1932

Abstract

Since the transition from water to land, maintaining water balance has been a key challenge for terrestrial arthropods. We explore factors that allow terrestrial arthropods to survive within a variably dry world and how they shape ecological interactions. Detection of water and hydration is critical for maintaining water content. Efficient regulation of internal water content is accomplished by excretory and osmoregulatory systems that balance water intake and loss. Biochemical and physiological responses are necessary as water content declines to prevent and repair the damage that occurs during dehydration. Desiccation avoidance can occur seasonally or daily via a move to more favorable areas. Dehydration and its avoidance have ecological impacts that extend beyond a single species to alter trophic interactions. As climate changes, evolutionary and ecological processes will be critical to species survival during drought.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120120-091609
2023-01-23
2025-01-08
The full text of this item is not currently available.

Literature Cited

  1. 1.
    Albers MA, Bradley TJ. 2006. Fecundity in Drosophila following desiccation is dependent on nutrition and selection regime. Physiol. Biochem. Zool. 79:857–65
    [Google Scholar]
  2. 2.
    Arthur AL, Weeks AR, Sgrò CM. 2008. Investigating latitudinal clines for life history and stress resistance traits in Drosophila simulans from eastern Australia. J. Evol. Biol. 21:1470–79
    [Google Scholar]
  3. 3.
    Báez S, Collins SL, Lightfoot D, Koontz TL. 2006. Bottom-up regulation of plant community structure in an aridland ecosystem. Ecology 87:2746–54
    [Google Scholar]
  4. 4.
    Bayley M, Holmstrup M. 1999. Water vapor absorption in arthropods by accumulation of myoinositol and glucose. Science 285:1909–11
    [Google Scholar]
  5. 5.
    Becker JE, McCluney KE. 2021. Urbanization-driven climate change increases invertebrate lipid demand, relative to protein—a response to dehydration. Funct. Ecol. 35:411–19
    [Google Scholar]
  6. 6.
    Becker JE, Mirochnitchenko NA, Ingram H, Everett A, McCluney KE 2021. Water-seeking behavior among terrestrial arthropods and mollusks in a cool mesic region: spatial and temporal patterns. PLOS ONE 16:e0260070
    [Google Scholar]
  7. 7.
    Benaroudj N, Lee DH, Goldberg AL. 2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 276:24261–67
    [Google Scholar]
  8. 8.
    Benoit JB. 2010. Water management by dormant insects: comparisons between dehydration resistance during summer aestivation and winter diapause. Prog. Mol. Subcell. Biol. 49:209–29
    [Google Scholar]
  9. 9.
    Benoit JB, Attardo GM, Baumann AA, Michalkova V, Aksoy S. 2015. Adenotrophic viviparity in tsetse flies: potential for population control and as an insect model for lactation. Annu. Rev. Entomol. 60:351–71
    [Google Scholar]
  10. 10.
    Benoit JB, Del Grosso NA, Yoder JA, Denlinger DL. 2007. Resistance to dehydration between bouts of blood feeding in the bed bug, Cimex lectularius, is enhanced by water conservation, aggregation, and quiescence. Am. J. Trop. Med. Hyg. 76:987–93
    [Google Scholar]
  11. 11.
    Benoit JB, Denlinger DL. 2007. Suppression of water loss during adult diapause in the northern house mosquito, Culex pipiens. J. Exp. Biol. 210:217–26
    [Google Scholar]
  12. 12.
    Benoit JB, Denlinger DL. 2010. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods. J. Insect Physiol. 56:1366–76
    [Google Scholar]
  13. 13.
    Benoit JB, Hansen IA, Attardo GM, Michalková V, Mireji PO et al. 2014. Aquaporins are critical for provision of water during lactation and intrauterine progeny hydration to maintain tsetse fly reproductive success. PLOS Negl. Trop. Dis. 8:e2517
    [Google Scholar]
  14. 14.
    Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE Jr., Denlinger DL. 2009. Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Comp. Biochem. Physiol. A 152:518–23
    [Google Scholar]
  15. 15.
    Benoit JB, Oyen KJ 2021. Drought and tick dynamics during climate change. Climate, Ticks and Disease P Nuttall 67–73 Wallingford, UK: CAB Int.
    [Google Scholar]
  16. 16.
