1932

Abstract

When the continuous symmetry of a physical system is spontaneously broken, two types of collective modes typically emerge: the amplitude and the phase modes of the order-parameter fluctuation. For superconductors, the amplitude mode is referred to most recently as the Higgs mode as it is a condensed-matter analog of a Higgs boson in particle physics. Higgs mode is a scalar excitation of the order parameter, distinct from charge or spin fluctuations, and thus does not couple to electromagnetic fields linearly. This is why the Higgs mode in superconductors has evaded experimental observations for over a half century after the initial theoretical prediction, except for a charge-density-wave coexisting system. With the advance of nonlinear and time-resolved terahertz spectroscopy techniques, however, it has become possible to study the Higgs mode through the nonlinear light–Higgs coupling. In this review, we overview recent progress in the study of the Higgs mode in superconductors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050813
2020-03-10
2024-07-05
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031119-050813.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050813&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Nambu Y. 2011. BCS: 50 Years LN Cooper, D Feldman Singapore: World Sci.
    [Google Scholar]
  2. 2. 
    Ginzburg VL, Landau LD. 1950. Zh. Eksp. Teor. Fiz. 20:1064–82
    [Google Scholar]
  3. 3. 
    Bogoliubov NN. 1958. J. Exp. Theoret. Phys. 34:58–65
    [Google Scholar]
  4. 4. 
    Anderson PW. 1958. Phys. Rev. 110:827–35
    [Google Scholar]
  5. 5. 
    Anderson PW. 1958. Phys. Rev. 112:1900–16
    [Google Scholar]
  6. 6. 
    Nambu Y. 1960. Phys. Rev. 117:648–63
    [Google Scholar]
  7. 7. 
    Goldstone J. 1961. Nuovo Cim 19:154–64
    [Google Scholar]
  8. 8. 
    Goldstone J, Salam A, Weinberg S 1962. Phys. Rev. 127:965–70
    [Google Scholar]
  9. 9. 
    Anderson PW. 1963. Phys. Rev. 130:439–42
    [Google Scholar]
  10. 10. 
    Englert F, Brout R. 1964. Phys. Rev. Lett. 13:321–23
    [Google Scholar]
  11. 11. 
    Higgs PW. 1964. Phys. Lett. 12:132–33
    [Google Scholar]
  12. 12. 
    Higgs PW. 1964. Phys. Rev. Lett. 13:508–9
    [Google Scholar]
  13. 13. 
    Guralnik GS, Hagen CR, Kibble TWB 1964. Phys. Rev. Lett. 13:585–87
    [Google Scholar]
  14. 14. 
    Anderson PW. 2015. Nat. Phys. 11:93
    [Google Scholar]
  15. 15. 
    Bardeen J, Cooper LN, Schrieffer JR 1957. Phys. Rev. 108:1175–204
    [Google Scholar]
  16. 15a. 
    Schmid A 1968. Phys. Kond. Mater 8:129–40
    [Google Scholar]
  17. 16. 
    Volkov AF, Kogan SM. 1974. Sov. Phys. J. Exp. Theoret. Phys. 38:1018–21
    [Google Scholar]
  18. 17. 
    Kulik IO, Entin-Wohlman O, Orbach R 1981. J. Low Temp. Phys. 43:591–620
    [Google Scholar]
  19. 18. 
    Littlewood PB, Varma CM. 1981. Phys. Rev. Lett. 47:811–14
    [Google Scholar]
  20. 19. 
    Littlewood PB, Varma CM. 1982. Phys. Rev. B 26:4883–93
    [Google Scholar]
  21. 20. 
    Nambu Y, Jona-Lasinio G. 1961. Phys. Rev. 122:345–58
    [Google Scholar]
  22. 21. 
    Nambu Y. 1985. Physica 15D:147–51
    [Google Scholar]
  23. 22. 
    Volovik GE, Zubkov MA. 2014. J. Low Temp. Phys. 175:486–97
    [Google Scholar]
  24. 23. 
    ATLAS Collab 2012. Phys. Lett. B 716:1–29
    [Google Scholar]
  25. 24. 
