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Abstract

Getting to net-zero-carbon cities while advancing well-being (W), health
(H), social equity (E), and climate resilience (R) (referred to as the WHER
outcomes) is critical for local and global sustainability. However, science is
nascent on the linkages between zero-carbon pathways and WHER out-
comes. This article presents a transboundary urban metabolism framework,
rooted in seven key infrastructure and food provisioning systems, to con-
nect urban decarbonization strategies with WHER outcomes. Applying the
framework along with a literature review, we find the evidence for co-
beneficial decarbonization to be strong for health; limited for well-being;
uncertain for resilience; and requiring intentional design to advance eq-
uity, including distributional, procedural, and recognitional aspects. We
describe the evidence base, identify key knowledge gaps, and delineate
broad parameters of a new urban nexus science to enable zero-carbon
urban transitions with WHER co-benefits. We highlight the need for
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fine-scale data encompassing all seven sectors across scales, along with multiple and multi-
scale climate risks, accompanied by next-generation multisector, multiscale, multioutcome nexus
models.
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1. INTRODUCTION AND RATIONALE

Urban areas are centers of human productivity and ingenuity, housing >56% of the world popu-
lation today and generating more than 80% of the world’s gross domestic product (1). With the
urban population share expected to increase to 68% by 2050 (2), urban areas are increasingly be-
ing recognized as a key action arena for global carbon mitigation, while also advancing multiple
sustainable development goals (SDGs) locally related to human well-being (W), health (H), social
equity (E), and climate resilience (R) (3, 4), henceforth referred to as the WHER outcomes.
Although urbanization has been recognized as critical to national economic development (5),
the benefits of urbanization—in terms of gains in economy, health, and well-being—have not
been realized to their full extent (6). For example, social inequality is high in many developing
world cities where >30% of the population often lives in informal settlements lacking basic infra-
structure, such as piped water, electricity, sanitation, and structurally safe housing (6). Many urban
residents in cities worldwide are disproportionately exposed to high pollution levels, particularly
fine particulate matter (PM, 5) in the air, resulting from the burning of fossil fuel in energy, mobil-
ity, and construction sectors (7, 8), and burning of municipal solid waste (9). Unequal exposure to
air pollution and poor access to nutritious food and active mobility contribute to unequal health
outcomes, e.g., lifespan disparities exceeding 15 years between adjacent neighborhoods in some
US cities (10, 11). Climate stressors such as extreme heat, flooding, hurricanes, and wildfires (see

Ramaswami et al.



GLOBAL IMPACT OF INFRASTRUCTURE AND FOOD PROVISIONING SYSTEMS ON
GREENHOUSE GAS EMISSIONS, SOCIAL INEQUALITY, HEALTH, AND CLIMATE
RISKS

Greenhouse Gas (GHG) Emissions: The seven key infrastructure provisioning systems contribute ~90% of the
global GHG emissions (20; see also Figure 5).

Inequality: Social inequality in cities, e.g., by income, race, caste, and other factors, physically manifests in the form
of high levels of infrastructure inequalities, specifically, slums/informal settlements that lack sanitation, structurally
safe housing, water supply, electricity, and clean energy supply. Globally, > 1 billion people live in slums, primarily in
cities in Asia and Africa (53), where the proportion of slum dwellers can range from 20%-60% (54). In the United
States, a high-income country that is experiencing high levels of homelessness, >600,000 (approximately 0.2% of
US population) and >930,000 urban residents (approximately 0.35% of US urban population) lack access to piped
water and sanitation, respectively (55). The marginalized and poor in cities worldwide also face disproportionately
high exposure to climate and health risks and reduced access to health care.

Health: Health risks worldwide arising from inadequate, unequal, and polluting infrastructure systems contributed
to ~19 million premature deaths in 2019 (56, 57; see also Figure 5). The top three risk factors are air pollution
associated with the energy systems, poor nutrition associated with the food system, and accidents and reduced
physical activity linked to mobility systems (see Figure 5) (58). Globally, disaster-related mortality was ~15,000
(59). Additional urban-specific health risks include noise (60) and heat stress (61), as well as reduced access to
greenery and parks that affect well-being (62).

Multiple Urban Climate Risks: Urban areas and infrastructure are subject to diverse climate risks, including the
following:

Urban heat: By 2050, 1.6 billion people in 970 cities will be exposed to extreme heat (63). Average urban
temperatures changed over the past century from 1 to 7°C across 26 global cities (64), with cities in temperate
latitudes seeing the largest changes (e.g., London), due to the urban heat island effect where temperatures
can exceed surrounding hinterlands by as much as 4°C in some cities. Intracity differences can be as high
as 15°C between shade and sun. Elevated temperatures, and in combination with high humidity, can cause
heat stress, which prevents the human body from cooling down. Several indices exist that measure heat stress,
accounting for temperature and humidity, including heat index and wet bulb globe temperature (63, 65).

Sea-level rise: By 2050, more than 800 million people will be exposed to coastal flooding exceeding 0.5 meters.
Urban exposure to flooding has increased fourfold from 1985 to 2018 (66).

Hurricanes: Economic damages from storms (high wind, precipitation, and flooding) in 2022 exceeded
$20 billion primarily in US urban areas (estimates based on 67) due to power outages and urban flooding
following hurricanes as seen previously in hurricanes Harvey and Ida. Attribution to climate change is mod-
est (54) while emerging research suggests tropical cyclones may be intensifying and moving to higher latitudes
with potential to impact cities as far north as Boston (68).

Wildfires: In the United States, one-third of all houses and one-tenth of land area at the wildland-urban
interface is considered to be at risk of wildfires (69). In 2022, $0.2 billion in damages was attributed to wildfires
and anticipatory power cuts (67).

the sidebar titled Global Impact of Infrastructure and Food Provisioning Systems on Greenhouse
Gas Emissions, Social Inequality, Health, and Climate Risks) are now impacting >1.4 billion peo-
ple worldwide, including >400 million people concentrated in some of the world’s largest cities

(Table 1), disrupting lives, wreaking economic damage, and impacting public health unequally.
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Against this backdrop, urban activities collectively contribute >70% of global greenhouse
gas (GHG) emissions when accounting for fossil fuel and electricity imports to cities (12, 13).
Scientists and policymakers are increasingly recognizing the importance of quantifying direct ter-
ritorial (Scope 1) GHG emissions, as well as GHGs associated with transboundary supply of key
provisioning systems, including imported electricity (Scope 2) and life cycle (Scope 3) emissions
associated with producing fuels, food, and construction materials necessary for the functioning of
homes and businesses in cities. Community-wide infrastructure and food supply chain footprints
have been advanced in the scientific literature (14-17) and institutionalized in city-level GHG pro-
tocols such as ICLEI’s US Community Protocol and the Global Protocol for Cities (18, 19) used by
hundreds of cities worldwide. A focus on seven key provisioning systems that provide energy, mo-
bility, shelter/building materials, food, water, waste management, and green infrastructure/public
spaces is strategic because, globally, these sectors collectively contribute >90% of global GHG
emissions (16, 20). Furthermore, these provisioning systems foundationally impact WHER out-
comes in cities (16). Thus, a focus on provisioning systems enables cities to chart pathways to
low-carbon and zero-carbon goals with WHER co-benefits.