    Benoit JB, Patrick KR, Desai K, Hardesty JJ, Krause TB, Denlinger DL. 2010. Repeated bouts of dehydration deplete nutrient reserves and reduce egg production in the mosquito Culex pipiens. J. Exp. Biol. 213:2763–69
    [Google Scholar]
  17. 17.
    Benoit JB, Vinauger C 2022. Chronobiology of blood feeding arthropods: influences of their role as disease vectors. Sensory Ecology of Disease Vectors S Hill, R Ignell, C Lazzari, M Lorenzo Wageningen, Neth: Wageningen Acad. Publ. In press
    [Google Scholar]
  18. 18.
    Benoit JB, Yoder JA, Rellinger EJ, Ark JT, Keeney GD. 2005. Prolonged maintenance of water balance by adult females of the American spider beetle, Mezium affine Boieldieu, in the absence of food and water resources. J. Insect Physiol. 51:565–73
    [Google Scholar]
  19. 19.
    Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. 2009. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:149–62
    [Google Scholar]
  20. 20.
    Bernáth B, Horváth G, Meyer-Rochow VB. 2012. Polarotaxis in egg-laying yellow fever mosquitoes Aedes (Stegomyia) aegypti is masked due to infochemicals. J. Insect Physiol. 58:1000–6
    [Google Scholar]
  21. 21.
    Beyenbach KW, Skaer H, Dow JAT. 2010. The developmental, molecular, and transport biology of Malpighian tubules. Annu. Rev. Entomol. 55:351–74
    [Google Scholar]
  22. 22.
    Bezerra Da Silva CS, Price BE, Walton VM. 2019. Water-deprived parasitic wasps (Pachycrepoideus vindemmiae) kill more pupae of a pest (Drosophila suzukii) as a water-intake strategy. Sci. Rep. 9:3592
    [Google Scholar]
  23. 23.
    Bong L-J, Wang C-Y, Shiodera S, Haraguchi TF, Itoh M, Neoh K-B. 2021. Effect of body lipid content is linked to nutritional adaptation in the acclimation responses of mesic-adapted Paederus to seasonal variations in desiccation stress. J. Insect Physiol. 131:104226
    [Google Scholar]
  24. 24.
    Cabrero P, Radford JC, Broderick KE, Costes L, Veenstra JA et al. 2002. The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP. J. Exp. Biol. 205:3799–807
    [Google Scholar]
  25. 25.
    Cabrero P, Terhzaz S, Dornan AJ, Ghimire S, Holmes HL et al. 2020. Specialized stellate cells offer a privileged route for rapid water flux in Drosophila renal tubule. PNAS 117:1779–87
    [Google Scholar]
  26. 26.
    Cameron P, Hiroi M, Ngai J, Scott K. 2010. The molecular basis for water taste in Drosophila. Nature 465:91–95
    [Google Scholar]
  27. 27.
    Chen Z, Wang Q, Wang Z 2010. The amiloride-sensitive epithelial Na+ channel PPK28 is essential for Drosophila gustatory water reception. J. Neurosci. 30:6247–52
    [Google Scholar]
  28. 28.
    Chown SL, Nicolson SW. 2004. Water balance physiology. Insect Physiological Ecology: Mechanisms and Patterns87–114 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  29. 29.
    Chu E, Chakraborty S, Benoit JB, DeGennaro M Water homeostasis and hygrosensation in mosquitoes. Sensory Ecology of Disease Vectors S Hill, R Ignell, C Lazzari, M Lorenzo Wageningen, Neth.: Wageningen Acad. Publ. In press
    [Google Scholar]
  30. 30.
    Clark MS, Thorne MA, Purać J, Burns G, Hillyard G et al. 2009. Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg). BMC Genom. 10:328
    [Google Scholar]
  31. 31.
    Clemson AS, Sgrò CM, Telonis-Scott M. 2018. Transcriptional profiles of plasticity for desiccation stress in Drosophila. Comp. Biochem. Physiol. B 216:1–9
    [Google Scholar]
  32. 32.
    Cloudsley-Thompson JL. 2001. Thermal and water relations of desert beetles. Naturwissenschaften 88:447–60
    [Google Scholar]
  33. 33.
    Crespo-Pérez V, Kazakou E, Roubik DW, Cárdenas RE. 2020. The importance of insects on land and in water: a tropical view. Curr. Opin. Insect Sci. 40:31–38
    [Google Scholar]
  34. 34.