    CMS Collab 2012. Phys. Lett. B 716:30–61
    [Google Scholar]
  26. 25. 
    Sooryakumar R, Klein MV. 1980. Phys. Rev. Lett. 45:660–62
    [Google Scholar]
  27. 26. 
    Sooryakumar R, Klein MV. 1981. Phys. Rev. B 23:3213–21
    [Google Scholar]
  28. 27. 
    Varma C. 2002. J. Low Temp. Phys. 126:901–9
    [Google Scholar]
  29. 28. 
    Méasson MA, Gallais Y, Cazayous M, Clair B, Rodière P et al. 2014. Phys. Rev. B 89:060503(R)
    [Google Scholar]
  30. 29. 
    Cea T, Benfatto L. 2014. Phys. Rev. B 90:224515
    [Google Scholar]
  31. 30. 
    Grasset R, Cea T, Gallais Y, Cazayous M, Sacuto A et al. 2018. Phys. Rev. B 97:094502
    [Google Scholar]
  32. 31. 
    Barankov RA, Levitov LS, Spivak BZ 2004. Phys. Rev. Lett. 93:160401
    [Google Scholar]
  33. 32. 
    Yuzbashyan EA, Altshuler BL, Kuznetsov VB, Enolskii VZ 2005. Phys. Rev. B 72:220503
    [Google Scholar]
  34. 33. 
    Barankov RA, Levitov LS. 2006. Phys. Rev. Lett. 96:230403
    [Google Scholar]
  35. 34. 
    Yuzbashyan EA, Tsyplyatyev O, Altshuler BL 2006. Phys. Rev. Lett. 96:097005
    [Google Scholar]
  36. 35. 
    Yuzbashyan EA, Dzero M. 2006. Phys. Rev. Lett. 96:230404
    [Google Scholar]
  37. 36. 
    Gurarie V. 2009. Phys. Rev. Lett. 103:075301
    [Google Scholar]
  38. 37. 
    Tsuji N, Eckstein M, Werner P 2013. Phys. Rev. Lett. 110:136404
    [Google Scholar]
  39. 38. 
    Papenkort T, Axt VM, Kuhn T 2007. Phys. Rev. B 76:224522
    [Google Scholar]
  40. 39. 
    Papenkort T, Kuhn T, Axt VM 2008. Phys. Rev. B 78:132505
    [Google Scholar]
  41. 40. 
    Schnyder AP, Manske D, Avella A 2011. Phys. Rev. B 84:214513
    [Google Scholar]
  42. 41. 
    Krull H, Manske D, Uhrig GS, Schnyder AP 2014. Phys. Rev. B 90:014515
    [Google Scholar]
  43. 42. 
    Tsuji N, Aoki H. 2015. Phys. Rev. B 92:064508
    [Google Scholar]
  44. 43. 
    Kemper AF, Sentef MA, Moritz B, Freericks JK, Devereaux TP 2015. Phys. Rev. B 92:224517
    [Google Scholar]
  45. 44. 
    Chou Y-Z, Liao Y, Foster MS 2017. Phys. Rev. B 95:104507
    [Google Scholar]
  46. 45. 
    Matsunaga R, Hamada YI, Makise K, Uzawa Y, Terai H et al. 2013. Phys. Rev. Lett. 111:057002
    [Google Scholar]
  47. 46. 
    Matsunaga R, Tsuji N, Fujita H, Sugioka A, Makise K et al. 2014. Science 345:1145–49
    [Google Scholar]
  48. 47. 
    Cea T, Castellani C, Benfatto L 2016. Phys. Rev. B 93:180507(R)
    [Google Scholar]
  49. 48. 
    Tsuji N, Murakami Y, Aoki H 2016. Phys. Rev. B 94:224519
    [Google Scholar]
  50. 49. 
    Matsunaga R, Tsuji N, Makise K, Terai H, Aoki H, Shimano R 2017. Phys. Rev. B 96:020505(R)
    [Google Scholar]
  51. 50. 
    Cea T, Barone P, Castellani C, Benfatto L 2018. Phys. Rev. B 97:094516
    [Google Scholar]
  52. 51. 
