1932

Abstract

The quantum-mechanical description of assemblies of particles whose motion is confined to two (or one) spatial dimensions offers many possibilities that are distinct from bosons and fermions. We call such particles anyons. The simplest anyons are parameterized by an angular phase parameter θ. θ = 0, π correspond to bosons and fermions, respectively; at intermediate values, we say that we have fractional statistics. In two dimensions, θ describes the phase acquired by the wave function as two anyons wind around one another counterclockwise. It generates a shift in the allowed values for the relative angular momentum. Composites of localized electric charge and magnetic flux associated with an abelian U(1) gauge group realize this behavior. More complex charge-flux constructions can involve nonabelian and product groups acting on a spectrum of allowed charges and fluxes, giving rise to nonabelian and mutual statistics. Interchanges of nonabelian anyons implement unitary transformations of the wave function within an emergent space of internal states. Anyons of all kinds are described by quantum field theories that include Chern–Simons terms. The crossings of one-dimensional anyons on a ring are unidirectional, such that a fractional phase θ acquired upon interchange gives rise to fractional shifts in the relative momenta between the anyons. The quasiparticle excitations of fractional quantum Hall states have long been predicted to include anyons. Recently, the anyon behavior predicted for quasiparticles in the ν = 1/3 fractional quantum Hall state has been observed in both scattering and interferometric experiments. Excitations within designed systems, notably including superconducting circuits, can exhibit anyon behavior. Such systems are being developed for possible use in quantum information processing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040423-014045
2024-03-11
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-040423-014045.html?itemId=/content/journals/10.1146/annurev-conmatphys-040423-014045&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Finkelstein D, Rubinstein J. 1968. J. Math. Phys. 9:1762–79
    [Google Scholar]
  2. 2.
    Wilczek F. 1990. Fractional Statistics and Anyon Superconductivity Singapore: World Sci.
    [Google Scholar]
  3. 3.
    Leinaas JM, Myrheim J. 1977. Nuovo Cim. B 37:1–23
    [Google Scholar]
  4. 4.
    Goldin GA, Menikoff R, Sharp DH. 1981. J. Math. Phys. 22:1664–68
    [Google Scholar]
  5. 5.
    Feynman RP, Hibbs A. 1965. Quantum Mechanics and Path Integrals New York: McGraw-Hill
    [Google Scholar]
  6. 6.
    Kauffman LH. 1993. Knots and Physics Singapore: World Sci.
    [Google Scholar]
  7. 7.
    Wilczek F. 1982. Phys. Rev. Lett. 48:171144–46
    [Google Scholar]
  8. 8.
    Wilczek F. 1982. Phys. Rev. Lett. 49:14957–59
    [Google Scholar]
  9. 9.
    Goldhaber AS, MacKenzie R, Wilczek F. 1989. Mod. Phys. Lett. A 4:21–31
    [Google Scholar]
  10. 10.
    Halperin BI. 1984. Phys. Rev. Lett. 52:181583–86 Erratum. 1984. Phys. Rev. Lett. 52:2390(E)
    [Google Scholar]
  11. 11.
    Arovas D, Schrieffer JR, Wilczek F. 1984. Phys. Rev. Lett. 53:7722–23
    [Google Scholar]
  12. 12.
    Greiter M, Wilczek F. 2021. Phys. Rev. B 104:12L121111
    [Google Scholar]
  13. 13.
    Einarsson T. 1990. Phys. Rev. Lett. 64:1995–98
    [Google Scholar]
  14. 14.
    Arovas DP, Schrieffer R, Wilczek F, Zee A. 1985. Nucl. Phys. B 251:117–26
    [Google Scholar]
  15. 15.
    Dunne GV 1999. Topological Aspects of Low Dimensional Systems 69 Les Houches - Ecole d'Ete de Physique Theorique A Comtet, T Jolicoeur, S Ouvry, F David 177–263 New York: Springer
    [Google Scholar]
  16. 16.
    Kalmeyer V, Laughlin RB. 1987. Phys. Rev. Lett. 59:182095–98
    [Google Scholar]
  17. 17.
    Kitaev A. 2006. Ann. Phys. 321:2–111
    [Google Scholar]
  18. 18.
    Greiter M, Thomale R. 2009. Phys. Rev. Lett. 102:207203
    [Google Scholar]
  19. 19.
    Laughlin RB 1990. Fractional Statistics and Anyon Superconductivity F Wilczek Singapore: World Sci.
    [Google Scholar]
  20. 20.
    Laughlin RB. 1983. Phys. Rev. Lett. 50:181395–98
    [Google Scholar]
  21. 21.
    Haldane FDM, Rezayi EH. 1985. Phys. Rev. B 31:42529–31
    [Google Scholar]
  22. 22.
    Tsui DC, Stormer HL, Gossard AC. 1982. Phys. Rev. Lett. 48:221559–62
    [Google Scholar]
  23. 23.