Since 1990, several hundreds of cities have committed to reducing GHG emissions through
the US Mayors Climate Protection Agreement (https://www.usmayors.org/programs/mayors-
climate-protection-center/), the Global Covenant of Mayors for Climate and Energy
(https://www.globalcovenantofmayors.org/), and C-40 cities (21). In 2011, the United Nations
Framework Convention on Climate Change formally recognized the importance of cities and in-
frastructure systems in GHG mitigation and climate adaptation. More recently, consistent with
global efforts to achieve net-zero emissions by 2050 (22), more than 1,100 cities have adopted net-
zero-carbon goals. A recent review article (23) distinguishes between urban low-carbon versus
net-zero-carbon goals, noting that low-carbon strategies encompassing efficiency and conser-
vation can never yield net-zero emissions, as they cannot “zero-out” the use of fossil fuels. In
contrast, net-zero emission strategies that yield deep reductions in GHG emissions require sys-
temic transitions in infrastructure and food systems anchored upon a zero-carbon electricity grid,
accompanied by mobility and heating transitions to electricity and a range of carbon valorization
and sequestration efforts across food-energy-water-waste (FEWW) and green infrastructure sec-
tors. Henceforth, we use the term net-zero-carbon emissions, or simply zero-carbon as a simpler
way of referring to net-zero GHG emissions.

Zero-carbon pathways have been delineated globally (24, 25) and at national scales for India
(26), China (27), South Africa (28), and the United States (29, 30). The role of cities in achiev-
ing national and global zero-carbon outcomes has been less studied. Most city-scale zero-carbon
models focus only on energy use in buildings and mobility (23), although recent studies are in-
corporating land use efficiency (31), integrated land use planning (32), urban industrial symbiosis
(33), mass timber construction (34, 35), and nature-based solutions (36). More recently, emerging
models are integrating multiple strategies across all seven provisioning systems to chart city-wide
decarbonization (37). As the world and its urban areas undertake major investments to achieve
zero-carbon goals by 2050, it is imperative that these zero-carbon transitions are designed to also
advance WHER outcomes.

Many cities have already recognized the nexus between decarbonization and WHER outcomes;
for example, New York City’s goals connect the economy, social justice, sustainability, and re-
silience (38). ICLEI-USA, a network of 600 US cities, recently created a task force to develop met-
rics for decarbonization, equity, and climate resilience (https://iclei.org/activity/accelerating-
transitions-to-zero-carbon-sustainable-urban-mobility-systems/). A policy statement from
the American Heart Association is recognizing the nexus between health and various sustainability
plans (39), as does the Planetary Health Alliance (40). However, there has been little systematic
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study of the mechanisms through which zero-carbon strategies can advance WHER outcomes,
and the models/measurements that demonstrate these linkages.

This article presents a systems framework and associated literature review to evaluate the link-
ages between zero-carbon pathways in cities and multiple WHER outcomes. We do not address
all pathways to creating climate-resilient, healthy, or equitable cities; rather, our focus is on zero
pathways and their intersection with the multiple WHER outcomes.

Section 2 presents a conceptual framework anchored upon key provisioning systems that en-
ables assessing pathways toward zero-carbon cities, with potential linkages to WHER outcomes.
Sections 3-5 subsequently apply the framework to evaluate mechanisms by which urban zero-
carbon strategies intersect with health and well-being outcomes, climate resilience, and equity,
respectively. Section 6 provides a synthesis and directions for future research. We discuss these
topics from a global perspective, focusing on examples from the United States and India, to provide
developed and developing world perspectives.

2. A SYSTEMS FRAMEWORK ANCHORED UPON KEY
PROVISIONING SYSTEMS

A robust body of literature over the past 10-15 years articulates physical provisioning systems
as the connector between natural systems, planetary boundaries, and human well-being. For ex-
ample, Ramaswami et al. (20) show that seven key provisions systems that provide food, energy,
water, mobility, shelter/building materials, waste management, and green/public spaces together
contribute more than 90% of global GHG emissions, greater than 98% of water withdrawals and a
vast majority of premature mortality associated with infrastructure- and environment-related risk
factors. Likewise, O’Neill et al. (41) articulate physical provisioning systems as the link between
planetary boundaries and human outcomes of health, well-being, inequality, and democracy. The
importance of infrastructure and food provisioning systems as an anchor that connects multiple
SDGs has also been acknowledged by several researchers (10, 42-45) and policymakers (4, 46).

2.1. A Transboundary Urban Metabolism Framework and Nexus Outcomes

‘We build on this prior literature to depict a social-ecological-infrastructural systems framework
(Figure 1) anchored upon the concept of urban metabolism that connects demand for the seven
key provisioning systems in cities with their transboundary supply (20, 47), shaped by people (so-
cial actors) and institutions across spatial scales. The seven provisioning systems are associated
with transboundary community-wide GHG footprints and social inequality as well as climate and
health risks, thus providing a conceptual framework for the nexus linkages among GHG emission
and WHER outcomes. The sidebar titled Global Impact of Infrastructure and Food Provisioning
Systems on Greenhouse Gas Emissions, Social Inequality, Health, and Climate Risks summarizes
the massive global implications of infrastructure and food provisioning systems on GHGs, social
inequality, health effects, and climate risks. Table 1 illustrates the magnitude of populations in just
the top 20 cities exposed to high levels of air pollution (115 million), extreme heat (124 million),
and sea level rise (245 million). Globally, one or more of these impacts are expected in 59% of
cities, large and small, impacting 1.4 billion people in 2018 (48).

The framework in Figure 1 provides a structure wherein the same infrastructure and food
provisioning systems connected to decarbonization outcomes, i.e., GHG footprints and their
mitigation, are also linked to inequality within and across city boundaries, as well as health and
climate risks, which relate to resilience. The framework recognizes large social inequalities in
access to basic infrastructure and nutritious food within cities and that essential energy, water,
food, construction materials, and mobility services are supplied via transboundary power, water,
energy, food, and freight networks. For example, in the context of inequality in cities, significant
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Home scale Social inequality in access to infrastructure and exposure to multiple and multiscale health risks Global scale

b

Household air Poor neighborhood access Urban regional heat, National/regional air pollution, Global climate
pollution and to greenery, nutritious food, noise, and flooding flooding, drought change
unhealthy diets walkable streets, transit
Home scale Examples of multiscale health risks Global scale
Household lifestyles Neighborhood design Urban metropolitan National/regional/state policies United Nations
and health regional infrastructure and for net-zero-carbon grid and SDGs
behaviors transportation planning industries
Home scale Examples of environmental institutions across scale Global scale
Figure 1

(@) Pictorial representation of various components of a social-ecological-infrastructural urban systems framework (adapted from
References 20, 47). The framework anchors upon the concept of urban metabolism, illustrating the transboundary resource flows
needed to support key physical provisioning systems within a city (dashed line lnbeled Boundary of City 1). The transboundary resource
flows result in transboundary GHG, air pollution and natural resource/material footprints of the physical provisioning systems
(illustrated in the top green arrow), associated with their local- to global-scale supply chain. The green arrow at the bottom of panel #
illustrates social inequality in access to provisioning systems within the city, as well as exposure to multiple and multiscale health risks
illustrated in panel 4. (b)) The top blue arrow provides examples of multiscale health risks arising from poor access to infrastructure and
exposure to pollution and to climate-related risks. The bottom blue arrow illustrates that access and consumption of the provisioning
systems, and exposure to associated risks, are shaped by institutions from household to global scales. Institutions refers to formal and
informal norms that shape the behavior of social actors, including individuals, businesses, policy actors, etc. Adapted and expanded upon
with permission from References 20, 47. Abbreviations: GHG; greenhouse gas, SDGs; sustainable development goals.

