fmt=ahah

Literature Cited

  1. Eckert M. 1.  1989. Deutsches Museum Wissenschaftliches Jahrbuch 198957–91 Munich: Oldenbourg [Google Scholar]
  2. Eckert M. 2.  1990. Deutsches Museum Wissenschaftliches Jahrbuch 199033–71 Munich: Oldenbourg [Google Scholar]
  3. Forman P, Herrmann A. 3.  1975. Sommerfeld, Arnold (Johannes Wilhelm). Dictionary of Scientific Biography 12 CC Gillispie 525–32 New York: Scribner's [Google Scholar]
  4. Eckert M. 4.  2013a. Arnold Sommerfeld: Science, Life and Turbulent Times 1868–1951 New York: Springer [Google Scholar]
  5. Heisenberg W. 5.  1951. Naturwissenschaften 38:337–38 [Google Scholar]
  6. Sommerfeld A. 6.  2013. Die Bohr-Sommerfeldsche Atomtheorie: Sommerfelds Erweiterung des Bohrschen Atommodells 1915/16, kommentiert von Michael Eckert Berlin: Springer [Google Scholar]
  7. Eckert M. 7.  2014. Eur. Phys. J. H 39:141–56 [Google Scholar]
  8. Kragh H. 8.  2003. Arch. Hist. Exact Sci. 57:395–431 [Google Scholar]
  9. Eckert M. 9.  2013b. Research and Pedagogy: A History of Quantum Physics through Its Textbooks M Badino, J Navarro 117–35 Berlin: Ed. Open Access [Google Scholar]
  10. Eckert M. 10.  1987. Hist. Stud. Phys. Biol. Sci. 17:191–233 [Google Scholar]
  11. Sommerfeld A, Bethe H. 11.  1933. Handbuch der Physik 24/2 H Geiger, K Scheel 333–622 Berlin: Springer [Google Scholar]
  12. Weart S. 12.  1992. See Reference 16 617–69
  13. Joas C. 13.  2010. Teoria Quantica: Estudos Historicos e Implicacoes Culturais ed. O Freire Jr., O Pessoa Jr., JL Bromberg 109–51 Campina Grande, Brazil: EDUEPB São Paulo Livraria Fis. [Google Scholar]
  14. Martin JD. 14.  2015a. Phys. Perspect. 17:3–32 [Google Scholar]
  15. Martin JD. 15.  2015b. Hist. Stud. Nat. Sci. 45:703–57 [Google Scholar]
  16. Hoddeson L, Braun E, Teichmann J, Weart S. 16.  1992. Out of the Crystal Maze: Chapters from the History of Solid-State Physics New York: Oxford Univ. Press [Google Scholar]
  17. Lippincott S. 17.  2008. Phys. Perspect. 10:77–109 [Google Scholar]
  18. Crawford E. 18.  2001. Phys. World 14:31–35 [Google Scholar]
  19. Ashcroft NW, Mermin ND. 19.  1976. Solid State Physics Fort Worth, TX: Harcourt Coll. Publ. [Google Scholar]
  20. Sommerfeld A. 20.  1915. Naturwissenschaften 3:669–70 [Google Scholar]
  21. Joas C, Katzir S. 21.  2011. Stud. Hist. Philos. Mod. Phys. 42:43–53 [Google Scholar]
  22. Kaiser W. 22.  1987. Hist. Stud. Phys. Biol. Sci. 17:271–97 [Google Scholar]
  23. Kaiser W. 23.  2001. Histories of the Electron: The Birth of Microphysics JZ Buchwald, A Warwick 255–303 Cambridge, MA: MIT Press [Google Scholar]
  24. Darrigol O. 24.  2000. Electrodynamics from Ampère to Einstein Oxford, UK: Oxford Univ. Press [Google Scholar]
  25. Eckert M, Schubert H. 25.  1990. Crystals, Electrons, Transistors: From Scholar's Study to Industrial Research (transl. Thomas Hughes) New York: Am. Inst. Phys. [Google Scholar]