    Papić Z, Balram AC 2023. Encyclopedia of Condensed Matter Physics, 2nd edition T Chakraborty Amsterdam: Elsevier Inc.
    [Google Scholar]
  24. 24.
    Yoshioka D, Halperin BI, Lee PA. 1983. Phys. Rev. Lett. 50:161219–22
    [Google Scholar]
  25. 25.
    Haldane FDM. 1983. Phys. Rev. Lett. 51:7605–8
    [Google Scholar]
  26. 26.
    Greiter M. 1997. Physica E 1:1–6
    [Google Scholar]
  27. 27.
    Berry MV. 1984. Proc. R. Soc. Lond. A 392:45–57
    [Google Scholar]
  28. 28.
    Shapere A, Wilczek F. 1989. Geometric Phases in Physics Singapore: World Scientific
    [Google Scholar]
  29. 29.
    Haldane FDM. 1991. Phys. Rev. Lett. 67:8937–40
    [Google Scholar]
  30. 30.
    Haldane FDM. 1988. Phys. Rev. Lett. 60:7635–38
    [Google Scholar]
  31. 31.
    Shastry BS. 1988. Phys. Rev. Lett. 60:7639–42
    [Google Scholar]
  32. 32.
    Haldane FDM, Ha ZNC, Talstra JC, Bernard D, Pasquier V. 1992. Phys. Rev. Lett. 69:2021–25
    [Google Scholar]
  33. 33.
    Greiter M. 2011. Mapping of Parent Hamiltonians: From Abelian and non-Abelian Quantum Hall States to Exact Models of Critical Spin Chains. 244 Springer Tracts in Modern Physics. Berlin/Heidelberg: Springer
    [Google Scholar]
  34. 34.
    Korepin VE, Bogoliubov NM, Izergin AG. 1997. Quantum Inverse Scattering Method and Correlation Functions Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  35. 35.
    Talstra JC, Haldane FDM. 1995. J. Phys. A: Math. Gen. 28:2369–77
    [Google Scholar]
  36. 36.
    Greiter M. 2009. Phys. Rev. B 79:6064409
    [Google Scholar]
  37. 37.
    Bernevig BA, Giuliano D, Laughlin RB. 2001. Phys. Rev. Lett. 86:153392–95
    [Google Scholar]
  38. 38.
    Greiter M, Schuricht D. 2005. Phys. Rev. B 71:22224424
    [Google Scholar]
  39. 39.
    Kuramoto Y, Yokoyama H. 1991. Phys. Rev. Lett. 67:101338–41
    [Google Scholar]
  40. 40.
    Thomale R, Schuricht D, Greiter M. 2006. Phys. Rev. B 74:2024423
    [Google Scholar]
  41. 41.
    Alicea J. 2012. Rep. Prog. Phys. 75:076501
    [Google Scholar]
  42. 42.
    Fradkin E, Kadanoff LP. 1980. Nuclear Phys. B 170:1–15
    [Google Scholar]
  43. 43.
    Alicea J, Fendley P. 2016. Annu. Rev. Condens. Matter Phys. 7:119–39
    [Google Scholar]
  44. 44.
    Moore G, Read N. 1991. Nucl. Phys. B 360:362–96
    [Google Scholar]
  45. 45.
    Greiter M, Wen XG, Wilczek F. 1991. Phys. Rev. Lett. 66:3205–8
    [Google Scholar]
  46. 46.
    Greiter M, Wen X, Wilczek F. 1992. Nucl. Phys. B 374:567–614
    [Google Scholar]
  47. 47.
    Willett R, Eisenstein JP, Störmer HL, Tsui DC, Gossard AC, English JH. 1987. Phys. Rev. Lett. 59:151776–79
    [Google Scholar]
  48. 48.
    Schrieffer JR. 1964. Theory of Superconductivity New York: Benjamin/Addison Wesley
    [Google Scholar]
  49. 49.
    Greiter M. 2005. Ann. Phys. 319:217–49
    [Google Scholar]
  50. 50.
    Nayak C, Wilczek F. 1996. Nucl. Phys. B 479:529–53
    [Google Scholar]
  51. 51.
    Read N, Green D. 2000. Phys. Rev. B 61:1510267–97
    [Google Scholar]
  52. 52.
    Freedman MH, Kitaev A, Wang Z. 2002. Commun. Math. Phys. 227:587–603
    [Google Scholar]
  53. 53.
    Nayak C, Simon SH, Stern A, Freedman M, Das Sarma S. 2008. Rev. Mod. Phys. 80:31083–159
    [Google Scholar]
  54. 54.
    Stern A. 2010. Nature 464:187–93
    [Google Scholar]
  55. 55.
    de Gennes PG. 1966. Superconductivity of Metals and Alloys New York: Benjamin/Addison Wesley
    [Google Scholar]
  56. 56.