    Jujo T. 2015. J. Phys. Soc. Jpn. 84:114711
    [Google Scholar]
  53. 52. 
    Jujo T. 2018. J. Phys. Soc. Jpn. 87:024704
    [Google Scholar]
  54. 53. 
    Murotani Y, Shimano R. 2019. Phys. Rev. B 99:224510
    [Google Scholar]
  55. 54. 
    Silaev M. 2019. Phys. Rev. B 99:224511
    [Google Scholar]
  56. 55. 
    Katsumi K, Tsuji N, Hamada YI, Matsunaga R, Schneeloch J et al. 2018. Phys. Rev. Lett. 120:117001
    [Google Scholar]
  57. 56. 
    Chu H, Kim M-J, Katsumi K, Kovalev S, Dawson RD et al. 2019. arXiv1901.06675
  58. 57. 
    Moor A, Volkov AF, Efetov KB 2017. Phys. Rev. Lett. 118:047001
    [Google Scholar]
  59. 58. 
    Nakamura S, Iida Y, Murotani Y, Matsunaga R, Terai H, Shimano R 2019. Phys. Rev. Lett. 122:257001
    [Google Scholar]
  60. 59. 
    Vollhardt D, Wölfle P. 1990. The Superfluid Phases of Helium 3 London: Taylor & Francis
    [Google Scholar]
  61. 60. 
    Endres M, Fukuhara T, Pekker D, Cheneau M, Schauβ P et al. 2012. Nature 487:454–58
    [Google Scholar]
  62. 61. 
    Behrle A, Harrison T, Kombe J, Gao K, Link M et al. 2018. Nat. Phys. 14:781–85
    [Google Scholar]
  63. 62. 
    Rüegg C, Normand B, Matsumoto M, Furrer A, McMorrow DF et al. 2008. Phys. Rev. Lett. 100:205701
    [Google Scholar]
  64. 63. 
    Pekker D, Varma CM. 2015. Annu. Rev. Condens. Matter Phys. 6:269–97
    [Google Scholar]
  65. 64. 
    Abraham E, Tsuneto T. 1966. Phys. Rev. 152:416–32
    [Google Scholar]
  66. 65. 
    Schmid A. 1966. Phys. Kond. Mater. 5:302–17
    [Google Scholar]
  67. 66. 
    Caroli C, Maki K. 1967. Phys. Rev. 159:306–15
    [Google Scholar]
  68. 67. 
    Ebisawa H, Fukuyama H. 1971. Prog. Theoret. Phys. 46:1042–53
    [Google Scholar]
  69. 68. 
    Sá de Melo CAR, Randeria M, Engelbrecht JR 1993. Phys. Rev. Lett. 71:3202–5
    [Google Scholar]
  70. 69. 
    Tsuchiya S, Yamamoto D, Yoshii R, Nitta M 2018. Phys. Rev. B 98:094503
    [Google Scholar]
  71. 70. 
    Gor'kov LP, Eliashberg GM. 1968. Sov. Phys. J. Exp. Theoret. Phys. 27:328–34
    [Google Scholar]
  72. 71. 
    Gulian AM, Zharkov GF. 1999. Nonequilibrium Electrons and Phonons in Superconductors New York: Kluwer Acad./Plenum Publ.
    [Google Scholar]
  73. 72. 
    Kopnin N. 2001. Theory of Nonequilibrium Superconductivity Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  74. 73. 
    Schrieffer JR. 1999. Theory of Superconductivity Boca Raton: CRC Press
    [Google Scholar]
  75. 74. 
    Kihlstrom KE, Simon RW, Wolf SA 1985. Phys. Rev. B 32:1843–45(R)
    [Google Scholar]
  76. 75. 
    Brorson SD, Kazeroonian A, Moodera JS, Face DW, Cheng TK et al. 1990. Phys. Rev. Lett. 64:2172–75
    [Google Scholar]
  77. 76. 
    Chockalingam SP, Chand M, Jesudasan J, Tripathi V, Raychaudhuri P 2008. Phys. Rev. B 77:214503
    [Google Scholar]
  78. 77. 
    Aoki H, Tsuji N, Eckstein M, Kollar M, Oka T, Werner P 2014. Rev. Mod. Phys. 86:779–837
    [Google Scholar]
  79. 78. 
