1932

Abstract

Rapid Arctic environmental change affects the entire Earth system as thawing permafrost ecosystems release greenhouse gases to the atmosphere. Understanding how much permafrost carbon will be released, over what time frame, and what the relative emissions of carbon dioxide and methane will be is key for understanding the impact on global climate. In addition, the response of vegetation in a warming climate has the potential to offset at least some of the accelerating feedback to the climate from permafrost carbon. Temperature, organic carbon, and ground ice are key regulators for determining the impact of permafrost ecosystems on the global carbon cycle. Together, these encompass services of permafrost relevant to global society as well as to the people living in the region and help to determine the landscape-level response of this region to a changing climate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012220-011847
2022-10-17
2025-01-08
The full text of this item is not currently available.

Literature Cited

  1. 1.
    Meredith M, Sommerkorn M, Cassotta S, Derksen C, Ekaykin A et al. 2019. Polar regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, et al. 203–320 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  2. 2.
    Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S et al. 2013. Sea level change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, et al. 1137–1216 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  3. 3.
    Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW et al. 2015. Climate change and the permafrost carbon feedback. Nature 520:7546171–79
    [Google Scholar]
  4. 4.
    Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G et al. 2019. Permafrost is warming at a global scale. Nat. Commun. 10:1264
    [Google Scholar]
  5. 5.
    Schuur EAG, Mack MC. 2018. Ecological response to permafrost thaw and consequences for local and global ecosystem services. Annu. Rev. Ecol. Evol. Syst. 49:279–301
    [Google Scholar]
  6. 6.
    Sjöberg Y, Siewert MB, Rudy ACA, Paquette M, Bouchard F et al. 2020. Hot trends and impact in permafrost science. Permafrost Periglac. Process. 31:4461–71
    [Google Scholar]
  7. 7.
    Harris SA, French HM, Heginbottom JA, Johnston GH, Ladanyi B et al. 1988. Glossary of permafrost and related ground-ice terms Tech. Memo. 142 Natl. Res. Counc. Can. Ottawa, Can: https://globalcryospherewatch.org/reference/glossary_docs/permafrost_and_ground_terms_canada.pdf
    [Google Scholar]
  8. 8.
    Gruber S. 2012. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6:1221–33
    [Google Scholar]
  9. 9.
    Obu J, Westermann S, Bartsch A, Berdnikov N, Christiansen HH et al. 2019. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 193:299–316
    [Google Scholar]
  10. 10.
    Grosse G, Harden J, Turetsky M, McGuire AD, Camill P et al. 2011. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res.-Biogeo. 116:G4 https://doi.org/10.1029/2010JG001507
    [Crossref] [Google Scholar]
  11. 11.
    Kanevskiy M, Shur Y, Jorgenson MT, Ping C-L, Michaelson GJ et al. 2013. Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska. Cold Regions Sci. Technol. 85:56–70
    [Google Scholar]
  12. 12.
    Larsen JN, Anisimov OA, Constable A, Hollowed AB, Maynard N et al. 2014. 2014: Polar regions. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change VR Barros, CB Field, KJ Mach, TE Bilir, M Chatterjee, et al. 1567–1612 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  13. 13.
    Pendakur K. 2017. Northern territories. Climate Risks & Adaptation Practices For the Canadian Transportation Sector 2016 K Palko, DS Lemmen 27–64 Ottawa: Gov. Can.
    [Google Scholar]
  14. 14.
    Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB et al. 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58:8701–14
    [Google Scholar]
  15. 15.
    Gorham E. 1991. Northern peatlands: role in the carbon-cycle and probable responses to climatic warming. Ecol. Appl. 1:2182–95
    [Google Scholar]
  16. 16.
    Zimov SA, Schuur EAG, Chapin FS. 2006. Permafrost and the global carbon budget. Science 312:57801612–13
    [Google Scholar]
  17. 17.
    Ping CL, Michaelson GJ, Jorgenson MT, Kimble JM, Epstein H et al. 2008. High stocks of soil organic carbon in the North American Arctic region. Nat. Geosci. 1:9615–19
    [Google Scholar]
  18. 18.
    Schuur EAG, Abbott BW, Bowden WB, Brovkin V, Camill P et al. 2013. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119:2359–74
    [Google Scholar]
  19. 19.
    Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG et al. 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:236573–93
    [Google Scholar]
  20. 20.
    Tarnocai C, Canadell JG, Mazhitova G, Schuur EAG, Kuhry P. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles. 23:GB2023
    [Google Scholar]
  21. 21.
    Hugelius G, Loisel J, Chadburn S, Jackson RB, Jones M et al. 2020. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. PNAS 117:3420438–46
    [Google Scholar]
  22. 22.
    Mishra U, Hugelius G, Shelef E, Yang Y, Strauss J et al. 2021. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Sci. Adv. 7:9eaaz5236
    [Google Scholar]
  23. 23.
    Strauss J, Schirrmeister L, Grosse G, Fortier D, Hugelius G et al. 2017. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth-Sci. Rev. 172:75–86
    [Google Scholar]
  24. 24.
    Schuur EAG, McGuire AD, Romanovsky VE, Schadel C, Mack M 2018. Arctic and boreal carbon. Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report N Cavallaro, G Shrestha, R Birdsey, MA Mayes, RG Najjar, et al. 428–68 Washington, DC: U.S. Glob. Change Res. Progr.
    [Google Scholar]
  25. 25.
    Sayedi SS, Abbott BW, Thornton BF, Frederick JM, Vonk JE et al. 2020. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. Environ. Res. Lett. 15:12124075
    [Google Scholar]
  26. 26.
    Schneider von Deimling T, Grosse G, Strauss J, Schirrmeister L, Morgenstern A et al. 2015. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences 12:113469–88
    [Google Scholar]
  27. 27.
    Walter Anthony K, Schneider von Deimling T, Nitze I, Frolking S, Emond A et al. 2018. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9:13262
    [Google Scholar]
  28. 28.
    Schuur EAG, Abbott B, Network PC 2011. High risk of permafrost thaw. Nature 480:737532–33
    [Google Scholar]
  29. 29.
    McGuire AD, Koven C, Lawrence DM, Clein JS, Xia J et al. 2016. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochem. Cycles. 30:71015–37
    [Google Scholar]
  30. 30.
    McGuire AD, Lawrence DM, Koven C, Clein JS, Burke E et al. 2018. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. PNAS 115:153882–87
    [Google Scholar]
  31. 31.
    Qian HF, Joseph R, Zeng N 2010. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Change Biol. 16:2641–56
    [Google Scholar]
  32. 32.
    Koven C, Ringeval B, Friedlingstein P, Ciais P, Cadule P et al. 2011. Permafrost carbon-climate feedbacks accelerate global warming. PNAS 108:3614769–74
    [Google Scholar]
  33. 33.
    Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG, Witt R. 2014. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9:8085003
    [Google Scholar]
  34. 34.
    Andresen CG, Lawrence DM, Wilson CJ, McGuire AD, Koven C et al. 2020. Soil moisture and hydrology projections of the permafrost region—a model intercomparison. Cryosphere 14:2445–59
    [Google Scholar]
  35. 35.
    Lawrence DM, Koven CD, Swenson SC, Riley WJ, Slater AG. 2015. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10:9094011
    [Google Scholar]
  36. 36.
    O'Neill HB, Wolfe SA, Duchesne C. 2019. New ground ice maps for Canada using a paleogeographic modelling approach. The Cryosphere 13:3753–73
    [Google Scholar]
  37. 37.
    Zhang T, Heginbottom JA, Barry RG, Brown J. 2000. Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere. Polar Geogr 24:2126–31
    [Google Scholar]
  38. 38.
    Kokelj S, Jorgenson M. 2013. Advances in thermokarst research. Permafrost Periglac. Process. 24:2108–19
    [Google Scholar]
  39. 39.
    Rodenhizer H, Ledman J, Mauritz M, Natali SM, Pegoraro E et al. 2020. Carbon thaw rate doubles when accounting for subsidence in a permafrost warming experiment. J. Geophys. Res. Biogeosci. 125:6e2019JG005528
    [Google Scholar]
  40. 40.
    Jorgenson MT, Romanovsky V, Harden J, Shur Y, O'Donnell J et al. 2010. Resilience and vulnerability of permafrost to climate change. Can. J. Forest Res. 40:71219–36
    [Google Scholar]
  41. 41.