populations in Delhi, India, lack access to piped water (>25%), toilets (11%), sewerage (>41%),
and permanent housing (12%) (49), and there are large intraurban differences in access to
greenery and exposure to air pollution, noise, and heat stress (50). At the same time, food travels
418 km to reach Delhi (51), and electricity, food, and freight travel more than 320 km, 1930 km,
and 960 km, respectively, in the United States (47). Correspondingly, health and climate risks are
multi-scaled (Figure 15), including, at the household scale, indoor air pollution from biomass
cooking stoves, lack of water and sanitation, and unhealthy diets; at the neighborhood scale, lack
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of access to greenery/trees, which can mitigate urban heat, nutritious food (food deserts), and
walkable-bikeable streets that facilitate active lifestyles; and, at the urban-regional scale, local
and regional flooding, urban heat island, air pollution, hurricanes, and drought. Some of these
climate-related risk factors have been attributed to global climate change with varying levels of
certainty, e.g., very likely for heat stress and likely for hurricanes (52). Extreme climate events
(wind, flooding, etc.) can also disrupt urban food, water, and power networks, with secondary
impacts on health, particularly during compounded events, i.e., heat stress following hurricane-
related power outages. Systematically characterizing in- and transboundary infrastructure and
food supply chains from a multi-outcome perspective enables addressing simultaneously GHG
mitigation, health, well-being, inequality and climate resilience, and equity. We apply the seven-
sector transboundary framework in Figure 1 to first delineate urban zero-carbon pathways (see
Section 2.2 and Figure 2) and then evaluate the nexus linkages between zero-carbon strategies
and the outcomes of health and well-being, climate resilience, and equity.

2.2. Applying the Framework to Quantify Zero-Carbon Transition Strategies

The following two sections delineate two steps through which the urban metabolism framework
can be applied to quantify the impact of zero-carbon transition strategies.

2.2.1. Baseline greenhouse gas emission footprints. Decarbonizing urban infrastructure and
food provisioning systems will first require understanding the GHG emissions associated with
urban provisioning systems. A community-wide transboundary infrastructure supply chain GHG
footprintillustrated for a city in Minnesota, USA (see Figure 34) shows baseline (year 2018) direct
and embodied GHGs associated with providing electricity and gas for buildings, petro fuels for
mobility, construction materials, food, and water. Studies of numerous global cities (14,17, 70-72)
have shown that while the sectoral contributions can vary across cities, energy use in buildings and
mobility tend to be dominant, followed by embodied emissions associated with food and construc-
tion materials, followed by water supply and waste, while greenery may result in a carbon sink (73).
The relative contribution depends on the boundary and scope of emission accounting (74, 75).

2.2.2. Pathways and strategies for urban decarbonization. A recent consensus article among
researchers and policymakers makes the case for defining a zero-carbon city as one with
transboundary zero-carbon infrastructure and food provisioning systems (16), recognizing that
globally these sectors contribute to >90% of global GHG emissions and also foundationally

Ramaswami et al.



a Community-wide infrastructure GHG emissions footprint for an illustrative city b Features of illustrative city
200
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(Baseline data) (Projection)
Year Net-carbon sequestration 7/ Transboundary GHGs
Figure 3

Community-wide greenhouse gas (GHG) footprint for an illustrative city in Minnesota, USA, showing business-as-usual trends from
2018 to 2040. Panel # shows the community-wide infrastructure GHG emissions footprint, including six sectors: (I) Energy use and
supply, shown in shades of blue, gray, and magenta to separate out gas and electricity (hatched), disaggregated by residential, commercial,
and industrial; (2) mobility, shown in orange, including wells-to-wheels GHG emissions (tailpipe and petroleum refinery);

(3) wastewater treatment, shown in dark brown; (4) solid waste management, shown in light brown; and (5) building materials, shown in
hatched red. (6) Green infrastructure results in net-carbon sequestration, shown in green, as negative emissions. Panel 4 explains the
context for changes in 2040, including population increase in living square footage, baseline improvements in energy use intensity
(EUI), and vehicle miles traveled (VMT per person per day), largely due to greater densification and existing compact city plans.

impact inequality and health (20, 41, 45). These seven key provisioning systems, i.e., energy, mo-
bility, transportation, construction, food systems, water, and wastewater, are also foundational to
national decarbonization plans. Furthermore, when these pillar sectors decarbonize, almost all
the other sectors of the economy will also decarbonize. Thus, defining a zero-carbon city as one
with zero-carbon transboundary infrastructure and food systems, a recent review article delineates
broad pathways and strategies for urban zero-carbon transitions (see Figure 2 and Reference 23)
in a manner consistent with and complementary to national decarbonization plans. The frame-
work draws on multiple literatures, including the potential to achieve a factor of ten (i.e., 10x) re-
source efficiency through integrated spatial planning (32); single-sector efficiencies, particularly in
buildings and mobility sectors that can reduce demand for energy and materials (76-78); meeting
the remaining demand through fuel switching to electric heat pumps and electric vehicles (EVs)
anchored upon a decarbonized grid (30, 79); followed by opportunities for carbon valorization
(80) of biogenic “waste” carbon to renewable natural gas and other feedstocks; and, finally, carbon
sequestration by urban trees (36, 81), mass timber construction (34), and constructed wetlands.
Reference 23 describes in detail the urban zero-carbon pathways and strategies. In this article,
we organize the zero-carbon (ZEC) strategies into five categories to enable systematic linkages of
these strategies with WHER outcomes in subsequent sections: ZEC Strategy #1: Integrated ur-
ban spatial planning; ZEC Strategy #2: Single-sector efficiency improvements to reduce demand
(particularly focused on the dominant buildings and mobility sectors); ZEC Strategy #3: Fuel
switching to electric heating and mobility, with decarbonized electricity supply; ZEC Strategy #4:
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Figure 4

Schematic illustrating the nexus linkages between the broad decarbonization strategies and examples of
typical specific actions (Jeft two columns; linkages shown in green arrows), and potential decarbonization
mechanisms (right column). Grayed out text indicates water supply and wastewater treatment sectors that
have relatively small GHG contributions due to which associated strategies are not reviewed in this paper.

Cross-sector linkages, enabling urban industrial symbiosis and carbon valorization at the food-
energy-water nexus; ZEC Strategy #5: Carbon sequestration including tree canopy, mass timber,
and constructed wetlands. Figure 4 illustrates how these strategies can contribute to decarboniza-
tion, the evidence base for which is detailed in Reference 23. A brief overview is therefore provided
below, highlighting key mechanisms in Figure 4.

m ZEC Strategy #1: Integrated urban spatial planning. Integrated spatial planning in-
volves addressing the “5 Ds”—density, diversity, neighborhood design, destination access
(primarily to jobs), and distance (proximity) to transit—doubling all of which can yield up to
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a 25% reduction in motorized travel demand (82). Functionally, integrated spatial planning
is implemented at three scales: (i) metropolitan regional scale design through a balanced
spatial distribution of homes, jobs, and essential services between central cities and suburbs;
(1i) mesoscale design with articulated density around transit nodes; and (iii) neighborhood-
scale design with mixed residential-commercial use and multimodal streets enabling
equitable access to parks, green spaces, and opportunity for active mobility through
walkable and bikeable streets. These three tiers of implementation are expected to result
in compact cities with reduced motorized vehicle travel and material requirements for
buildings and infrastructures (32, 83-85), as well as improved and equitable access to transit,
jobs and essential services, and neighborhood-level greenery and active lifestyles.

m ZEC Strategy #2: Single-sector efficiency improvements to reduce demand. Energy-
efficient buildings (78) and behavioral nudging with smart meters can yield substantial
reduction in energy use. Furthermore, new technologies such as dynamic ride-sharing (86)
can reduce vehicles on the road by as much as 80%, based on microsimulations.

m ZEC Strategy #3: Fuel switching to electric heating and mobility, with decarbonized
electricity supply. Transitioning heating to electric heat pumps, and fossil fuel-based mo-
bility to EVs, in tandem with decarbonizing the power grid at both local and national scales
can eliminate fossil fuel use for these services (30).

m ZEC Strategy #4: Cross-sector linkages enabling symbiosis and carbon valorization.
Urban-industrial symbiosis (33, 87) involves exchange of waste heat and materials among
industries, as well as between industry and proximal human settlements, which can cre-
ate colocation efficiencies reducing fossil fuel use and virgin material extraction. Carbon
valorization (80) entails upgrading waste biogenic carbon in wastewater and food water to re-
newable fuels and materials. Both strategies have potential to contribute to decarbonization,
complementing larger-scale carbon capture, storage, and utilization (88).

m ZEC Strategy #5: Carbon sequestration. In urban areas, carbon sequestration can be
achieved through strategies such as increasing tree canopy (36, 81), mass timber construction
(34), and constructed wetlands (89). Achieving attendant carbon storage and sequestration
benefits will require planting/maintaining long-lived trees (90) as well as timber replacement
via sustainable reforestation (34).