    Dai A. 2012. Increasing drought under global warming in observations and models. Nat. Clim. Change 3:52–58
    [Google Scholar]
  35. 35.
    Dale AG, Frank SD. 2017. Warming and drought combine to increase pest insect fitness on urban trees. PLOS ONE 12:e0173844
    [Google Scholar]
  36. 36.
    Dao A, Yaro AS, Diallo M, Timbiné S, Huestis DL et al. 2014. Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature 516:387–90
    [Google Scholar]
  37. 37.
    Davis JR, DeNardo DF. 2009. Water supplementation affects the behavioral and physiological ecology of Gila monsters (Heloderma suspectum) in the Sonoran Desert. Physiol. Biochem. Zool. 82:739–48
    [Google Scholar]
  38. 38.
    Deguines N, Brashares JS, Prugh LR. 2017. Precipitation alters interactions in a grassland ecological community. J. Anim. Ecol. 86:262–72
    [Google Scholar]
  39. 39.
    Denlinger DL. 2022. Insect Diapause Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  40. 40.
    Dow JAT, Krause SA, Herzyk P. 2021. Updates on ion and water transport by the Malpighian tubule. Curr. Opin. Insect Sci. 47:31–37
    [Google Scholar]
  41. 41.
    Dunlop JA, Scholtz G, Selden PA 2013. Water-to-land transitions. Arthropod Biology and Evolution: Molecules, Development, Morphology A Minelli, G Boxshall, G Fusco 417–39 Berlin: Springer
    [Google Scholar]
  42. 42.
    el Shoura SM. 1988. Fine structure of larval malpighian tubules and rectal sac in the tick Ornithodoros (Pavlovskyella) erraticus (Ixodoidea: Argasidae). J. Morphol. 196:187–93
    [Google Scholar]
  43. 43.
    Elnitsky MA, Hayward SAL, Rinehart JP, Denlinger DL, Lee RE Jr. 2008. Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. J. Exp. Biol. 211:524–30
    [Google Scholar]
  44. 44.
    Enjin A, Zaharieva EE, Frank DD, Mansourian S, Suh GSB et al. 2016. Humidity sensing in Drosophila. Curr. Biol. 26:1352–58
    [Google Scholar]
  45. 45.
    Ferry C, Corbet SA. 1996. Water collection by bumble bees. J. Apic. Res. 35:120–22
    [Google Scholar]
  46. 46.
    Finch G, Nandyal S, Perretta C, Davies B, Rosendale AJ et al. 2020. Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability. Sci. Rep. 10:19791
    [Google Scholar]
  47. 47.
    Frizzi F, Rispoli A, Chelazzi G, Santini G. 2016. Effect of water and resource availability on ant feeding preferences: a field experiment on the Mediterranean ant Crematogaster scutellaris. Insect. Soc. 63:565–74
    [Google Scholar]
  48. 48.
    Gefen E, Marlon AJ, Gibbs AG. 2006. Selection for desiccation resistance in adult Drosophila melanogaster affects larval development and metabolite accumulation. J. Exp. Biol. 209:3293–300
    [Google Scholar]
  49. 49.
    Gely C, Laurance SGW, Stork NE. 2020. How do herbivorous insects respond to drought stress in trees?. Biol. Rev. Camb. Philos. Soc. 95:434–48
    [Google Scholar]
  50. 50.
    Gibbs AG, Chippindale AK, Rose MR. 1997. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J. Exp. Biol. 200:1821–32
    [Google Scholar]
  51. 51.
    Gray EM, Rocca KAC, Costantini C, Besansky NJ. 2009. Inversion 2La is associated with enhanced desiccation resistance in Anopheles gambiae. Malar. J. 8:215
    [Google Scholar]
  52. 52.
    Grenot C. 2001. Adaptation of small Saharan vertebrates to arid conditions. Bull. Soc. Zool. Fr. 126:129–67
    [Google Scholar]
  53. 53.
    Greppi C, Laursen WJ, Budelli G, Chang EC, Daniels AM et al. 2020. Mosquito heat seeking is driven by an ancestral cooling receptor. Science 367:681–84
    [Google Scholar]
  54. 54.
    Groffman PM, Cavender-Bares J, Bettez ND, Grove JM, Hall SJ et al. 2014. Ecological homogenization of urban USA. Front. Ecol. Environ. 12:74–81
    [Google Scholar]
  55. 55.