    Nitzbon J, Westermann S, Langer M, Martin LCP, Strauss J et al. 2020. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11:2201
    [Google Scholar]
  42. 42.
    Shur YL, Jorgenson MT. 2007. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafrost Periglac. Process. 18:17–19
    [Google Scholar]
  43. 43.
    Jorgenson MT 2013. Thermokarst terrains. Glacial and Periglacial Geomorphology J Shroder 313–24 San Diego, CA: Academic
    [Google Scholar]
  44. 44.
    Liljedahl AK, Boike J, Daanen RP, Fedorov AN, Frost GV et al. 2016. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9:4312–18
    [Google Scholar]
  45. 45.
    Lewkowicz AG, Way RG. 2019. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10:11329
    [Google Scholar]
  46. 46.
    Nitze I, Grosse G, Jones BM, Romanovsky VE, Boike J. 2018. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9:15423
    [Google Scholar]
  47. 47.
    Olefeldt D, Goswami S, Grosse G, Hayes D, Hugelius G et al. 2016. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7:13043
    [Google Scholar]
  48. 48.
    Turetsky MR, Abbott BW, Jones MC, Anthony KW, Olefeldt D et al. 2020. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13:2138–43
    [Google Scholar]
  49. 49.
    Canadell JG, Montiero PMS, Costa MH, Cotrim da Cunha L, Cox PM et al. 2021. Global carbon and other biogeochemical cycles and feedbacks. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al. 673–816 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  50. 50.
    Slater AG, Lawrence DM. 2013. Diagnosing present and future permafrost from climate models. J. Clim. 26:155608–23
    [Google Scholar]
  51. 51.
    Fox-Kemper B, Hewitt HT, Xiao C, Aðalgeirsdóttir G, Drijfhout SS et al. 2021. Ocean, cryosphere and sea level change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al. 1211–362 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  52. 52.
    Gasser T, Kechiar M, Ciais P, Burke EJ, Kleinen T et al. 2018. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11:11830–35
    [Google Scholar]
  53. 53.
    Brosius LS, Walter Anthony KM, Grosse G, Chanton JP, Farquharson LM et al. 2012. Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation. J. Geophys. Res. A 117:G1 https://doi.org/10.1029/2011JG001810
    [Crossref] [Google Scholar]
  54. 54.
    Walter KM, Edwards ME, Grosse G, Zimov SA, Chapin FS. 2007. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318:5850633–36
    [Google Scholar]
  55. 55.
    Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts DC, Skea J et al. 2018. Global Warming of 1.5°C : Summary for Policy Makers Geneva: Intergov. Panel Clim. Change
    [Google Scholar]
  56. 56.
    Comyn-Platt E, Hayman G, Huntingford C, Chadburn SE, Burke EJ et al. 2018. Carbon budgets for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks. Nat. Geosci. 11:8568–73
    [Google Scholar]
  57. 57.
    de Vrese P, Brovkin V. 2021. Timescales of the permafrost carbon cycle and legacy effects of temperature overshoot scenarios. Nat. Commun. 12:12688
    [Google Scholar]
  58. 58.
    MacDougall AH, Zickfeld K, Knutti R, Matthews HD. 2015. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10:12125003
    [Google Scholar]
  59. 59.
    Natali SM, Holdren JP, Rogers BM, Treharne R, Duffy PB et al. 2021. Permafrost carbon feedbacks threaten global climate goals. PNAS 118:21e2100163118
    [Google Scholar]
  60. 60.
    Metcalfe DB, Hermans TDG, Ahlstrand J, Becker M, Berggren M et al. 2018. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat. Ecol. Evol. 2:91443–48
    [Google Scholar]
  61. 61.
    Pallandt MMTA, Kumar J, Mauritz M, Schuur EAG, Virkkala A-M et al. 2021. Representativeness assessment of the pan-Arctic eddy-covariance site network, and optimized future enhancements. Biogeosciences 19:559–83
    [Google Scholar]
  62. 62.
    Belshe EF, Schuur EAG, Bolker BM. 2013. Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecol. Lett. 16:101307–15
    [Google Scholar]
  63. 63.
    McGuire A, Christensen T, Hayes D, Heroult A, Euskirchen E et al. 2012. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9:83185–3204
    [Google Scholar]
  64. 64.