All these strategies together can contribute substantially to urban deep decarbonization (37),
with mechanisms illustrated in Figure 4. The degree to which each strategy contributes to decar-
bonization can depend on the path dependency and stage of urbanization of cities. For example,
land use planning can play a critical role in brand new and rapidly growing cities emerging in Asia
and Africa; however, the impact of land use planning can be muted in slow-growing metropolitan
cities in parts of Europe and the United States.

Using the decarbonization strategies in Figure 4 as an anchor, subsequent sections of this
article evaluate nexus linkages to the WHER outcomes. Each section begins with an overview pro-
viding definitions and metrics to measure the various WHER outcomes, followed by a synthesis
of the available evidence base demonstrating their nexus with urban zero-carbon strategies.

3. HEALTH AND WELL-BEING CO-BENEFITS OF URBAN
ZERO-CARBON TRANSITIONS

3.1. Defining and Measuring Health and Well-Being

The World Health Organization defines health as “a state of complete physical, mental and social
well-being and not merely the absence of disease or infirmity” (91, p. 1). Given the breadth of this
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definition, this article focuses on objective measures of health, i.e., measures of disease burden such
as premature mortality, lifespan, and morbidity, as well as subjective well-being (SWB) wherein
populations are queried through surveys on subjective assessments of their own well-being.

3.1.1. Objective measures of disease burden. Disease burden is often measured directly in
hospitals and by public health agencies in terms of the number of hospital admissions and prema-
ture deaths associated with certain diseases. Population-wide assessments linking disease burden
with various risk factors have most widely been reported by the Global Burden of Disease studies,
using epidemiological models to connect environmental, infrastructural, metabolic, and behav-
ioral risk factors to estimates of disease burden globally (92), in different nations (93), and more
recently at the city scale (94, 95). Disease burden, i.e., premature mortality (premature deaths per
100,000 population) or disability associated with various causes, such as respiratory disease, car-
diovascular disease, diabetes, and cancer, is shaped substantially by social inequality that manifests
in infrastructure deprivation and disproportionate exposure to environmental pollution (96), also
referred to as the social determinants of health (97). Quantitative health risk modeling generally
involves multiplying the severity of the risk factor or hazard (e.g., air pollution concentrations
or levels of heat stress) with the population fraction exposed to that risk, along with a response
factor derived from relative risk factors comparing health effects in exposed versus unexposed
populations (98).

Globally, infrastructure- and environment-related risk factors associated with the seven
provisioning sectors are estimated to contribute to one-quarter to one-fifth of global mortality
(99). Figure 5 shows major socioenvironmental risk factors at the global scale contributing to
premature mortality (also summarized in the sidebar titled Global Impact of Infrastructure and
Food Provisioning Systems on Greenhouse Gas Emissions, Social Inequality, Health, and Cli-
mate Risks), which include indoor and outdoor air pollution primarily associated with fossil fuel
combustion in energy and mobility sectors, inadequate/poor nutrition associated with the food
system, accidents and sedentary lifestyles linked to mobility systems, inadequate water sanitation
and handwashing, and mortality arising directly from natural disasters (20, 57, 99-101). At the
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Figure 5

Global greenhouse gas (GHG) emissions and water withdrawal impacts (feft panel), and global disease burden (right panel) for the year
2019 associated with seven infrastructure and food provisioning systems (noted in the mziddle legend). Figure adapted with permission
from Reference 20. Data sources: GHG emissions (288-290), water withdrawal (291, 292), disease burden (293), and accident (294).
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city level, additional risk factors may emerge as relevant, including noise pollution (above the
60-decibel level) (60,94, 102, 103) and exposure to extreme heat events (61), both of which impact
health by impairing sleep, exacerbating stress/inflammation and cardiovascular risk. Secondary
mortality also occurs after storm and hurricane events (100), as well as from compounded risks
from power loss during hurricanes followed by heat stress (104).

Lack of urban- and intraurban-scale data on these diverse risk factors is often a limiting fac-
tor in quantifying urban health risks. For example, publicly available data for a population of
21 million in Delhi include only 10 noise monitors, 2-3 weather stations, and 39 air pollution
stations (94). Increasingly, fine-scale data on air pollution and extreme heat are being gener-
ated from a combination of field measurements, remote sensing, and modeling, further coupled
with population census data to assess inequalities in exposure to ambient air pollution in cities
(105-107), while community surveys on household behaviors inform behavioral risk factors (95).
Opverall, social, infrastructural and environmental-related health risk factors vary based on city
types, geography, and level of development, with extremely high air pollution dominant in several
developing cities (108). In contrast, in the United States, where air pollution levels have decreased
substantially due to pollution control, unhealthy diets and physical inactivity, exacerbated by in-
adequate infrastructure in poor and racial minority neighborhoods, are leading risk factors (109,
110), highlighting the importance of equitable access to nutritious food and active mobility in
cities.

In addition to the above noncommunicable diseases, COVID-19 has highlighted the impor-
tance of communicable diseases, particularly zoonotic diseases. In the United States, 1 in 8 deaths
from 2020 to 2021 was attributed to COVID-19 (111), whereas in India 1 in 54 deaths was of-
ficially attributed to COVID-19 in 2020 (112). Infrastructure can be a risk factor for disease
spread during pandemics, owing to mobility networks and overcrowding in enclosed environ-
ments (113, 114); however, population density per se is noted not to be as important as activity
densities, i.e., gathering of people in schools, restaurants, and other indoor spaces (101, 115). Over-
all, social, infrastructural, environmental, behavioral, and mortality data availability at finer scales
(116), alongside epidemiological models, are advancing the modeling of both communicable and
noncommunicable disease burden in cities (60, 94, 117).

3.1.2. Subjective well-being. Scholars from different disciplines, e.g., public health, psychol-
ogy, and economics, have highlighted the importance of complementing objective measures of
population health (e.g., life span, premature mortality, or morbidity) and economic well-being
(e.g., average income per capita) with subjective assessments that directly survey people on their
well-being (118-120). The Centers for Disease Control and Prevention (109) define SWB as
“judging life positively and feeling good.” A large body of research has converged to recognize
that SWB includes evaluative, emotional, and eudemonic dimensions, representing how we think
(evaluative) and feel (emotional) about our lives, and contribute meaningfully (eudemonia). Survey
instruments have accordingly become standardized with the United Kingdom’s national census
(see sidebar titled Examples of Survey Questions Evaluating Three Key Dimensions of Subjec-
tive Well-Being), and the US American Community Survey regularly queries respondents on their
subjective well-being along these dimensions.

