1932

Abstract

Solar cells are semiconductor devices that generate electricity through charge generation upon illumination. For optimal device efficiency, the photogenerated carriers must reach the electrical contact layers before they recombine. A deep understanding of the recombination process and transport behavior is essential to design better devices. Halide perovskite solar cells are commonly made of a polycrystalline absorber layer, but there is no consensus on the nature and role of grain boundaries. This review concerns theoretical approaches for the investigation of extended defects. We introduce recent computational studies on grain boundaries, and their influence on point-defect distributions, in halide perovskite solar cells. We conclude with a discussion of future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-042020-025347
2021-03-10
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/12/1/annurev-conmatphys-042020-025347.html?itemId=/content/journals/10.1146/annurev-conmatphys-042020-025347&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009. J. Am. Chem. Soc. 131:6050–51
    [Google Scholar]
  2. 2. 
    Huang J, Yuan Y, Shao Y, Yan Y 2017. Nat. Rev. Mater. 2:17042
    [Google Scholar]
  3. 3. 
    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N et al. 2014. J. Phys. Chem. Lett. 5:1004–11
    [Google Scholar]
  4. 4. 
    Noh JH, Im SH, Heo JH, Mandal TN, Seok SI 2013. Nano Lett. 13:1764–69
    [Google Scholar]
  5. 5. 
    Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ et al. 2013. Science 342:341–44
    [Google Scholar]
  6. 6. 
    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E et al. 2015. Science 347:519–22
    [Google Scholar]
  7. 7. 
    Tong J, Song Z, Kim DH, Chen X, Chen C et al. 2019. Science 364:475–79
    [Google Scholar]
  8. 8. 
    Steirer KX, Schulz P, Teeter G, Stevanovic V, Yang M et al. 2016. ACS Energy Lett. 1:360–66
    [Google Scholar]
  9. 9. 
    Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI 2014. Nat. Mater. 13:897–903
    [Google Scholar]
  10. 10. 
    Snaith HJ 2013. J. Phys. Chem. Lett. 4:3623–30
    [Google Scholar]
  11. 11. 
    Sahli F, Werner J, Kamino BA, Bräuninger M, Monnard R et al. 2018. Nat. Mater. 17:820–26
    [Google Scholar]
  12. 12. 
    Li Z, Klein TR, Kim DH, Yang M, Berry JJ et al. 2018. Nat. Rev. Mater. 3:18017
    [Google Scholar]
  13. 13. 
    Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ et al. 2019. Nature 567:511–15
    [Google Scholar]
  14. 14. 
    Bai S, Da P, Li C, Wang Z, Yuan Z et al. 2019. Nature 571:245–50
    [Google Scholar]
  15. 15. 
    Wang Q, Chen B, Liu Y, Deng Y, Bai Y et al. 2017. Energy Environ. Sci. 10:516–22
    [Google Scholar]
  16. 16. 
    Lee JW, Bae SH, De Marco N, Hsieh YT, Dai Z, Yang Y 2018. Mater. Today Energy 7:149–60
    [Google Scholar]
  17. 17. 
    Tennyson EM, Doherty TA, Stranks SD 2019. Nat. Rev. Mater. 4:573–87
    [Google Scholar]
  18. 18. 
    Castro-Méndez AF, Hidalgo J, Correa-Baena JP 2019. Adv. Energy Mater. 9:1901489
    [Google Scholar]
  19. 19. 
    Luo D, Su R, Zhang W, Gong Q, Zhu R 2020. Nat. Rev. Mater. 5:44–60
    [Google Scholar]
  20. 20. 
    Han TH, Tan S, Xue J, Meng L, Lee JW, Yang Y 2019. Adv. Mater. 31:1803515
    [Google Scholar]
  21. 21. 
    Chen J, Park NG 2019. Adv. Mater. 31:1803019
    [Google Scholar]
  22. 22. 
    Stranks SD 2017. ACS Energy Lett. 2:1515–25
    [Google Scholar]
  23. 23. 