    Gusev O, Suetsugu Y, Cornette R, Kawashima T, Logacheva MD et al. 2014. Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nat. Commun. 5:4784
    [Google Scholar]
  56. 56.
    Hadley NF. 1994. Water Relations of Terrestrial Arthropods Cambridge, MA: Academic
    [Google Scholar]
  57. 57.
    Hagan RW, Didion EM, Rosselot AE, Holmes CJ, Siler SC et al. 2018. Dehydration prompts increased activity and blood feeding by mosquitoes. Sci. Rep. 8:6804
    [Google Scholar]
  58. 58.
    Hera I, Reichert MS. 2021. Water content in diet affects growth and timing of female first mating, but not coloration, in the admirable grasshopper (Syrbula admirabilis). Invertebr. Biol. 140:e12356
    [Google Scholar]
  59. 59.
    Hinton HE. 1960. A fly larva that tolerates dehydration and temperatures of −270° to +102°C. Nature 188:336–37
    [Google Scholar]
  60. 60.
    Holmes CJ, Benoit JB. 2019. Biological adaptations associated with dehydration in mosquitoes. Insects 10:375
    [Google Scholar]
  61. 61.
    Holmes CJ, Brown ES, Sharma D, Nguyen Q, Spangler AA et al. 2022. Bloodmeal regulation in mosquitoes curtails dehydration-induced mortality, altering vectorial capacity. J. Insect Physiol. 137:104363
    [Google Scholar]
  62. 62.
    Horváth G, Csabai Z 2014. Polarization vision of aquatic insects. Polarized Light and Polarization Vision in Animal Sciences G Horváth 113–45 Berlin: Springer
    [Google Scholar]
  63. 63.
    Horváth G, Móra A, Bernáth B, Kriska G. 2011. Polarotaxis in non-biting midges: female chironomids are attracted to horizontally polarized light. Physiol. Behav. 104:1010–15
    [Google Scholar]
  64. 64.
    Hu G, Lim KS, Horvitz N, Clark SJ, Reynolds DR et al. 2016. Mass seasonal bioflows of high-flying insect migrants. Science 354:1584–87
    [Google Scholar]
  65. 65.
    Huestis DL, Dao A, Diallo M, Sanogo ZL, Samake D et al. 2019. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature 574:404–8
    [Google Scholar]
  66. 66.
    Jia N, Wang J, Shi W, Du L, Sun Y et al. 2020. Large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities. Cell 182:1328–40.e13
    [Google Scholar]
  67. 67.
    Jourjine N, Mullaney BC, Mann K, Scott K. 2016. Coupled sensing of hunger and thirst signals balances sugar and water consumption. Cell 166:855–66
    [Google Scholar]
  68. 68.
    Jung AC, Denholm B, Skaer H, Affolter M. 2005. Renal tubule development in Drosophila: a closer look at the cellular level. J. Am. Soc. Nephrol. 16:322–28
    [Google Scholar]
  69. 69.
    Kang L, Aggarwal DD, Rashkovetsky E, Korol AB, Michalak P 2016. Rapid genomic changes in Drosophila melanogaster adapting to desiccation stress in an experimental evolution system. BMC Genom. 17:233
    [Google Scholar]
  70. 70.
    Kawarasaki Y, Teets NM, Denlinger DL, Lee RE. 2014. Alternative overwintering strategies in an Antarctic midge: freezing versus cryoprotective dehydration. Funct. Ecol. 28:933–43
    [Google Scholar]
  71. 71.
    Kellermann V, Hoffmann AA, Overgaard J, Loeschcke V, Sgrò CM. 2018. Plasticity for desiccation tolerance across Drosophila species is affected by phylogeny and climate in complex ways. Proc. Biol. Sci. 285:20180048
    [Google Scholar]
  72. 72.
    Kellermann V, McEvey SF, Sgrò CM, Hoffmann AA. 2020. Phenotypic plasticity for desiccation resistance, climate change, and future species distributions: Will plasticity have much impact?. Am. Nat. 196:306–15
    [Google Scholar]
  73. 73.
    Kerr M, Davies SA, Dow JAT. 2004. Cell-specific manipulation of second messengers; a toolbox for integrative physiology in Drosophila. Curr. Biol. 14:1468–74
    [Google Scholar]
  74. 74.