  26. Barkan DK. 26.  1999. Walther Nernst and the Transition to Modern Physical Science Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  27. van Delft D. 27.  2007. Freezing Physics: Heike Kamerlingh Onnes and the Quest for Cold Amsterdam: K. Ned. Akad. Wet. [Google Scholar]
  28. Wiederkehr KH. 28.  2010. Sudhoffs Arch. 94:57–72 [Google Scholar]
  29. Hoddeson LH, Baym G. 29.  1980. Proc. R. Soc. A 371:8–23 [Google Scholar]
  30. Eckert M, Märker K. 30.  2000. Arnold Sommerfeld: Wissenschaftlicher Briefwechsel: Band 1: 1892–1918 Diepholz, Ger.: GNT Verlag [Google Scholar]
  31. Schröder W. 31.  1985. Arch. Hist. Exact Sci. 32:77–93 [Google Scholar]
  32. Pyenson L. 32.  1979. Arch. Hist. Exact Sci. 21:55–89 [Google Scholar]
  33. Lorentz HA. 33.  1904. Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen 5 chap. 14, ed. A Sommerfeld , 145–280 Leipzig: Teubner [Google Scholar]
  34. Sommerfeld A. 34.  1904a. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl.99–130 [Google Scholar]
  35. Sommerfeld A. 35.  1904b. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl.363–439 [Google Scholar]
  36. Sommerfeld A. 36.  1905. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl.203–35 [Google Scholar]
  37. Eckert M. 37.  2003. Philos. Sci. 7:165–88 [Google Scholar]
  38. Drude P. 38.  1900a. Phys. Z. 1:161–65 [Google Scholar]
  39. Drude P. 39.  1900b. Ann. Phys. 306:566–613 [Google Scholar]
  40. Drude P. 40.  1900c. Rapports présentés au Congrès International de Physique réuni à Paris en 1900. Tome III CÉ Guillaume, H Poincaré 34–46 Paris: Gauthier-Villars [Google Scholar]
  41. Drude P. 41.  1900d. Ann. Phys. 308:369–402 [Google Scholar]
  42. Drude P. 42.  1902. Ann. Phys. 312:687–92 [Google Scholar]
  43. Drude P. 43.  1904a. Ann. Phys. 319:677–725 [Google Scholar]
  44. Drude P. 44.  1904b. Ann. Phys. 319:936–61 [Google Scholar]
  45. Thomson JJ. 45.  1900a. Nature 62:31–32 [Google Scholar]
  46. Thomson JJ. 46.  1900b. Rapports présentés au Congrès International de Physique réuni à Paris en 1900. Tome III CÉ Guilaume, H Poincaré 138–51 Paris: Gauthier-Villars [Google Scholar]
  47. Lorentz HA. 47.  1905. Versl. K. Akad. Wetensch. Amst. 13:493–508, 565–73, 710–19 [Google Scholar]
  48. Lorentz HA. 48.  1906. Ergebnisse und Probleme der Elektronentheorie Berlin: Springer [Google Scholar]
  49. Bädeker K. 49.  1911. Die elektrischen Erscheinungen in metallischen Leitern Braunschweig, Ger.: Vieweg [Google Scholar]
  50. Kaiser W. 50.  1979. Centaurus 22:187–200 [Google Scholar]
  51. Peierls RE. 51.  1980. Proc. R. Soc. A 371:28–38 [Google Scholar]
  52. Einstein A. 52.  1902. Ann. Phys 314:417–33 [Google Scholar]
  53. Einstein A. 53.  1903. Ann. Phys. 316:170–87 [Google Scholar]