Consistently across the world, major correlates of SWB are found to be income, employment,
physical health status, and age (121, 122). Unpacking the impacts of urban infrastructure and
environment on SWB can therefore be challenging and requires careful study controlling for the
major domain variables. We describe the evidence base emerging from these few studies as they
relate to the well-being co-benefits of the zero-carbon transitions in Section 3.3.
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EXAMPLES OF SURVEY QUESTIONS EVALUATING THREE KEY DIMENSIONS OF
SUBJECTIVE WELL-BEING

In the United Kingdom, the Office of National Statistics queries people on personal well-being, capturing the
evaluative, emotional, and eudaimonic dimensions of subjective well-being (SWB) (121), by asking the questions
shown below. Respondents provide answers on a 0-10 scale where 0 is “not at all” and 10 is “completely.” These
responses are aggregated to reflect well-being of the population surveys along the following three dimensions.

m Evaluative dimension:

o Life satisfaction: Overall, how satisfied are you with your life nowadays?

o Cantril ladder!: Please imagine a ladder with steps numbered from zero at the bottom to 10 at the top. The
top of the ladder represents the best possible life for you and the bottom of the ladder represents the worst
possible life for you. On which step of the ladder would you say you personally feel you stand at this time?

m Emotional dimension:

o Happiness: Overall, how happy did you feel yesterday?

o Anxiety: On a scale where 0 is “not at all anxious” and 10 is “completely anxious,” overall, how anxious did
you feel yesterday?

m Eudaimonic dimension:
o Worthwhile: Overall, to what extent do you feel that the things you do in your life are worthwhile?

1Other surveys such as the Gallop worldwide happiness survey (287) include the above Cantril ladder of life question
to assess the evaluative aspects of well-being.

3.2. Evaluating the Nexus Between Zero-Carbon Strategies and Health

Focusing on objective measures of health, Section 3.2 offers a synthesis of the mechanisms through
which zero-carbon pathways impact human health outcomes. Figure 6 provides a synthesis of
these mechanisms.

3.2.1. ZEC Strategy #1: Integrated spatial planning. Asnoted in Section 3, integrated spatial
planning is not just about population density; it includes thoughtful urban design leveraging all
5 Ds (density, diversity, neighborhood design, destination access (primarily to jobs), and distance
to transit), which together are expected to result in reducing motorized travel demand, increase
transit use (123, 124), and facilitate active mobility (walking and bicycling) (125). Evaluating the
potential health benefits of integrated urban design must therefore be done carefully, addressing
the confounding effects of population growth, the diversity of air pollution sources within cities in
addition to vehicular emissions, including large point industrial sources that are patchy and vary
across cities, and the self-selection of urban residents in central cities versus suburbs (126).
Focusing first solely on density, as expected, a large body of empirical studies yields mixed
results in different geographies, due to the above confounding factors. For example, in India, pop-
ulation density is associated with greater air pollution due to the high concentration of people,
industries, and vehicles, using biomass cooking fuels, coal and petrol fuels, respectively (7). On the
other hand, efforts to shut down or relocate heavy industries outside of cities have also been shown
to sharply reduce air pollution in cities, e.g., in Beijing during the 2008 Olympic Games (127,128).
Across cities in China, Chen et al. (129) reported reduced air pollution (PM; 5 and SO;) with in-
creasing population density. In more developed nations, where industrial emissions are effectively
controlled and household cooking fuels are cleaner, the impacts of fossil fuel-driven motorized
vehicles may start to dominate. Carozzi & Roth (130) show increasing air pollution (PMj; 5) levels
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Figure 6

Schematic illustrating the nexus linkages between the broad decarbonization strategies and specific actions
(left two columms), and potential health impacts (right column). Linkages to positive health impacts (purple
boxes) are indicated via solid green lines; the green lines are dashed if the linkages are uncertain, while the
dashed red lines show linkages to negative health impacts (tan boxes), i.e., health disbenefits. The black arrow
indicates that carbon valorization at the food-energy-water-waste nexus can produce renewable natural gas
that can be used in district energy systems.

with increasing city-level population density. Within cities, neighborhoods with greater proximity
to roads (131) and industries (132) have been associated with greater air pollution exposures, as
measured by mobile sensors, compared to other neighborhoods. The above articles focused on
noncommunicable disease impacts. For the spread of pandemics, the consensus is that it is not
population density per se but activity intensity (in schools and other enclosed spaces) which is a
bigger contributor to disease spread within urban regions (133). Thus, the link between increas-
ing population density and health benefits is mixed and situation-specific, requiring modeling
alongside field measurements to unpack health impacts and risk exposures.

Opverall, beyond population density, articulated density that enhances the 5 Ds has been found,
through numerous careful studies that control for confounding factors (e.g., 82), to reduce mo-
torized vehicle miles traveled per capita and increase transit and active mobility (134-136). These
effects are summarized in the form of elasticity factors, derived from empirical studies in the
United States (82) and increasingly in other nations [e.g., in China (137)], although country-
specific elasticities are unavailable for most other nations (88). Elasticity factors have also been
developed to model shifts toward transit and active mobility (138).
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In the context of active mobility, public health studies find strong evidence that walking daily
~10,000 steps can help prevent cancer and cardiovascular disease incidence (139, 140). Pucher
etal. (141) provide strong evidence of the health benefits of walkable and bikeable cities, reinforced
in more recent studies comparing US neighborhoods with higher versus lower walk scores (140,
142). Given the above evidence base, integrated spatial planning that promotes transit and active
mobility can be expected to contribute to public health as a public good available to all. However,
pedestrians and cyclists can be at higher injury/mortality risk from accidents with larger vehicles,
requiring care in design of multimodal streets (143) to maintain these health benefits. Lastly, be-
cause motorized mobility is dominated by fossil fuel vehicles, efforts to reduce motorized travel
through urban planning are expected to reduce air pollution emissions, as evidenced in several
studies showing the health benefits of various travel demand management policies in London,
Delhi, etc. (144), as well as sharp reductions in air pollution seen with reduced travel during pan-
demics and recessions (145, 146). Additionally, there is significant evidence that urban greenery—a
central part of integrated spatial planning—can improve health and well-being, discussed further
under Strategy #5.

3.2.2. ZEC Strategy #2: Single-sector efficiencies that reduce energy demand. Concep-
tually, efficiency improvements in buildings and mobility sectors can improve health primarily via
two key mechanisms—reducing fossil fuel-based air pollution and reducing associated anthro-
pogenic heat fluxes that contribute to urban heat stress; the latter is discussed further in Section 4.
To provide context, in 2018, mobility-related air pollution mortality in the United States was
~17,000 to 19,000 deaths per year (147), buildings electricity/power-plant attributable mortality
was ~8,000-10,000 (148), and heat-related mortality was much lower, from 1,300 to 5,000 (61).
Such quantitative estimates, incorporating heat risks, are not available for India or many other
countries. We address efficiency interventions in mobility and building sectors here, describing
their impact on air pollution and health. Impacts on extreme heat are discussed in Section 4 on
resilience.

3.2.2.1. Efficiency in the mobility sector. Fuel-efficient vehicles and vehicle fleets can reduce
fossil fuel use and associated GHG emissions from the road transportation sector, but the effect
on air pollutant emissions is confounded by the substantial role played by tailpipe pollution con-
trol. Indeed, a comprehensive study examining US transportation emissions from 2008 to 2017
(147), including analysis of counterfactuals, finds that GHG emissions from transportation actu-
ally increased slightly from 2008 to 2017, largely due to fleet shifts toward larger fuel-inefficient
SUVs, while PM, 5 emissions decreased by more than 50%, yielding substantial health benefits.
The authors conclude that further reducing air pollution in metropolitan areas will require new
forms of efficiency, achieved by either ride-sharing or shifts to EVs (described as the next strategy),
in addition to reducing travel demand through spatial planning. A global study of transportation
attributable mortality (149) found more-efficient diesel vehicles to be the largest contributors to
mortality, followed by gasoline-driven vehicles in the passenger segments, indicating trade-offs
between carbon and health. These studies highlight the complex interactions between vehicle/
fleet fuel economy, fuel type, and pollution control technologies in achieving health benefits
and underscore the need for air quality modeling with attention to local context. Examples in-
clude careful study of exposure to air pollution by individuals using different travel models [e.g.,
walking/bicycling in US cities (150) as well as auto rickshaws and transit in India (151)].