    Kessler S, Guerin PM. 2008. Responses of Anopheles gambiae, Anopheles stephensi, Aedes aegypti, and Culex pipiens mosquitoes (Diptera: Culicidae) to cool and humid refugium conditions. J. Vector Ecol. 33:145–49
    [Google Scholar]
  75. 75.
    Kim D, Maldonado-Ruiz P, Zurek L, Park Y. 2017. Water absorption through salivary gland type I acini in the blacklegged tick, Ixodes scapularis. PeerJ. 5:e3984
    [Google Scholar]
  76. 76.
    Kleynhans E, Terblanche JS. 2011. Complex interactions between temperature and relative humidity on water balance of adult tsetse (Glossinidae, Diptera): implications for climate change. Front. Physiol. 2:74
    [Google Scholar]
  77. 77.
    Knecht ZA, Silbering AF, Cruz J, Yang L, Croset V et al. 2017. Ionotropic receptor-dependent moist and dry cells control hygrosensation in Drosophila. eLife 6:e26654
    [Google Scholar]
  78. 78.
    Knecht ZA, Silbering AF, Ni L, Klein M, Budelli G et al. 2016. Distinct combinations of variant ionotropic glutamate 1 receptors mediate thermosensation and hygrosensation in Drosophila. eLife 5:e17879
    [Google Scholar]
  79. 79.
    Leinbach IL, McCluney KE, Sabo JL. 2019. Predator water balance alters intraguild predation in a streamside food web. Ecology 100:e02635
    [Google Scholar]
  80. 80.
    Li A, Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE Jr., Denlinger DL. 2009. Distinct contractile and cytoskeletal protein patterns in the Antarctic midge are elicited by desiccation and rehydration. Proteomics 9:2788–98
    [Google Scholar]
  81. 81.
    Li H, Janssens J, De Waegeneer M, Kolluru SS. 2021. Fly Cell Atlas: a single-cell transcriptomic atlas of the adult fruit fly. bioRxiv 2021.07.04.451050. https://doi.org/10.1101/2021.07.04.451050
    [Crossref]
  82. 82.
    Little C. 1990. The Terrestrial Invasion: An Ecophysiological Approach to the Origins of Land Animals Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  83. 83.
    Lopez-Martinez G, Benoit JB, Rinehart JP, Elnitsky MA, Lee RE Jr., Denlinger DL. 2009. Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J. Comp. Physiol. B 179:481–91
    [Google Scholar]
  84. 84.
    Lundgren EJ, Ramp D, Stromberg JC, Wu J, Nieto NC et al. 2021. Equids engineer desert water availability. Science 372:491–95
    [Google Scholar]
  85. 85.
    Mamai W, Mouline K, Blais C, Larvor V, Dabiré KR et al. 2014. Metabolomic and ecdysteroid variations in Anopheles gambiae s.l. mosquitoes exposed to the stressful conditions of the dry season in Burkina Faso, West Africa. Physiol. Biochem. Zool. 87:486–97
    [Google Scholar]
  86. 86.
    Martin LJ, Adams RI, Bateman A, Bik HM, Hawks J et al. 2015. Evolution of the indoor biome. Trends Ecol. Evol. 30:223–32
    [Google Scholar]
  87. 87.
    Matthews BJ, Younger MA, Vosshall LB. 2019. The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti. eLife 8:e43963
    [Google Scholar]
  88. 88.
    Mattson WJ, Haack RA. 1987. The role of drought in outbreaks of plant-eating insects. Bioscience 37:110–18
    [Google Scholar]
  89. 89.
    McCluney KE. 2017. Implications of animal water balance for terrestrial food webs. Curr. Opin. Insect Sci. 23:13–21
    [Google Scholar]
  90. 90.
    McCluney KE, Belnap J, Collins SL, González AL, Hagen EM et al. 2012. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol. Rev. Camb. Philos. Soc. 87:563–82
    [Google Scholar]
  91. 91.
    McCluney KE, Burdine JD, Frank SD. 2017. Variation in arthropod hydration across US cities with distinct climate. J. Urban Ecol. 3:jux003
    [Google Scholar]
  92. 92.
    McCluney KE, George T, Frank SD 2018. Water availability influences arthropod water demand, hydration and community composition on urban trees. J. Urban Ecol. 4:juy003
    [Google Scholar]
  93. 93.