  54. Einstein A. 54.  1904. Ann. Phys. 319:354–62 [Google Scholar]
  55. Renn J. 55.  1997. Arch. Hist. Exact Sci. 51:315–54 [Google Scholar]
  56. Debye P. 56.  1910. Ann. Phys. 338:441–89 [Google Scholar]
  57. James J, Joas C. 57.  2015. Hist. Stud. Nat. Sci. 45:641–702 [Google Scholar]
  58. Heilbron JL, Kuhn TS. 58.  1969. Hist. Stud. Phys. Sci. 1:211–90 [Google Scholar]
  59. Klein MJ. 59.  1965. Sci. New Ser. 148:173–80 [Google Scholar]
  60. Eckert M, Schubert H, Torkar G, Blondel C, Quédec P. 60.  1992. See Reference 16 3–87
  61. Braun E. 61.  1992. See Reference 16 317–58
  62. Sauer T. 62.  2007. Arch. Hist. Exact Sci. 61:159–211 [Google Scholar]
  63. Joas C, Waysand G. 63.  2014. History of Artificial Cold: Scientific, Technological and Cultural Issues K Gavroglu, 83–92 Dordrecht, Neth: Springer [Google Scholar]
  64. Bridgman PW. 64.  1917a. PNAS 3:10–12 [Google Scholar]
  65. Bridgman PW. 65.  1917b. Phys. Rev. 9:269–89 [Google Scholar]
  66. Benedicks CAF. 66.  1916. J. Radioakt. Elektron. 13:351–95 [Google Scholar]
  67. Haber F. 67.  1919. Sitzungsber. Preuss. Akad. Wiss.990–1007 [Google Scholar]
  68. Einstein A. 68.  1922. Gedenkboek Kamerlingh Onnes429–35 Leiden, Neth: E. Ijdo [Google Scholar]
  69. Walter ML. 69.  1990. Science and Cultural Crisis: An Intellectual Biography of Percy Williams Bridgman Stanford, CA: Stanford Univ. Press [Google Scholar]
  70. Hoch PK. 70.  1983. Contemp. Phys. 24:3–23 [Google Scholar]
  71. Eckert M, Märker K. 71.  2004. Arnold Sommerfeld: Wissenschaftlicher Briefwechsel: Band 2: 1919–1951 Diepholz, Ger: GNT Verlag [Google Scholar]
  72. 72. Solvay 1927. Conductibilité Électrique des Métaux et Problèmes Connexes, Rapports et Discussions du Quatrième Conseil de Physique tenu à Bruxelles du 24 au 29 Avril 1924 Paris: Gauthier-Villars [Google Scholar]
  73. Forman P. 73.  1969. Arch. Hist. Exact Sci. 6:38–71 [Google Scholar]
  74. Ewald PP. 74.  1969. Arch. Hist. Exact Sci. 6:72–81 [Google Scholar]
  75. Eckert M. 75.  2012a. Acta Crystallogr. Sect. A Found. Crystallogr. 68:30–39 [Google Scholar]
  76. Eckert M. 76.  2012b. Ann. Phys. 524:A83–85 [Google Scholar]
  77. Authier A. 77.  2013. Early Days of X-ray Crystallography Oxford, UK: Oxford Univ. Press [Google Scholar]
  78. Liljas A. 78.  2012. Acta Crystallogr. Sect. A Found. Crystallogr. 69:10–15 [Google Scholar]
  79. Eckert M. 79.  2015a. Eur. Phys. J. Spec. Top. 224:2057–73 [Google Scholar]
  80. Sommerfeld A. 80.  1926. Die wissenschaftlichen Anstalten der Ludwig-Maximilians-Universität zu München. Chronik zur Jahrhundertfeier im Auftrag des akademischen Senats KA von Müller 290–92 Munich: Oldenbourg [Google Scholar]
  81. Sommerfeld A. 81.  1921. La Structure de la Matière E Solvay 125–34 Paris: Gauthier-Villars [Google Scholar]
  82. Ewald PP. 82.  1913. Phys. Z. 14:465–72 [Google Scholar]