3.2.2.2. Building efficiency. The air pollution—related health co-benefits of various building
energy efficiency improvements (appliances, equipment, and building shell) are more straightfor-
ward, computed as avoided mortality from avoided gas use and/or avoided electricity generation at
power plants. Examples show substantial reductions in premature mortality in the United States
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(152) and disability-adjusted life-years (DALYs) in the United Kingdom (153). A review article
(154) cautions, however, that tightening building envelopes for energy efficiency may increase
indoor radon concentrations (without compensatory ventilation), creating substantial health dis-
benefits (155). Beyond reductions in air pollution, application of reflective surfaces increasing

albedo in urban areas can mitigate heat stress (156), described further in the section on resilience
(Section 4).

3.2.3. ZEC Strategy #3: Fuel switching to electric heating and mobility with decarbonized
electricity supply. Similar to Strategy #2, there is a strong evidence base that adoption of electric
heat pumps and EVs, which are more energy efficient than furnaces and combustion engines,
respectively, can avoid fossil fuel use, which in turn is estimated to reduce air pollution-related
mortality, e.g., by ~14,000 avoided deaths annually in California in 2050 with full electrification
of heating and mobility (157), and 40% reductions in annual premature deaths in a nationwide
US study modeling rapid and aggressive energy sector decarbonization (158). Likewise, 25% US
EV adoption, even with the added energy demand sourced from the present-day grid, is expected
to annually avoid 535 deaths due to PM; 5 reductions and lesser ozone formation (159). In China,
a 27% electrification of private vehicles with an additional commercial fleet electrification by
2030 was estimated to result in ~17,000 premature deaths avoided annually through local air
quality improvements (160). These benefits are expected to increase with the fully zero-carbon
electric grid, and similar trends are expected globally. EVs can also reduce noise pollution locally,
a significant risk factor in urban areas (161). However, massive proliferation of lithium and other
batteries and their recycling can create pollution at mine/recycling sites, shifting pollution burden
to rural areas or other less developed countries (162); these potential transboundary burden shifts
are less studied at present.

3.2.4. ZEC Strategy #4: Cross-sector linkages. Cross-sector linkages that contribute to
decarbonization include urban-industrial symbiosis and carbon valorization at the FEWW
nexus. Urban-industrial symbiosis, i.e., exchange of waste materials and low-grade heat between
industries and between industries and residences through advanced district energy systems, is
projected to resultin ~25,500 to ~57,500 deaths avoided annually in China via avoided fossil fuel
use and associated air pollution reduction (33). Similar scenario studies in India with power plant
and industrial waste-heat reuse in district energy systems were estimated to avoid ~130-36,000
mortalities annually (163). However, some of these projected health benefits will reduce when the
grid decarbonizes, highlighting the importance of clarifying the reference/counterfactual cases.
Substantial mitigation of air pollution and GHG emissions has been reported in a comprehensive
study of eco-industrial parks in China (164). Carbon valorization at the FEWW nexus including
food waste as well as crop waste for generating biomethane and biohydrogen (165, 166) is a key
strategy for decarbonization, although pollution and other health disbenefits are yet unknown
due to limited life cycle analysis.

3.2.5. ZEC Strategy #5: Carbon sequestration. Enhancing carbon uptake and stocks via
maintaining and expanding urban tree canopy may yield health benefits, albeit context dependent
(167, 168), and with the precise mechanisms, i.e., physical, mental, and social well-being, yet
unknown (169, 170). Reduced stress is one key mechanism that most studies emphasize, which
also contributes to SWB. In the context of mass timber buildings, substantial substitution of
reinforced concrete buildings with wood can result in indirect benefits from reduced production
of cement and steel, and associated air pollution emissions. Life cycle studies suggest mass timber
buildings compared to steel buildings yield lower PM, 5 emissions and eutrophication potential
but greater smog potential (171), likely due to volatile organic compounds (VOCs) released from
adhesives, suggesting uncertainty in net human health outcomes for mass timber building
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transitions. Improved designs such as dowel-laminated timber in place of glulam can mitigate
VOC emissions.

Opverall, the evidence base is very strong that well-designed ZEC strategies can indeed con-
tribute to substantial health co-benefits; however, care must be taken to avoid burden shifting
across risks (e.g., increasing accident risks to pedestrians) and to other sectors or locations (e.g.,
due to lithium mining for batteries or generation of toxic VOCs from glulam), where detailed
life cycle assessments of new technologies will be important. To date, no study has quantified
the health co-benefits/trade-offs of all five decarbonization strategies together, including com-
plex nexus interactions detailed above. Such nexus modeling is a frontier research topic, critical to
ensure health co-benefits of zero-carbon transitions.

3.3. Evaluating the Nexus Between Zero-Carbon Strategies and Well-Being

In addition to the health benefits from avoiding pollution-related disease burden described in
Section 3.2, urban zero-carbon strategies can also enhance SWB. Most of this literature focuses
on integrated spatial planning and urban greenery, and is briefly summarized below.

3.3.1. ZEC Strategy #1: Integrated spatial planning. Compact development through diver-
sity of land uses has been found to improve accessibility of neighborhood and city services (public
facilities, transportation, education, finance, health, etc.), which are positively associated with both
evaluative and emotional SWB (172-177). Such development has also been linked to higher sat-
isfaction with social relationships (178), which in turn is found to improve both evaluative SWB
(179-182) and in some cases emotional SWB (176). However, the strength of these associations
can vary by sociodemographics.

Design and diversity of land uses are also associated with increased walking- and biking-related
physical activities, which have been linked to higher evaluative and emotional SWB, self-reported
mental and physical health, including reductions in all-cause mortality, cardiovascular disease, type
2 diabetes, weight gain, and certain cancers (178, 183-185). Additionally, residential density and
availability of destinations are associated with higher rates of using public transportation, which
in combination with walking and biking have been associated with a lower risk of obesity and dia-
betes (142). In highly populated Asian cities, population density has been found to have an inverse
U-shape association with walking for leisure (186). Additionally, scenario analyses of compact cities
with higher land use diversity and density and lower distances to public transport have anticipated
health gains for certain disease states including diabetes, cardiovascular disease, and respiratory
disease and overall anticipated health gains of 420-826 DALYs per 100,000 population (134).

However, SWB disbenefits of density and diversity are also noted, including safety concerns
(179, 187-189), congestion, overcrowding, and noise (174, 177, 187, 190, 191). Addressing these
disbenefits can maximize the benefits of compact development, particularly in a future with EVs
whose electric drives are inherently quiet.

3.3.2. ZEC Strategy #1 and #5. Another aspect of integrated spatial planning that also con-
tributes to carbon sequestration is preserving natural capital in the form of green infrastructure.
Satisfaction with and access to green infrastructure have been positively associated with both eval-
uative and emotional SWB (176, 192-194). Urban green areas have been found to directly and
indirectly (via social interactions) mitigate stress (62). Green neighborhoods have been found to
lower risks of poor mental health and cardiovascular disease, and are associated with higher levels
of physical activity (195, 196). Urban agricultural gardens, a component of green infrastructure
in urban areas, are also associated with higher emotional SWB (197, 198) and better health out-
comes (for those who engage in urban agriculture), including better nutrition and healthier body
mass indexes (199, 200). Although access to and quality of urban green infrastructure can have
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health and well-being benefits, research is needed to better understand the proportion of people
engaged in household versus community gardening; Das & Ramaswami (201) find, in a study of 3

US cities, relatively small proportions of urban populations engaged in community gardening—

which is more influenced by spatial planning and policy. However, this can vary widely, with some

developing countries in Africa, Asia, and Central America indicating much larger urban population

engagement in urban community agriculture (202). Thus, geographical and cultural contexts are
critical in planning for and designing green infrastructure to maximize health and SWB benefits

alongside zero-carbon goals.