    McCluney KE, Sabo JL. 2009. Water availability directly determines per capita consumption at two trophic levels. Ecology 90:1463–69
    [Google Scholar]
  94. 94.
    McCluney KE, Sabo JL. 2016. Animal water balance drives top-down effects in a riparian forest—implications for terrestrial trophic cascades. Proc. R. Soc. B 283:20160881
    [Google Scholar]
  95. 95.
    Meserve PL, Kelt DA, Milstead WB, Gutiérrez JR. 2003. Thirteen years of shifting top-down and bottom-up control. Bioscience 53:633–46
    [Google Scholar]
  96. 96.
    Michaud RM, Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE, Denlinger DL. 2008. Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J. Insect Physiol. 54:645–55
    [Google Scholar]
  97. 97.
    Miller J, Chi T, Kapahi P, Kahn AJ, Kim MS et al. 2013. Drosophila melanogaster as an emerging translational model of human nephrolithiasis. J. Urol. 190:51648–56
    [Google Scholar]
  98. 98.
    Noy-Meir I 1974. Desert ecosystems: higher trophic levels. Annu. Rev. Ecol. Syst. 5:195–214
    [Google Scholar]
  99. 99.
    O'Donnell MJ, Machin J 1988. Water vapor absorption by terrestrial organisms. Advances in Comparative and Environmental Physiology SH Wright 47–90 Berlin: Springer
    [Google Scholar]
  100. 100.
    Orchard I, Lange AB 2020. Hormonal control of diuresis in insects. Advances in Invertebrate (Neuro)Endocrinology S Saleuddin, I Orchard, AB Lange 225–82 Palm Bay, FL: Apple Acad.
    [Google Scholar]
  101. 101.
    Orchard I, Paluzzi J-P. 2009. Diuretic and antidiuretic hormones in the blood-gorging bug Rhodnius prolixus. Ann. N. Y. Acad. Sci. 1163:501–3
    [Google Scholar]
  102. 102.
    Orr MC, Hughes AC, Chesters D, Pickering J, Zhu C-D, Ascher JS. 2021. Global patterns and drivers of bee distribution. Curr. Biol. 31:451–58
    [Google Scholar]
  103. 103.
    Overgaard J, Gerber L, Andersen MK. 2021. Osmoregulatory capacity at low temperature is critical for insect cold tolerance. Curr. Opin. Insect Sci. 47:38–45
    [Google Scholar]
  104. 104.
    Pincetl S. 2015. Cities as novel biomes: recognizing urban ecosystem services as anthropogenic. Front. Ecol. Evol. 3:140
    [Google Scholar]
  105. 105.
    Potts LJ, Gantz JD, Kawarasaki Y, Philip BN, Gonthier DJ et al. 2020. Environmental factors influencing fine-scale distribution of Antarctica's only endemic insect. Oecologia 194:529–39
    [Google Scholar]
  106. 106.
    Raji JI, Gonzalez S, DeGennaro M. 2019. Aedes aegypti Ir8a mutant female mosquitoes show increased attraction to standing water. Commun. Integr. Biol. 12:181–86
    [Google Scholar]
  107. 107.
    Randolph SE, Storey K. 1999. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J. Med. Entomol. 36:741–48
    [Google Scholar]
  108. 108.
    Rane RV, Pearce SL, Li F, Coppin C, Schiffer M et al. 2019. Genomic changes associated with adaptation to arid environments in cactophilic Drosophila species. BMC Genom. 20:52
    [Google Scholar]
  109. 109.
    Reid ML, Ahn S. 2020. Realised toxicity of plant defences to an insect herbivore depends more on insect dehydration than on energy reserves. Ecol. Entomol. 45:771–82
    [Google Scholar]
  110. 110.
    Reidenbach KR, Cheng C, Liu F, Liu C, Besansky NJ, Syed Z. 2014. Cuticular differences associated with aridity acclimation in African malaria vectors carrying alternative arrangements of inversion 2La. Parasit. Vectors 7:176
    [Google Scholar]
  111. 111.
    Rosendale AJ, Dunlevy ME, Fieler AM, Farrow DW, Davies B, Benoit JB. 2017. Dehydration and starvation yield energetic consequences that affect survival of the American dog tick. J. Insect Physiol. 101:39–46
    [Google Scholar]
  112. 112.