    Sutton AP, Balluffi RW 2006. Interfaces in Crystalline Materials Oxford, UK: Clarendon
    [Google Scholar]
  24. 24. 
    Cai W, Nix WD 2016. Imperfections in Crystalline Solids Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  25. 25. 
    Yin D, Chen C, Saito M, Inoue K, Ikuhara Y 2019. Nat. Mater. 18:19–23
    [Google Scholar]
  26. 26. 
    Lu K 2016. Nat. Rev. Mater. 1:16019
    [Google Scholar]
  27. 27. 
    Visoly-Fisher I, Cohen SR, Gartsman K, Ruzin A, Cahen D 2006. Adv. Funct. Mater. 16:649–60
    [Google Scholar]
  28. 28. 
    Li C, Wu Y, Pennycook TJ, Lupini AR, Leonard DN et al. 2013. Phys. Rev. Lett. 111:096403
    [Google Scholar]
  29. 29. 
    Visoly-Fisher I, Cohen SR, Ruzin A, Cahen D 2004. Adv. Mater. 16:879–83
    [Google Scholar]
  30. 30. 
    Li C, Wu Y, Poplawsky J, Pennycook TJ, Paudel N et al. 2014. Phys. Rev. Lett. 112:156103
    [Google Scholar]
  31. 31. 
    Chen C, Li K, Chen S, Wang L, Lu S et al. 2018. ACS Energy Lett. 3:2335–41
    [Google Scholar]
  32. 32. 
    Xu J, Liu JB, Liu BX, Wang J, Huang B 2019. Adv. Funct. Mater. 29:1805870
    [Google Scholar]
  33. 33. 
    Lu J, Wagener M, Rozgonyi G, Rand J, Jonczyk R 2003. J. Appl. Phys. 94:140–44
    [Google Scholar]
  34. 34. 
    Kohyama M, Yamamoto R, Ebata Y, Kinoshita M 1988. J. Phys. C: Solid State Phys. 21:3205–15
    [Google Scholar]
  35. 35. 
    Chelikowsky JR 1982. Phys. Rev. Lett. 49:1569–72
    [Google Scholar]
  36. 36. 
    Klie R, Buban J, Varela M, Franceschetti A, Jooss C et al. 2005. Nature 435:475–78
    [Google Scholar]
  37. 37. 
    Kuo JJ, Kang SD, Imasato K, Tamaki H, Ohno S et al. 2018. Energy Environ. Sci. 11:429–34
    [Google Scholar]
  38. 38. 
    Yan Y, Al-Jassim M, Jones K 2003. J. Appl. Phys. 94:2976–79
    [Google Scholar]
  39. 39. 
    Park JS, Kang J, Yang JH, Metzger W, Wei SH 2015. New J. Phys. 17:013027
    [Google Scholar]
  40. 40. 
    Park JS, Yang JH, Barnes T, Wei SH 2016. Appl. Phys. Lett. 109:042105
    [Google Scholar]
  41. 41. 
    Moseley J, Metzger WK, Moutinho HR, Paudel N, Guthrey HL et al. 2015. J. Appl. Phys. 118:025702
    [Google Scholar]
  42. 42. 
    Read WT, Shockley W 1950. Phys. Rev. 78:275–89
    [Google Scholar]
  43. 43. 
    Kliewer K, Koehler J 1965. Phys. Rev. 140:A1226–40
    [Google Scholar]
  44. 44. 
    Desu SB, Payne DA 1990. J. Am. Ceramic Soc. 73:3391–97
    [Google Scholar]
  45. 45. 
    Gregori G, Merkle R, Maier J 2017. Progress Mater. Sci. 89:252–305
    [Google Scholar]
  46. 46. 
    Grovenor C 1985. J. Phys. C: Solid State Phys. 18:4079–119
    [Google Scholar]
  47. 47. 
    Seto JY 1975. J. Appl. Phys. 46:5247–54
    [Google Scholar]
  48. 48. 
    Landsberg P, Abrahams M 1984. J. Appl. Phys. 55:4284–93
    [Google Scholar]
  49. 49. 