    Natali SM, Watts JD, Rogers BM, Potter S, Ludwig SM et al. 2019. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9:11852–57
    [Google Scholar]
  65. 65.
    Virkkala A-M, Aalto J, Rogers BM, Tagesson T, Treat CC et al. 2021. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: regional patterns and uncertainties. Glob. Change Biol. 27:174040–59
    [Google Scholar]
  66. 66.
    Watts JD, Natali SM, Minions C, Risk D, Arndt K et al. 2021. Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada. Environ. Res. Lett. 16:8084051
    [Google Scholar]
  67. 67.
    Gaglioti BV, Mann DH, Jones BM, Pohlman JW, Kunz ML, Wooller MJ. 2014. Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change: radiocarbon age-offsets. J. Geophys. Res. Biogeosci. 119:81630–51
    [Google Scholar]
  68. 68.
    Tesi T, Muschitiello F, Smittenberg RH, Jakobsson M, Vonk JE et al. 2016. Massive remobilization of permafrost carbon during post-glacial warming. Nat. Commun. 7:113653
    [Google Scholar]
  69. 69.
    Martens J, Wild B, Pearce C, Tesi T, Andersson A et al. 2019. Remobilization of old permafrost carbon to Chukchi Sea sediments during the end of the Last Deglaciation. Glob. Biogeochem Cycles 33:12–14
    [Google Scholar]
  70. 70.
    Köhler P, Knorr G, Bard E. 2014. Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød. Nat. Commun. 5:15520
    [Google Scholar]
  71. 71.
    Walter Anthony KM, Zimov SA, Grosse G, Jones MC, Anthony PM et al. 2014. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511:7510452–56
    [Google Scholar]
  72. 72.
    Harden JW, Sundquist ET, Stallard RF, Mark RK. 1992. Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet. Science 258:50901921–24
    [Google Scholar]
  73. 73.
    Lindgren A, Hugelius G, Kuhry P. 2018. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 560:7717219–22
    [Google Scholar]
  74. 74.
    Loisel J, Yu Z, Beilman DW, Camill P, Alm J et al. 2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24:91028–42
    [Google Scholar]
  75. 75.
    Treat CC, Kleinen T, Broothaerts N, Dalton AS, Dommain R et al. 2019. Widespread global peatland establishment and persistence over the last 130,000 y. PNAS 116:114822–27
    [Google Scholar]
  76. 76.
    Treat CC, Jones MC. 2018. Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years. Holocene 28:6998–1010
    [Google Scholar]
  77. 77.
    Yu Z. 2011. Holocene carbon flux histories of the world's peatlands: global carbon-cycle implications. Holocene 21:5761–74
    [Google Scholar]
  78. 78.
    Ganopolski A, Brovkin V. 2017. Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity. Clim. Past 13:121695–1716
    [Google Scholar]
  79. 79.
    Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J et al. 2000. Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50:10871–82
    [Google Scholar]
  80. 80.
    Euskirchen ES, Bret-Harte MS, Shaver GR, Edgar CW, Romanovsky VE. 2017. Long-term release of carbon dioxide from arctic tundra ecosystems in Alaska. Ecosystems 20:5960–74
    [Google Scholar]
  81. 81.
    Lund M, Lafleur PM, Roulet NT, Lindroth A, Christensen TR et al. 2010. Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob. Change Biol. 16:92436–48
    [Google Scholar]
  82. 82.
    Schuur EAG, Andersen JK, Andreassen LM, Baker EH, Ballinger TJ et al. 2020. Permafrost carbon. State of the Climate in 2019 J Richter-Menge, ML Druckenmiller Bull. Am. Meteorol. Soc. 1018S239–86
    [Google Scholar]
  83. 83.
    Bruhwiler L, Parmentier F-JW, Crill P, Leonard M, Palmer PI 2021. The arctic carbon cycle and its response to changing climate. Curr. Clim. Change Rep. 7:114–34
    [Google Scholar]
  84. 84.
    Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB et al. 2013. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341:61501085–89
    [Google Scholar]
  85. 85.
    Parazoo NC, Commane R, Wofsy SC, Koven CD, Sweeney C et al. 2016. Detecting regional patterns of changing CO2 flux in Alaska. PNAS 113:287733–38
    [Google Scholar]
  86. 86.