    Rosendale AJ, Farrow DW, Dunlevy ME, Fieler AM, Benoit JB. 2016. Cold hardiness and influences of hibernaculum conditions on overwintering survival of American dog tick larvae. Ticks Tick Borne Dis 7:1155–61
    [Google Scholar]
  113. 113.
    Rosendale AJ, Romick-Rosendale LE, Watanabe M, Dunlevy ME, Benoit JB. 2016. Mechanistic underpinnings of dehydration stress in the American dog tick revealed through RNA-seq and metabolomics. J. Exp. Biol. 219:1808–19
    [Google Scholar]
  114. 114.
    Ryabova A, Cornette R, Cherkasov A, Watanabe M, Okuda T et al. 2020. Combined metabolome and transcriptome analysis reveals key components of complete desiccation tolerance in an anhydrobiotic insect. PNAS 117:19209–20
    [Google Scholar]
  115. 115.
    Sabo JL, McCluney KE, Marusenko Y, Keller A, Soykan CU. 2008. Greenfall links groundwater to aboveground food webs in desert river floodplains. Ecol. Monogr. 78:615–31
    [Google Scholar]
  116. 116.
    Sajadi F, Paluzzi J-PV. 2021. Hormonal regulation and functional role of the “renal” tubules in the disease vector, Aedes aegypti. Vitam. Horm. 117:189–225
    [Google Scholar]
  117. 117.
    Sconiers WB, Eubanks MD. 2017. Not all droughts are created equal? The effects of stress severity on insect herbivore abundance. Arthropod Plant Interact 11:45–60
    [Google Scholar]
  118. 118.
    Senapathi D, Fründ J, Albrecht M, Garratt MPD, Kleijn D et al. 2021. Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proc. Biol. Sci. 288:20210212
    [Google Scholar]
  119. 119.
    Shaman J, Day JF, Stieglitz M. 2005. Drought-induced amplification and epidemic transmission of West Nile virus in southern Florida. J. Med. Entomol. 42:134–41
    [Google Scholar]
  120. 120.
    Sinclair BJ, Ferguson LV, Salehipour-shirazi G, MacMillan HA. 2013. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53:4545–56
    [Google Scholar]
  121. 121.
    Sinclair BJ, Nelson S, Nilson TL, Roberts SP, Gibbs AG. 2007. The effect of selection for desiccation resistance on cold tolerance of Drosophila melanogaster. Physiol. Entomol. 32:322–27
    [Google Scholar]
  122. 122.
    Stensmyr MC, Erland S, Hallberg E, Wallén R, Greenaway P, Hansson BS. 2005. Insect-like olfactory adaptations in the terrestrial giant robber crab. Curr. Biol. 15:116–21
    [Google Scholar]
  123. 123.
    Sun JS, Larter NK, Chahda JS, Rioux D, Gumaste A, Carlson JR. 2018. Humidity response depends on the small soluble protein Obp59a in Drosophila. eLife 7:e39249
    [Google Scholar]
  124. 124.
    Tamburini G, van Gils S, Kos M, van der Putten W, Marini L. 2018. Drought and soil fertility modify fertilization effects on aphid performance in wheat. Basic Appl. Ecol. 30:23–31
    [Google Scholar]
  125. 125.
    Teets NM, Denlinger DL. 2013. Autophagy in Antarctica: combating dehydration stress in the world's southernmost insect. Autophagy 9:629–31
    [Google Scholar]
  126. 126.
    Teets NM, Kawarasaki Y, Lee RE Jr., Denlinger DL. 2013. Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica. J. Comp. Physiol. B 183:189–201
    [Google Scholar]
  127. 127.
    Teets NM, Peyton JT, Colinet H, Renault D, Kelley JL et al. 2012. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. PNAS 109:20744–49
    [Google Scholar]
  128. 128.
    Thomas GWC, Dohmen E, Hughes DST, Murali SC, Poelchau M et al. 2020. Gene content evolution in the arthropods. Genome Biol. 21:115
    [Google Scholar]
  129. 129.
    Tichy H, Kallina W. 2010. Insect hygroreceptor responses to continuous changes in humidity and air pressure. J. Neurophysiol. 103:3274–86
    [Google Scholar]
  130. 130.
    Tichy H, Loftus R. 1996. Hygroreceptors in insects and a spider: humidity transduction models. Naturwissenschaften 83:255–63
    [Google Scholar]
  131. 131.