    Card HC, Yang ES 1977. IEEE Trans. Electron Devices 24:397–402
    [Google Scholar]
  50. 50. 
    Nelson J 2003. The Physics of Solar Cells London: Imp. Coll. Press
    [Google Scholar]
  51. 51. 
    Oualid J, Singal C, Dugas J, Crest J, Amzil H 1984. J. Appl. Phys. 55:1195–205
    [Google Scholar]
  52. 52. 
    Edmiston S, Heiser G, Sproul A, Green M 1996. J. Appl. Phys. 80:6783–95
    [Google Scholar]
  53. 53. 
    Kim S, Prieto JAM, Unold T, Walsh A 2020. Energy Environ. Sci. 13:1481–91
    [Google Scholar]
  54. 54. 
    Hasson G, Guillot J, Baroux B, Goux C 1970. Phys. Status Solidi (A) 2:551–58
    [Google Scholar]
  55. 55. 
    Weins MJ 1972. Surf. Sci. 31:138–60
    [Google Scholar]
  56. 56. 
    Olmsted DL, Foiles SM, Holm EA 2009. Acta Mater. 57:3694–703
    [Google Scholar]
  57. 57. 
    Holm EA, Olmsted DL, Foiles SM 2010. Scr. Mater. 63:905–8
    [Google Scholar]
  58. 58. 
    Restrepo SE, Giraldo ST, Thijsse BJ 2013. Model. Simul. Mater. Sci. Eng. 21:055017
    [Google Scholar]
  59. 59. 
    Ratanaphan S, Olmsted DL, Bulatov VV, Holm EA, Rollett AD, Rohrer GS 2015. Acta Mater. 88:346–54
    [Google Scholar]
  60. 60. 
    de Silva CG 1980. Phys. Rev. B 22:5945–52
    [Google Scholar]
  61. 61. 
    Thomson R, Chadi D 1984. Phys. Rev. B 29:889–92
    [Google Scholar]
  62. 62. 
    Chadi D 1985. Phys. Rev. B 32:6485–89
    [Google Scholar]
  63. 63. 
    Paxton A, Sutton A 1988. J. Phys. C: Solid State Phys. 21:L481–88
    [Google Scholar]
  64. 64. 
    DiVincenzo D, Alerhand O, Schlüter M, Wilkins J 1986. Phys. Rev. Lett. 56:1925–28
    [Google Scholar]
  65. 65. 
    Graser S, Hirschfeld PJ, Kopp T, Gutser R, Andersen BM, Mannhart J 2010. Nat. Phys. 6:609–14
    [Google Scholar]
  66. 66. 
    Lee GD, Yoon E, Wang CZ, Ho KM 2013. J. Phys. Condens. Matter 25:155301
    [Google Scholar]
  67. 67. 
    Kohn W 1999. Rev. Mod. Phys. 71:1253–66
    [Google Scholar]
  68. 68. 
    Whalley LD, Frost JM, Jung YK, Walsh A 2017. J. Chem. Phys. 146:220901
    [Google Scholar]
  69. 69. 
    Park JS, Jung YK, Butler KT, Walsh A 2018. J. Phys. Energy 1:016001
    [Google Scholar]
  70. 70. 
    Perdew JP 1985. Int. J. Quantum Chem. 28:497–523
    [Google Scholar]
  71. 71. 
    Heyd J, Scuseria GE, Ernzerhof M 2003. J. Chem. Phys. 118:8207–15
    [Google Scholar]
  72. 72. 
    Heyd J, Peralta JE, Scuseria GE, Martin RL 2005. J. Chem. Phys. 123:174101
    [Google Scholar]
  73. 73. 
    Yin WJ, Wu Y, Noufi R, Al-Jassim M, Yan Y 2013. Appl. Phys. Lett. 102:193905
    [Google Scholar]
  74. 74. 
    Yin WJ, Wu Y, Wei SH, Noufi R, Al-Jassim MM, Yan Y 2014. Adv. Energy Mater. 4:1300712
    [Google Scholar]
  75. 75. 