4. CLIMATE RESILIENCE CO-BENEFITS OF URBAN

ZERO-CARBON TRANSITIONS

4.1. Defining and Measuring Climate Resilience

Resilience has numerous definitions that have evolved over the past two decades (203-205; see

also Table 2 for a summary). Early definitions grounded in ecology and engineering focused on

Table 2 Resilience definitions (adapted from References 204, 211, and 215)

Basic concept and focus

Definition

Example applications of infrastructure
resilience focused on flooding risks,
corresponding to different resilience

definitions

Narrow resilience, initially drawn from
ecology and engineered infrastructure
resilience

Focus: return to a single stable equilibrium

Resilience as the ability to return to a

stable equilibrium; focuses on
recovery and constancy

Gray infrastructure engineering design for
flood management focusing on fail-safe
performance during disasters to enable
return to prior conditions

Social resilience (also referred to as ecological
resilience)

Focus: return to prior functionality, structure,
and feedback by recognizing the
importance of social systems for persistence
and robustness

Capacity of a system (people +

provisioning systems) to absorb
disturbance and reorganize while
undergoing changes to still retain
essentially the same function,
structure, identity, and feedback

Gray infrastructure for flood management
that now includes people in early warning
systems for evacuation planning along
with gray infrastructure design

Social-ecological resilience, including
engineered infrastructures

Focus: renewal of systems; enabling new
trajectory and structures, through the
capacities of social, ecological, and
infrastructural systems, etc.

The capacity of social-ecological-

infrastructural systems (SEIS) for
adaptation, learning, and
self-organization

Green-gray infrastructure for flood
management that (in addition to the
above) creates redundancy by
incorporating nature-based solutions with
conventional gray infrastructure for
safe-to-fail stormwater networks

Community/urban resilience, applies social-
ecological resilience ideas to cities or
communities, encompassing social,
infrastructural, and ecosystem capacities

Focus: community adaptation to climate risks

The capacities and capabilities of

communities—in a system-of-
systems fashion—to recover from
disasters in an efficient amount of
time and perform better in the
future

Similar to the above, but applied to a
community facing flooding risks,
addressing its capacities and multisector
interactions; capacities include social,
economic, environmental, community
capital, institutional, and infrastructural

Transformative resilience, applied to major
infrastructure and food system transitions

Focus: looks to a new future through
transformative technologies or policies
rather than return to the past condition
wherein human capabilities are enhanced
overall through provisioning systems

The creation of fundamentally new

SEIS systems to adapt to climate
risks, with profound changes in
social-ecological-infrastructure-
technological systems that
embrace the dynamic and rapidly
changing risks

New futures can be enabled by
transformative technology/infrastructure
systems or major changes in urban land
use (agriculture and forestry), all of which
are part of zero-carbon transition
pathways. New futures can also be driven
by social priorities.
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returning to an original condition after exposure to a shock. However, because a return to unjust
conditions may not be socially desirable, the terminology of building-back-better after disasters
emerged, highlighting that shocks can also present opportunities to improve social, ecological and
infrastructural functions (206). In the context of climate resilience, the shocks considered in this
article include extreme heat, sea level rise, coastal flooding, and wildfire (see the sidebar titled
Global Impact of Infrastructure and Food Provisioning Systems on Greenhouse Gas Emissions,
Social Inequality, Health, and Climate Risks).

A second strand of literature distinguishes between resilience as pathway versus resilience as
outcome (203, 204). In the latter framing, infrastructure resilience is measured in terms of the
time and spatial extent of infrastructure services recovery (e.g., power and mobility systems recov-
ery after hurricanes) (207, 208). More recently, recognizing the interaction between engineered
infrastructure and natural and social systems, the concept of social-ecological resilience, which
emphasizes resilience as a feature of a system, has emerged. Under this conceptualization, re-
silience is measured by evaluating eco-infrastructure design using network simulation, focusing
on three types of capacities: absorptive capacity, adaptive capacity, and restorative capacity (209,
210). Furthermore, typically network features for resilience, emerging from studies of mobility
and power networks, include diversity, redundancy, and mitigating potential for cascading failures
within both single-sector networks and across-sector networks.

A third strand of literature addresses community resilience, wherein the concept of social-
ecological resilience is applied to address community-level response (rather than only engineered
systems or ecosystem response) to climate change and disasters. Here, the emphasis includes
organizational capacity for resilience, with concepts of social vulnerability and social learning in-
corporated into representations of resilience. In this framing, quantitative approaches to measure
resilience (211) evaluate climate risk similar to health risk, described in Section 3.1. Here, climate
risk is the multiplicative impact of the level of climate hazards (e.g., frequency and intensity of a
storm event) multiplied by social vulnerability, which describes both physical exposure to storms
or heat due to socioeconomic conditions as well as ability to cope with these impacts. Climate risk
may be further modulated by dividing by an additional term that represents resilience capacity, i.e.,
capacities and capabilities of communities—in a system-of-systems fashion—to recover from dis-
asters in an efficient amount of time and perform better in the future (211; see also 212). However,
the metrics for resilience capacity vary widely and often include metrics such as for zero-carbon
emissions which may not confer resilience benefits per se (213).

A fourth strand of literature distinguishes adaptive resilience from transformative resilience,
wherein rather than return to a prior condition, transformative resilience describes the creation
of fundamentally new systems to adapt to risks (214, 215). In this article, given that zero-carbon
transitions involve new systemic changes, our focus is on transformative climate resilience offered
by the zero-carbon transitions described in Section 2. We focus on the design implications
of transforming physical provisioning systems, drawing on network simulations of mobility
and energy systems, and landscape resilience for transboundary food, agricultural, and forestry
systems (216, 217).

4.2. Evaluating the Nexus Between Zero-Carbon Strategies
and Climate Resilience

We evaluate the evidence base through which zero-carbon pathways interact (negatively or
positively) with resilience through transformation in urban form, new building technologies,
power, and mobility networks. We also consider cross-sector interactions such as between trees,
mobility, and power lines during hurricanes. Figure 7 provides a synthesis summary of all these
mechanisms.
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Figure 7

Schematic illustrating the nexus linkages between the broad decarbonization strategies, along with specific
actions (feft two colummns), and potential resilience impacts (right colummn). Linkages to positive resilience
impacts (purple boxes) are indicated via solid green lines; the green lines are dashed if linkages are uncertain,
and the dashed red lines show linkages to negative impacts (tan boxes). For power network resilience, the tan
box indicates that literature finds both positive and negative impacts on resilience representing uncertainty
in directionality of impact.

4.2.1. ZEC Strategy #1: Integrated spatial planning. Overall, there is broad consensus that
a singular focus on resource efficiency through increased built area population density would be
detrimental to climate resilience due to the loss of natural habitats, e.g., wetlands, lakes, and ponds
(218-222). In contrast, a 5 D framework incorporating articulated density along with diversity of
land uses, multimodal design, and intentional focus on preserving natural capital, particularly wet-
lands and lakes noted in the sponge city concept (223), can enhance climate resilience. However,
there are very few models that have tested this hypothesis across diverse urban forms and climates
with a range of climate hazards, as well as various mixes of green and gray infrastructures that will
likely be important (89).