    Tigar BJ, Osborne PE. 1997. Patterns of arthropod abundance and diversity in an Arabian desert. Ecography 20:550–58
    [Google Scholar]
  132. 132.
    Tomioka K, Matsumoto A. 2019. The circadian system in insects: cellular, molecular, and functional organization. Adv. Insect Phys. 56:73–115
    [Google Scholar]
  133. 133.
    Toxopeus J, Koštál V, Sinclair BJ. 2019. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect. Proc. Biol. Sci. 286:20190050
    [Google Scholar]
  134. 134.
    Trenberth KE. 2011. Changes in precipitation with climate change. Clim. Res. 47:1123–38
    [Google Scholar]
  135. 135.
    van Giesen L, Garrity PA. 2017. More than meets the IR: the expanding roles of variant ionotropic glutamate receptors in sensing odor, taste, temperature and moisture. F1000Research 6:1753
    [Google Scholar]
  136. 136.
    van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM. 2020. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368:417–20
    [Google Scholar]
  137. 137.
    Vieira FG, Rozas J. 2011. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 3:476–90
    [Google Scholar]
  138. 138.
    Wagner DL. 2020. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65:457–80
    [Google Scholar]
  139. 139.
    Wall BJ, Oschman JL, Schmidt BA. 1975. Morphology and function of Malpighian tubules and associated structures in the cockroach, Periplaneta americana. J. Morphol. 146:265–306
    [Google Scholar]
  140. 140.
    Walter A, Westphal C, Bliss P, Moritz RFA. 2011. Drinking behaviour of the orb web spider Argiope bruennichi (Araneae; Araneidae). Behaviour 148:1295–309
    [Google Scholar]
  141. 141.
    Wang M-H, Marinotti O, Vardo-Zalik A, Boparai R, Yan G 2011. Genome-wide transcriptional analysis of genes associated with acute desiccation stress in Anopheles gambiae. PLOS ONE 6:e26011
    [Google Scholar]
  142. 142.
    Wharton GW 1985. Water balance of insects. Regulation: Digestion, Nutrition, Excretion GA Kerkut, LI Gilbert 565–601 Oxford, UK: Pergamon
    [Google Scholar]
  143. 143.
    Williams JB, Lee RE Jr. 2011. Effect of freezing and dehydration on ion and cryoprotectant distribution and hemolymph volume in the goldenrod gall fly, Eurosta solidaginis. J. Insect Physiol. 57:1163–69
    [Google Scholar]
  144. 144.
    Wolda H. 1992. Trends in abundance of tropical forest insects. Oecologia 89:47–52
    [Google Scholar]
  145. 145.
    Xiong C, Yang Y, Nachman RJ, Pietrantonio PV. 2021. Tick CAPA propeptide cDNAs and receptor activity of endogenous tick pyrokinins and analogs: towards discovering pyrokinin function in ticks. Peptides 146:170665
    [Google Scholar]
  146. 146.
    Xu J, Liu Y, Li H, Tarashansky AJ, Kalicki CH et al. 2021. A cell atlas of the fly kidney. bioRxiv 2021.09.03.458871. https://doi.org/10.1101/2021.09.03.458871
    [Crossref]
  147. 147.
    Yoder JA, Ark JT, Benoit JB, Rellinger EJ, Tank JL. 2006. Inability of the lone star tick, Amblyomma americanum (L.), to resist desiccation and maintain water balance following application of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae (Deuteromycota). Int. J. Acarol. 32:211–18
    [Google Scholar]
  148. 148.
    Yoder JA, Benoit JB, Denlinger DL, Rivers DB. 2006. Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. J. Insect Physiol. 52:202–14
    [Google Scholar]
  149. 149.
    Yoder JA, Hedges BZ, Benoit JB. 2012. Water balance of the American dog tick, Dermacentor variabilis, throughout its development with comparative observations between field-collected and laboratory-reared ticks. Int. J. Acarol. 38:334–43
    [Google Scholar]
  150. 150.
    Zheng W, Rus F, Hernandez A, Kang P, Goldman W et al. 2018. Dehydration triggers ecdysone-mediated recognition-protein priming and elevated anti-bacterial immune responses in Drosophila Malpighian tubule renal cells. BMC Biol. 16:60
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120120-091609
Loading
/content/journals/10.1146/annurev-ento-120120-091609
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error