    Park JS 2019. Phys. Rev. Mater. 3:014602
    [Google Scholar]
  76. 76. 
    Pan J, Metzger WK, Lany S 2018. Phys. Rev. B 98:054108
    [Google Scholar]
  77. 77. 
    Park JS 2020. Curr. Appl. Phys. 20:379–83
    [Google Scholar]
  78. 78. 
    Humphreys F 2001. J. Mater. Sci. 36:3833–54
    [Google Scholar]
  79. 79. 
    Liebscher CH, Stoffers A, Alam M, Lymperakis L, Cojocaru-Mirédin O et al. 2018. Phys. Rev. Lett. 121:015702
    [Google Scholar]
  80. 80. 
    Chua ALS, Benedek NA, Chen L, Finnis MW, Sutton AP 2010. Nat. Mater. 9:418–22
    [Google Scholar]
  81. 81. 
    Marquis E, Hamilton J, Medlin D, Léonard F 2004. Phys. Rev. Lett. 93:156101
    [Google Scholar]
  82. 82. 
    Yun JS, Ho-Baillie A, Huang S, Woo SH, Heo Y et al. 2015. J. Phys. Chem. Lett. 6:875–80
    [Google Scholar]
  83. 83. 
    de Quilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE et al. 2015. Science 348:683–86
    [Google Scholar]
  84. 84. 
    Kim GY, Oh SH, Nguyen BP, Jo W, Kim BJ et al. 2015. J. Phys. Chem. Lett. 6:2355–62
    [Google Scholar]
  85. 85. 
    Li JJ, Ma JY, Ge QQ, Hu JS, Wang D, Wan LJ 2015. ACS Appl. Mater. Interfaces 7:28518–23
    [Google Scholar]
  86. 86. 
    Yun JS, Seidel J, Kim J, Soufiani AM, Huang S et al. 2016. Adv. Energy Mater. 6:1600330
    [Google Scholar]
  87. 87. 
    Faraji N, Qin C, Matsushima T, Adachi C, Seidel J 2018. J. Phys. Chem. C 122:4817–21
    [Google Scholar]
  88. 88. 
    MacDonald GA, Yang M, Berweger S, Killgore JP, Kabos P et al. 2016. Energy Environ. Sci. 9:3642–49
    [Google Scholar]
  89. 89. 
    Reid OG, Yang M, Kopidakis N, Zhu K, Rumbles G 2016. ACS Energy Lett. 1:561–65
    [Google Scholar]
  90. 90. 
    Yang M, Zeng Y, Li Z, Kim DH, Jiang CS et al. 2017. Phys. Chem. Chem. Phys. 19:5043–50
    [Google Scholar]
  91. 91. 
    Snaider JM, Guo Z, Wang T, Yang M, Yuan L et al. 2018. ACS Energy Lett. 3:1402–8
    [Google Scholar]
  92. 92. 
    Sherkar TS, Momblona C, Gil-Escrig L, Avila J, Sessolo M et al. 2017. ACS Energy Lett. 2:1214–22
    [Google Scholar]
  93. 93. 
    Adhyaksa GW, Brittman S, Āboliņš H, Lof A, Li X et al. 2018. Adv. Mater. 30:1804792
    [Google Scholar]
  94. 94. 
    Yin WJ, Chen H, Shi T, Wei SH, Yan Y 2015. Adv. Electron. Mater. 1:1500044
    [Google Scholar]
  95. 95. 
    Yin WJ, Shi T, Yan Y 2014. Appl. Phys. Lett. 104:063903
    [Google Scholar]
  96. 96. 
    Guo Y, Wang Q, Saidi WA 2017. J. Phys. Chem. C 121:1715–22
    [Google Scholar]
  97. 97. 
    Thind AS, Luo G, Hachtel JA, Morrell MV, Cho SB et al. 2019. Adv. Mater. 31:1805047
    [Google Scholar]
  98. 98. 
    Du MH 2015. J. Phys. Chem. Lett. 6:1461–66
    [Google Scholar]
  99. 99. 