    Commane R, Lindaas J, Benmergui J, Luus KA, Chang RY-W et al. 2017. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. PNAS 114:215361–66
    [Google Scholar]
  87. 87.
    Ueyama M, Iwata H, Harazono Y, Euskirchen ES, Oechel WC, Zona D 2013. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA). Ecol. Appl. 23:81798–1816
    [Google Scholar]
  88. 88.
    O'Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K et al. 2017. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42:169–80
    [Google Scholar]
  89. 89.
    Abram N, Gattuso J-P, Prakash A, Cheng L, Chidichimo MP et al. 2019. Framing and context of the report. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, et al. 73–129 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  90. 90.
    Gallego-Sala AV, Charman DJ, Brewer S, Page SE, Prentice IC et al. 2018. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim Change. 8:10907–13
    [Google Scholar]
  91. 91.
    Plaza C, Pegoraro E, Bracho R, Celis G, Crummer KG et al. 2019. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat. Geosci. 12:8627–31
    [Google Scholar]
  92. 92.
    Knoblauch C, Beer C, Liebner S, Grigoriev MN, Pfeiffer E-M. 2018. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8:4309–12
    [Google Scholar]
  93. 93.
    Schädel C, Schuur EAG, Bracho R, Elberling B, Knoblauch C et al. 2014. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 20:2641–52
    [Google Scholar]
  94. 94.
    Pegoraro EF, Mauritz ME, Ogle K, Ebert CH, Schuur EAG. 2020. Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming. Glob. Change Biol. 27:61293–1308
    [Google Scholar]
  95. 95.
    Schädel C, Bader MK-F, Schuur EAG, Biasi C, Bracho R et al. 2016. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change. 6:10950–53
    [Google Scholar]
  96. 96.
    Myers-Smith IH, Kerby JT, Phoenix GK, Bjerke JW, Epstein HE et al. 2020. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10:2106–17
    [Google Scholar]
  97. 97.
    Pearson R, Phillips S, Loranty M, Beck P, Damoulas T et al. 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3:7673–77
    [Google Scholar]
  98. 98.
    Westergaard-Nielsen A, Lund M, Pedersen SH, Schmidt NM, Klosterman S et al. 2017. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013. Ambio 46:S139–52
    [Google Scholar]
  99. 99.
    Xu L, Myneni RB, Chapin FS III, Callaghan TV, Pinzon JE et al. 2013. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Change 3:6581–86
    [Google Scholar]
  100. 100.
    Mack MC, Walker XJ, Johnstone JF, Alexander HD, Melvin AM et al. 2021. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372:6539280–83
    [Google Scholar]
  101. 101.
    Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE. 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:7246556–59
    [Google Scholar]
  102. 102.
    Cory R, Ward C, Crump B, Kling G. 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345:6199925–28
    [Google Scholar]
  103. 103.
    Kruse S, Wieczorek M, Jeltsch F, Herzschuh U. 2016. Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix. Ecol. Model. 338:101–21
    [Google Scholar]
  104. 104.
    Kruse S, Gerdes A, Kath NJ, Epp LS, Stoof-Leichsenring KR et al. 2019. Dispersal distances and migration rates at the arctic treeline in Siberia—a genetic and simulation-based study. Biogeosciences 16:61211–24
    [Google Scholar]
  105. 105.
    Bhatt US, Walker DA, Raynolds MK, Bieniek PA, Epstein HE et al. 2017. Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environ. Res. Lett. 12:5055003
    [Google Scholar]
  106. 106.
    Lara MJ, Nitze I, Grosse G, Martin P, McGuire AD. 2018. Reduced arctic tundra productivity linked with landform and climate change interactions. Sci Rep 8:12345
    [Google Scholar]
  107. 107.
    Mu CC, Abbott BW, Zhao Q, Su H, Wang SF et al. 2017. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau. Geophys. Res. Lett. 44:178945–52
    [Google Scholar]
  108. 108.
    Treat CC, Jones MC, Brosius L, Grosse G, Walter Anthony K, Frolking S 2021. The role of wetland expansion and successional processes in methane emissions from northern wetlands during the Holocene. Quaternary Sci. Rev. 257:106864
    [Google Scholar]
  109. 109.
    Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG et al. 2020. The global methane budget 2000–2017. Earth System Sci. Data 12:31561–1623
    [Google Scholar]
  110. 110.
    Sweeney C, Dlugokencky E, Miller CE, Wofsy S, Karion A et al. 2016. No significant increase in long-term CH4 emissions on North Slope of Alaska despite significant increase in air temperature. Geophys. Res. Lett. 43:126604–11
    [Google Scholar]
  111. 111.
    Walter Anthony K, Daanen R, Anthony P, Schneider von Deimling T, Ping C-L et al. 2016. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9:9679–82
    [Google Scholar]
  112. 112.
    Engram M, Walter Anthony KM, Sachs T, Kohnert K, Serafimovich A et al. 2020. Remote sensing northern lake methane ebullition. Nat. Clim. Change 10:6511–17
    [Google Scholar]
  113. 113.
    Zona D, Gioli B, Commane R, Lindaas J, Wofsy SC et al. 2016. Cold season emissions dominate the Arctic tundra methane budget. PNAS 113:140–45
    [Google Scholar]
  114. 114.
    Kohnert K, Serafimovich A, Metzger S, Hartmann J, Sachs T. 2017. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. Sci. Rep. 7:15828
    [Google Scholar]
  115. 115.
    Ruppel CD, Kessler JD. 2016. The interaction of climate change and methane hydrates. Rev. Geophys. 55:1126–68
    [Google Scholar]
  116. 116.
    Walter Anthony KM, Anthony P, Grosse G, Chanton J 2012. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat. Geosci. 5:6419–26
    [Google Scholar]
  117. 117.
    Thornton BF, Wik M, Crill PM. 2016. Double-counting challenges the accuracy of high-latitude methane inventories. Geophys. Res. Lett. 43:2412,569–77
    [Google Scholar]
  118. 118.
    Shakhova N, Semiletov I, Leifer I, Sergienko V, Salyuk A et al. 2013. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 7:164–70
    [Google Scholar]
  119. 119.
    Berchet A, Bousquet P, Pison I, Locatelli R, Chevallier F et al. 2016. Atmospheric constraints on the methane emissions from the East Siberian Shelf. Atmos. Chem. Phys. 16:64147–57
    [Google Scholar]
  120. 120.
    Crill PM, Thornton BF. 2017. Whither methane in the IPCC process?. Nat. Clim. Change 7:10678–80
    [Google Scholar]
  121. 121.
    Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P et al. 2016. The global methane budget 2000–2012. Earth System Sci. Data 8:2697–751
    [Google Scholar]
  122. 122.
    Zhang Z, Zimmermann NE, Stenke A, Li X, Hodson EL et al. 2017. Emerging role of wetland methane emissions in driving 21st century climate change. PNAS 114:369647–52
    [Google Scholar]
  123. 123.
    Kuhn MA, Varner RK, Bastviken D, Crill P, MacIntyre S et al. 2021. BAWLD-CH4 : a comprehensive dataset of methane fluxes from boreal and arctic ecosystems. Earth System Sci. Data 13:115151–89
    [Google Scholar]
  124. 124.
    Overduin PP, Schneider von Deimling T, Miesner F, Grigoriev MN, Ruppel C et al. 2019. Submarine Permafrost Map in the Arctic Modeled Using 1-D Transient Heat Flux (SuPerMAP). J. Geophys. Res. Oceans. 124:63490–3507
    [Google Scholar]
  125. 125.
    Heslop JK, Walter Anthony KM, Winkel M, Sepulveda-Jauregui A, Martinez-Cruz K et al. 2020. A synthesis of methane dynamics in thermokarst lake environments. Earth-Sci. Rev. 210:103365
    [Google Scholar]
  126. 126.
    Steinbach J, Holmstrand H, Shcherbakova K, Kosmach D, Brüchert V et al. 2021. Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf. PNAS 118:10e2019672118
    [Google Scholar]
  127. 127.
    Kraev G, Rivkina E, Vishnivetskaya T, Belonosov A, van Huissteden J et al. 2019. Methane in gas shows from boreholes in epigenetic permafrost of Siberian Arctic. Geosciences 9:267
    [Google Scholar]
  128. 128.
    Neubauer SC. 2021. Global warming potential is not an ecosystem property. Ecosystems 24:2079–89
    [Google Scholar]
  129. 129.