    Murakami Y, Werner P, Tsuji N, Aoki H 2016. Phys. Rev. B 93:094509
    [Google Scholar]
  80. 79. 
    Murakami Y, Werner P, Tsuji N, Aoki H 2016. Phys. Rev. B 94:115126
    [Google Scholar]
  81. 80. 
    Nosarzewski B, Moritz B, Freericks JK, Kemper AF, Devereaux TP 2017. Phys. Rev. B 96:184518
    [Google Scholar]
  82. 81. 
    Kumar A, Kemper AF. 2019. arXiv1902.09549
  83. 82. 
    Yu T, Wu MW. 2017. Phys. Rev. B 96:155311
    [Google Scholar]
  84. 83. 
    Yu T, Wu MW. 2017. Phys. Rev. B 96:155312
    [Google Scholar]
  85. 84. 
    Yang F, Wu MW. 2018. Phys. Rev. B 98:094507
    [Google Scholar]
  86. 85. 
    Yang F, Wu MW. 2019. Phys. Rev. B 100104513
    [Google Scholar]
  87. 86. 
    Leggett AJ. 1966. Prog. Theor. Phys. 36:901–30
    [Google Scholar]
  88. 87. 
    Akbari A, Schnyder AP, Manske D, Eremin I 2013. Europhys. Lett. 101:17002
    [Google Scholar]
  89. 88. 
    Krull H, Bittner N, Uhrig GS, Manske D, Schnyder AP 2016. Nat. Commun. 7:11921
    [Google Scholar]
  90. 89. 
    Cea T, Benfatto L. 2016. Phys. Rev. B 94:064512
    [Google Scholar]
  91. 90. 
    Murotani Y, Tsuji N, Aoki H 2017. Phys. Rev. B 95:104503
    [Google Scholar]
  92. 91. 
    Barlas Y, Varma CM. 2013. Phys. Rev. B 87:054503
    [Google Scholar]
  93. 92. 
    Peronaci F, Schiró M, Capone M 2015. Phys. Rev. Lett. 115:257001
    [Google Scholar]
  94. 93. 
    Foster MS, Dzero M, Gurarie V, Yuzbashyan EA 2013. Phys. Rev. B 88:104511
    [Google Scholar]
  95. 94. 
    Fauseweh B, Schwarz L, Tsuji N, Cheng N, Bittner N et al. 2017. arXiv1712.07989
  96. 95. 
    Grasset R, Gallais Y, Sacuto A, Cazayous M, Mañas-Valero S et al. 2019. Phys. Rev. Lett. 122:127001
    [Google Scholar]
  97. 96. 
    Hebling J, Yeh KL, Hoffmann MC, Bartal B, Nelson KA 2008. J. Opt. Soc. Am. B 25:B6–19
    [Google Scholar]
  98. 97. 
    Watanabe S, Minami N, Shimano R 2011. Opt. Express 19:1528–38
    [Google Scholar]
  99. 98. 
    Shimano R, Watanabe S, Matsunaga R 2012. J. Infrared Millim. Terahertz Waves 33:861–69
    [Google Scholar]
  100. 99. 
    Matsunaga R, Shimano R. 2012. Phys. Rev. Lett. 109:187002
    [Google Scholar]
  101. 100. 
    Matsunaga R, Shimano R. 2017. Phys. Scr. 92:024003
    [Google Scholar]
  102. 101. 
    Beck M, Klammer M, Lang S, Leiderer P, Kabanov VV et al. 2011. Phys. Rev. Lett. 107:177007
    [Google Scholar]
  103. 102. 
    Mansart B, Lorenzana J, Mann A, Odeh A, Scarongella M et al. 2013. PNAS 110:4539–44
    [Google Scholar]
  104. 103. 
    Gor'kov LP, Eliashberg GM. 1969. Sov. Phys. J. Exp. Theoret. Phys. 29:698–703
    [Google Scholar]
  105. 104. 
    Amato JC, McLean WL. 1976. Phys. Rev. Lett. 37:930–33
    [Google Scholar]
  106. 105. 