    Meggiolaro D, Motti SG, Mosconi E, Barker AJ, Ball J et al. 2018. Energy Environ. Sci. 11:702–13
    [Google Scholar]
  100. 100. 
    Shan W, Saidi WA 2017. J. Phys. Chem. Lett. 8:5935–42
    [Google Scholar]
  101. 101. 
    Park JS, Calbo J, Jung YK, Whalley LD, Walsh A 2019. ACS Energy Lett. 4:1321–27
    [Google Scholar]
  102. 102. 
    Whalley LD, Crespo-Otero R, Walsh A 2017. ACS Energy Lett. 2:2713–14
    [Google Scholar]
  103. 103. 
    Yang JH, Yin WJ, Park JS, Wei SH 2016. J. Mater. Chem. A 4:13105–12
    [Google Scholar]
  104. 104. 
    Futscher MH, Lee JM, McGovern L, Muscarella LA, Wang T et al. 2019. Mater. Horiz. 6:1497–503
    [Google Scholar]
  105. 105. 
    Meggiolaro D, Mosconi E, De Angelis F 2019. ACS Energy Lett. 4:779–85
    [Google Scholar]
  106. 106. 
    Hentz O, Singh A, Zhao Z, Gradečak S 2019. Small Methods 3:1900110
    [Google Scholar]
  107. 107. 
    Shao Y, Fang Y, Li T, Wang Q, Dong Q et al. 2016. Energy Environ. Sci. 9:1752–59
    [Google Scholar]
  108. 108. 
    Xing J, Wang Q, Dong Q, Yuan Y, Fang Y, Huang J 2016. Phys. Chem. Chem. Phys. 18:30484–90
    [Google Scholar]
  109. 109. 
    McKenna KP 2018. ACS Energy Lett. 3:2663–68
    [Google Scholar]
  110. 110. 
    Long R, Liu J, Prezhdo OV 2016. J. Am. Chem. Soc. 138:3884–90
    [Google Scholar]
  111. 111. 
    Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S et al. 2015. Nature 517:476–80
    [Google Scholar]
  112. 112. 
    Zheng X, Chen B, Dai J, Fang Y, Bai Y et al. 2017. Nat. Energy 2:17102
    [Google Scholar]
  113. 113. 
    Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM et al. 2014. ACS Nano 8:9815–21
    [Google Scholar]
  114. 114. 
    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014. Nat. Commun. 5:5784
    [Google Scholar]
  115. 115. 
    Xu J, Buin A, Ip AH, Li W, Voznyy O et al. 2015. Nat. Commun. 6:7081
    [Google Scholar]
  116. 116. 
    Rothmann MU, Li W, Zhu Y, Bach U, Spiccia L et al. 2017. Nat. Commun. 8:14547
    [Google Scholar]
  117. 117. 
    Tan CS, Hou Y, Saidaminov MI, Proppe A, Huang YS et al. 2020. Adv. Sci. 7:1903166
    [Google Scholar]
  118. 118. 
    Kim TW, Uchida S, Matsushita T, Cojocaru L, Jono R et al. 2018. Adv. Mater. 30:1705230
    [Google Scholar]
  119. 119. 
    Li W, Yadavalli SK, Lizarazo-Ferro D, Chen M, Zhou Y et al. 2018. ACS Energy Lett. 3:2669–70
    [Google Scholar]
  120. 120. 
    Jones TW, Osherov A, Alsari M, Sponseller M, Duck BC et al. 2019. Energy Environ. Sci. 12:596–606
    [Google Scholar]
  121. 121. 
    Jariwala S, Sun H, Adhyaksa GW, Lof A, Muscarella LA et al. 2019. Joule 3:3048–60
    [Google Scholar]
  122. 122. 
    Jiang X, Hoffman J, Stoumpos CC, Kanatzidis MG, Harel E 2019. ACS Energy Lett. 4:1741–47
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-042020-025347
Loading
/content/journals/10.1146/annurev-conmatphys-042020-025347
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error