  83. Ewald PP. 83.  1914. Ann. Phys. 349:257–82 [Google Scholar]
  84. Ewald PP. 84.  1916a. Ann. Phys. 354:1–38 [Google Scholar]
  85. Ewald PP. 85.  1916b. Ann. Phys. 354:117–43 [Google Scholar]
  86. Ewald PP. 86.  1917. Ann. Phys. 359:519–56 [Google Scholar]
  87. Bethe H. 87.  1927. Die Naturwissenschaften 15:786–88 [Google Scholar]
  88. Bethe H. 88.  1928. Ann. Phys. 392:55–129 [Google Scholar]
  89. Schweber SS. 89.  2012. Nuclear Forces: The Making of the Physicist Hans Bethe Cambridge, MA: Harvard Univ. Press [Google Scholar]
  90. Ewald PP. 90.  1923. Kristalle und Röntgenstrahlen Berlin: Springer [Google Scholar]
  91. Heisenberg W. 91.  1927. Z. Phys. 41:239–67 [Google Scholar]
  92. Herrmann A, von Meyenn K, Weisskopf VF. 92.  1979. Wolfgang Pauli: Scientific Correspondence with Bohr, Einstein, Heisenberg, and Others, Volume I: 1919–1929 New York: Springer [Google Scholar]
  93. Pauli W. 93.  1927. Z. Phys. 41:81–102 [Google Scholar]
  94. Sommerfeld A. 94.  1927. Naturwissenschaften 15:825–32 [Google Scholar]
  95. Sommerfeld A. 95.  1928a. Naturwissenschaften 16:374–81 [Google Scholar]
  96. Sommerfeld A. 96.  1928b. Z. Phys. 47:1–32 [Google Scholar]
  97. Sommerfeld A. 97.  1928c. Z. Phys. 47:43–60 [Google Scholar]
  98. Hoddeson L, Baym G, Eckert M. 98.  1987. Rev. Mod. Phys. 59:287–327 [Google Scholar]
  99. Hoddeson L, Baym G, Eckert M. 99.  1992. See Reference 16 88–181
  100. Kronig R. 100.  1949. Physica 15:1–12 [Google Scholar]
  101. Bloch F. 101.  1929. Z. Phys. 52:555–600 [Google Scholar]
  102. Brillouin L. 102.  1930. J. Phys. Radium 1:377–400 [Google Scholar]
  103. Heitler W, London F. 103.  1927. Z. Phys. 44:455–72 [Google Scholar]
  104. Bloch F. 104.  1976. Phys. Today 29:23–27 [Google Scholar]
  105. Heisenberg W. 105.  1928. Z. Phys. 49:619–36 [Google Scholar]
  106. Floquet G. 106.  1883. Ann. Sci. l'École Norm. Supér. 12:47–88 [Google Scholar]
  107. Bloch F. 107.  1980. Proc. R. Soc. A 371:24–27 [Google Scholar]
  108. Seth S. 108.  2010. Crafting the Quantum: Arnold Sommerfeld and the Practice of Theory, 1890–1926 Boston: MIT Press [Google Scholar]
  109. Eckert M. 109.  2015b. Stud. Hist. Philos. Mod. Phys. 51:9–22 [Google Scholar]
  110. Bethe HA. 110.  2000. Phys. Perspect. 2:3–5 [Google Scholar]
  111. Eckert M. 111.  2001. Ann. Phys. 10:151–62 [Google Scholar]
  112. Born M. 112.  1928. Naturwissenschaften 16:1035–36 [Google Scholar]
  113. Lalli R. 113.  2014. Ann. Phys. 526:A83–87 [Google Scholar]
  114. Schweber SS. 114.  1986. Hist. Stud. Phys. Biol. Sci. 17:155–98 [Google Scholar]
  115. Kaiser D. 115.  2002. Hist. Stud. Phys. Biol. Sci. 33:131–59 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031016-025418
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025418
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error