    Entin-Wohlman O. 1978. Phys. Rev. B 18:4762–67
    [Google Scholar]
  107. 106. 
    Bardasis A, Schrieffer JR. 1961. Phys. Rev. 121:1050–62
    [Google Scholar]
  108. 107. 
    Mattis DC, Bardeen J. 1958. Phys. Rev. 111:412–17
    [Google Scholar]
  109. 108. 
    Zimmermann W, Brandt EH, Bauer M, Seider E, Genzel L 1991. Phys. C: Supercondens. 183:99–104
    [Google Scholar]
  110. 109. 
    Podolsky D, Auerbach A, Arovas DP 2011. Phys. Rev. B 84:174522
    [Google Scholar]
  111. 110. 
    Gazit S, Podolsky D, Auerbach A 2013. Phys. Rev. Lett. 110:140401
    [Google Scholar]
  112. 111. 
    Sachdev S. 1999. Phys. Rev. B 59:14054–73
    [Google Scholar]
  113. 112. 
    Zwerger W. 2004. Phys. Rev. Lett. 92:027203
    [Google Scholar]
  114. 113. 
    Sherman D, Pracht US, Gorshunov B, Poran S, Jesudasan J et al. 2015. Nat. Phys. 11:188–92
    [Google Scholar]
  115. 114. 
    Cea T, Bucheli D, Seibold G, Benfatto L, Lorenzana J, Castellani C 2014. Phys. Rev. B 89:174506
    [Google Scholar]
  116. 115. 
    Cea T, Castellani C, Seibold G, Benfatto L 2015. Phys. Rev. Lett. 115:157002
    [Google Scholar]
  117. 116. 
    Pracht US, Cea T, Bachar N, Deutscher G, Farber E et al. 2017. Phys. Rev. B 96:094514
    [Google Scholar]
  118. 117. 
    Seibold G, Benfatto L, Castellani C 2017. Phys. Rev. B 96:144507
    [Google Scholar]
  119. 118. 
    Cheng B, Wu L, Laurita NJ, Singh H, Chand M et al. 2016. Phys. Rev. B 93:180511
    [Google Scholar]
  120. 119. 
    Maiti S, Hirschfeld PJ. 2015. Phys. Rev. B 92:094506
    [Google Scholar]
  121. 120. 
    Müller MA, Shen P, Dzero M, Eremin I 2018. Phys. Rev. B 98:024522
    [Google Scholar]
  122. 121. 
    Blumberg G, Mialitsin A, Dennis BS, Klein MV, Zhigadlo ND, Karpinski J 2007. Phys. Rev. Lett. 99:227002
    [Google Scholar]
  123. 122. 
    Giorgianni F, Cea T, Vicario C, Hauri CP, Withanage WK et al. 2019. Nat. Phys. 15:341–46
    [Google Scholar]
  124. 123. 
    Scott RG, Dalfovo F, Pitaevskii LP, Stringari S 2012. Phys. Rev. A 86:053604
    [Google Scholar]
  125. 124. 
    Yuzbashyan EA, Dzero M, Gurarie V, Foster MS 2015. Phys. Rev. A 91:033628
    [Google Scholar]
  126. 125. 
    Tokimoto J, Tsuchiya S, Nikuni T 2019. J. Phys. Soc. Jpn. 88:023601
    [Google Scholar]
  127. 126. 
    Wölfle P. 1977. Physica B 90:96–106
    [Google Scholar]
  128. 127. 
    Fausti D, Tobey RI, Dean N, Kaiser S, Dienst A et al. 2011. Science 331:189–91
    [Google Scholar]
  129. 128. 
    Kaiser S, Hunt CR, Nicoletti D, Hu W, Gierz I et al. 2014. Phys. Rev. B 89:184516
    [Google Scholar]
  130. 129. 
    Hu W, Kaiser S, Nicoletti D, Hunt CR, Gierz I et al. 2014. Nat. Mater. 13:705–11
    [Google Scholar]
  131. 130. 
    Mitrano M, Cantaluppi A, Nicoletti D, Kaiser S, Perucchi A et al. 2016. Nature 530:461–64
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031119-050813
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050813
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error