    Neubauer SC, Megonigal JP. 2015. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18:61000–13
    [Google Scholar]
  130. 130.
    Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J et al. 2020. Global Carbon Budget 2020. Earth Syst. Sci. Data 12:43269–3340
    [Google Scholar]
  131. 131.
    Gilfillan D, Marland G. 2021. CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017. Earth Syst. Sci. Data 13:1667–80
    [Google Scholar]
  132. 132.
    Whiteman G, Hope C, Wadhams P. 2013. Vast costs of Arctic change. Nature 499:7459401–3
    [Google Scholar]
  133. 133.
    Bogoyavlensky V, Bogoyavlensky I, Nikonov R, Kargina T, Chuvilin E et al. 2021. New catastrophic gas blowout and giant crater on the Yamal Peninsula in 2020: results of the expedition and data processing. Geosciences 11:271
    [Google Scholar]
  134. 134.
    Ruppel CD, Herman BM, Brothers LL, Hart PE. 2016. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints. Geochem. Geophys. Geosyst. 17:114333–53
    [Google Scholar]
  135. 135.
    Kreplin HN, Santos Ferreira CS, Destouni G, Keesstra SD, Salvati L, Kalantari Z 2021. Arctic wetland system dynamics under climate warming. WIREs Water 8:4e1526
    [Google Scholar]
  136. 136.
    Walvoord MA, Striegl RG. 2021. Complex vulnerabilities of the water and aquatic carbon cycles to permafrost thaw. Front. Clim. 3:730402
    [Google Scholar]
  137. 137.
    Muster S, Roth K, Langer M, Lange S, Cresto Aleina F et al. 2017. PeRL: a circum-Arctic Permafrost Region Pond and Lake database. Earth System Sci. Data 9:1317–48
    [Google Scholar]
  138. 138.
    Lenton TM, Held H, Kriegler E, Hall JW, Lucht W et al. 2008. Tipping elements in the Earth's climate system. PNAS 105:61786–93
    [Google Scholar]
  139. 139.
    Burke KD, Williams JW, Chandler MA, Haywood AM, Lunt DJ, Otto-Bliesner BL. 2018. Pliocene and Eocene provide best analogs for near-future climates. PNAS 115:5213288–93
    [Google Scholar]
  140. 140.
    Mack MC, Bret-Harte MS, Hollingsworth TN, Jandt RR, Schuur EAG et al. 2011. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475:7357489–92
    [Google Scholar]
  141. 141.
    Talucci AC, Loranty MM, Alexander HD. 2022. Siberian taiga and tundra fire regimes from 2001–2020. Environ. Res. Lett. 17:2025001
    [Google Scholar]
  142. 142.
    Gibson CM, Chasmer LE, Thompson DK, Quinton WL, Flannigan MD, Olefeldt D. 2018. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9:13041
    [Google Scholar]
  143. 143.
    Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN et al. 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51:11933–38
    [Google Scholar]
  144. 144.
    Brown J, Ferrians O, Heginbottom JA, Melnikov ES. 2002. Circum-arctic map of permafrost and ground-ice conditions, Version 2 (GGD318) National Snow and Ice Center Dataset GGD318: CIRES, Univ. Colo. Boulder: accessed Aug. 7, 2022. https://doi.org/10.7265/skbg-kf16
    [Crossref] [Google Scholar]
  145. 145.
    MacDougall AH, Knutti R. 2016. Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences 13:72123–36
    [Google Scholar]
  146. 146.
    Burke EJ, Chadburn SE, Ekici A. 2017. A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions. Geosci. Model Dev. 10:2959–75
    [Google Scholar]
  147. 147.
    Kleinen T, Brovkin V. 2018. Pathway-dependent fate of permafrost region carbon. Environ. Res. Lett. 13:9094001
    [Google Scholar]
  148. 148.
    Keuper F, Wild B, Kummu M, Beer C, Blume-Werry G et al. 2020. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 13:8560–65
    [Google Scholar]
  149. 149.
    Koven CD, Schuur EAG, Schädel C, Bohn TJ, Burke EJ et al. 2015. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philos. Trans. R. Soc. A. 373:20140423
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012220-011847
Loading
/content/journals/10.1146/annurev-environ-012220-011847
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error