    Ivanov DA. 2001. Phys. Rev. Lett. 86:2268–71
    [Google Scholar]
  57. 57.
    Read N, Rezayi E. 1999. Phys. Rev. B 59:128084–92
    [Google Scholar]
  58. 58.
    Trebst S, Troyer M, Wang Z, Ludwig AWW. 2008. Prog. Theor. Phys. Suppl. 176:384–407
    [Google Scholar]
  59. 59.
    Bonesteel N 2023. Encyclopedia of Condensed Matter Physics T Chakraborty Amsterdam: Elsevier, 2nd ed..
    [Google Scholar]
  60. 60.
    Ardonne E, Schoutens K. 1999. Phys. Rev. Lett. 82:255096–99
    [Google Scholar]
  61. 61.
    Vaezi A, Barkeshli M. 2014. Phys. Rev. Lett. 113:23236804
    [Google Scholar]
  62. 62.
    Bouwknegt P, Schoutens K. 1999. Nucl. Phys. B 547:501–37
    [Google Scholar]
  63. 63.
    Greiter M, Haldane FDM, Thomale R. 2019. Phys. Rev. B 100:11115107
    [Google Scholar]
  64. 64.
    Bartolomei H, Kumar M, Bisognin R, Marguerite A, Berroir JM et al. 2020. Science 368:6487173–77
    [Google Scholar]
  65. 65.
    Hanbury Brown R, Twiss RQ 1956. Nature 178:45411046–48
    [Google Scholar]
  66. 66.
    Baym G. 1998. Acta Phys. Pol. B 29:71839–84
    [Google Scholar]
  67. 67.
    Vishveshwara S. 2003. Phys. Rev. Lett. 91:19196803
    [Google Scholar]
  68. 68.
    Rosenow B, Levkivskyi IP, Halperin BI. 2016. Phys. Rev. Lett. 116:15156802
    [Google Scholar]
  69. 69.
    Nakamura J, Liang S, Gardner GC, Manfra MJ. 2020. Nat. Phys. 16:931–36
    [Google Scholar]
  70. 70.
    Nakamura J, Liang S, Gardner GC, Manfra MJ. 2022. Nat. Commun. 13:344
    [Google Scholar]
  71. 71.
    Nakamura J, Liang S, Gardner GC, Manfra MJ. 2023. arXiv:2304.12415
  72. 72.
    Lu CY, Gao WB, Gühne O, Zhou XQ, Chen ZB, Pan JW. 2009. Phys. Rev. Lett. 102:3030502
    [Google Scholar]
  73. 73.
    Dai HN, Yang B, Reingruber A, Sun H, Xu XF et al. 2017. Nat. Phys. 13:1195–200
    [Google Scholar]
  74. 74.
    Song C, Xu D, Zhang P, Wang J, Guo Q et al. 2018. Phys. Rev. Lett. 121:3030502
    [Google Scholar]
  75. 75.
    Andersen TI, Lensky YD, Kechedzhi K, Drozdov I, Bengtsson A et al. 2022. arXiv:2210.10255
  76. 76.
    Karzig T, Knapp C, Lutchyn RM, Bonderson P, Hastings MB et al. 2017. Phys. Rev. B 95:23235305
    [Google Scholar]
  77. 77.
    Kitaev AY. 2001. Phys.–Usp. 44:10S131–36
    [Google Scholar]
  78. 78.
    Regnault N, Bernevig BA. 2011. Phys. Rev. X 1:2021014
    [Google Scholar]
  79. 79.
    Savary L, Balents L. 2016. Rep. Prog. Phys. 80:016502
    [Google Scholar]
  80. 80.
    Kitaev AY. 2003. Ann. Phys. 303:2–30
    [Google Scholar]
  81. 81.
    Wigner EP. 1948. Phys. Rev. 73:91002–9
    [Google Scholar]
  82. 82.
    Morampudi SC, Turner AM, Pollmann F, Wilczek F. 2017. Phys. Rev. Lett. 118:22227201
    [Google Scholar]
  83. 83.
    Greiter M, Wilczek F. 1990. Mod. Phys. Lett. B 4:1063–69
    [Google Scholar]
  84. 84.
    Hansson TH, Kivelson SA. 2022. Frank Wilczek: 50 Years of Theoretical Physics World Sci.
    [Google Scholar]
  85. 85.
    Nigg D, Müller M, Martinez EA, Schindler P, Hennrich M et al. 2014. Science 345:6194302–5
    [Google Scholar]
  86. 86.
    Radu E, Volkov MS. 2008. Phys. Rep. 468:4101–51
    [Google Scholar]
  87. 87.
    Garaud J, Niemi AJ. 2022. J. High Energy Phys. 2022:9154
    [Google Scholar]
  88. 88.
    Hasegawa A, Kodama Y. 1995. Solitons in Optical Communications Oxford: Clarendon
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040423-014045
Loading
/content/journals/10.1146/annurev-conmatphys-040423-014045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error