Opverall, the main design guidelines are to balance urban densification with urban greenery
and reforestation to address extreme heat and flooding, while also contributing to carbon se-
questration for GHG mitigation. Furthermore, a well-designed compact city can be beneficial to
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community- and landscape-level resilience given reduced urban expansion in flood-prone areas
(224) and agricultural lands (225), respectively. Finally, improved destination access to emergency
shelters, health care, and evacuation routes—theoretically enabled by articulated density—is es-
sential to reduce the secondary health effects of extreme events. Lim & Kain (226) highlight that
the many 5 D features of compact cities are indeed consistent with resilience principles; however,
practically implementing these in cities will require a combination of planning by design (long-
term master planning), by code (design guides for blocks or neighborhoods), and by rules, e.g.,
prohibiting building in floodplains.

4.2.2. ZEC Strategy #2: Single-sector efficiencies that reduce energy demand. Energy-
efficient vehicles and buildings can reduce fossil fuel use, which in turn reduces anthropogenic
heat flux in the context of local heat stress. Reducing electricity demand, particularly peak demand
during heat events, can also contribute to power grid resilience during extreme events, which we
describe in the section on ZEC Strategy #3: electrification, below (see Figure 7).

Focusing on heat stress, early models recognized the importance of surface albedo (radiative
heat transfer), evapotranspiration, and anthropogenic heat, although the last was assumed to be
negligible, as is typical in less dense US cities (227). In contrast, a study of Tokyo in 1999 re-
vealed the importance of anthropogenic heat flux in densely populated cities (228), reinforced in
other Asian cities (229). Emerging models are recognizing that convective heat loss and urban
canyon effects can be also substantial (230, 231). More recently, dynamic linkages with building
energy system models show that increased air conditioning demand during heat waves can signifi-
cantly increase anthropogenic heat flux, impacting local temperatures (232). Overall, increasingly
fine-scale representations of building energy use, materials, and greenery, integrated with local
microclimate models, nested within regional climate change models, are emerging to characterize
urban heat.

However, to date, no studies have integrated all available heat mitigation strategies that have
been reported individually in different cities, e.g., green and blue space (231), trees and paints
(233), and district cooling systems (228) and EVs (234, 235) that reduce anthropogenic heat flux.
This is a frontier area for urban microclimate modeling because many of these strategies can
also reduce energy demand, benefiting decarbonization. However, there can be trade-offs. For
example, conventional white paints and trees that reduce urban heat in summer can also increase
energy demand in winter (236); widespread application of paints with broadband coolers can dis-
rupt urban boundary layers, increasing air pollution (237); and selectively painting roofs upwind
has potential to reduce urban heat downwind (156). Overall, the impact of vegetation in reduc-
ing urban heat, although variable within and across different cities, is reported to be on the order
of 1 to 2°C in London (231) and in US cities including the impact of conventional white paints
(233). The impact of reducing heat flux, likely small in less dense cities, can yield reductions of
up to 1°C in dense Asian cities from shifts to district cooling in Japan (228) and vehicle electri-
fication in Singapore (234, 235). However, the above levels of cooling may not be sufficient to
address the extreme heat anticipated by 2100 (see the sidebar titled Global Impact of Infrastruc-
ture and Food Provisioning Systems on Greenhouse Gas Emissions, Social Inequality, Health,
and Climate Risks). Next-generation spectrally selective bidirectional metamaterials that can be
deployed through low-cost paint to co-beneficially reduce energy use and generate as much as
6°C cooling in experimental studies are emerging (238). Passive building design utilizing these
advanced materials combined with multiscale green infrastructure (street trees, large parks, water
bodies, greenbelts) can potentially achieve both decarbonization and climate resilience to extreme
heat, as well as extreme precipitation events, which is discussed further in the section on ZEC
strategy #5.
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4.2.3. ZEC Strategy #3: Fuel switching to electric heating and mobility with decarbonized
electricity supply. ZEC Strategy #3 requires a decarbonized supply of energy, including provi-
sioning of zero-carbon electricity and heat, as well as zeroing-out fossil fuel demand in heating and
mobility by switching from fossil fuels to electricity-driven heat pumps in buildings and motors in
electric vehicles. These supply side and demand side strategies are synergistic and are described
in the following two sections.

4.2.3.1. Zero-carbon electricity supply, local microgrids, and district energy systems. The
electric power grid includes large-scale high-voltage transmission networks feeding into urban-
scale distribution networks. The existing power system is highly vulnerable to disruption by
climate events, with >90% of the disruptions over the past two decades attributed to extreme
climate events (239). Hydropower and thermoelectric power generation requiring water for cool-
ing are both particularly vulnerable to droughts (240). Transitions to a zero-carbon electric grid
are expected to shift power generation to distributed and renewable energy resources, primar-
ily solar and wind, supplemented with geothermal and bioenergy resources (30). Conceptually,
the diversity of energy resources and their distributed nature can enhance network resilience
(241) and also reduce future water vulnerability induced by large coal/thermoelectric and hy-
droelectric plants (240). However, researchers are also recognizing that reliably managing a very
diverse zero-carbon energy portfolio with substantial intermittent generation from wind and so-
lar, and increased demand from fuel switching to electric heating and mobility, can be challenging
and exacerbated by climate events (242, 243). Furthermore, coupling a larger-scale zero-carbon
generation-transmission system with fine-scale urban energy systems (zip code or neighborhood)
with microgrids, rooftop solar, and district energy systems to quantify resilience benefits is very
challenging and is a frontier topic of research (244). Without such nested models, assessing the
resilience of the emerging multiscale zero-carbon energy system to multiple climate hazards
is difficult. Key questions include the optimum mix of wind and solar versus renewable nat-
ural gas in terms of resilience of the larger grid, as well as of urban-scale distributed energy
systems.

In general, the ability of urban areas to cost-effectively generate renewable energy locally
through rooftop solar, solar energy—driven microgrids, and flex fuel-advanced district energy sys-
tems (245) that utilize multiple local resources (including industrial waste heat, urban tree waste,
and renewable natural gas generated from municipal solid waste) is likely to contribute to the re-
silience of the overall energy system. Furthermore, a large body of literature indicates that these
local microgrids and district energy systems can be islanded during climate extremes, offering
community resilience (246, 247). Several papers have addressed the optimum siting of microgrids
to serve critical facilities (hospitals and emergency shelters) as well as designing evacuation routes
potentially using EVs during disasters (248, 249).

4.2.3.2. Fuel switching to electrically driven beat pumps and electric mobility. There are mixed
mechanisms by which EVs can impact resilience (positively or negatively). On the one hand, elec-
tric vehicle-to-grid integration can offer numerous resilience services to a future decarbonized
power grid system by offering, for example, ancillary energy storage in batteries, energy storage
during power outages, and peak shaving/valley filling by smart dynamic vehicle charging (219).
However, there is debate among experts as to whether these benefits may be realized in practice
(see 219) due to their dependence on emerging markets for resilience services as well as smart
grid technologies, which are essential to minimize battery degradation (250). Furthermore, the
interdependency of both energy and mobility systems can make both vulnerable to disruptions,
with the potential to impair evacuations during hurricanes (251).
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4.2.4. ZEC Strategy #4: Cross-sector linkages. Indeed, some cross-sector linkages can have
negative impacts on power grid and community resilience. For example, trees impacted by high
winds have potential to down power lines and disrupt mobility during hurricanes (252), which can
be mitigated through tree trimming and other strategies (253). The interdependency of power and
mobility systems can make both vulnerable during evacuations, as noted above (251). Moreover,
power loss during hurricanes followed by heat waves can create compounded risks for affected
populations (104). Other cross-sector linkages for decarbonization can enhance resilience. For
example, urban-industrial symbiosis and carbon valorization at the FEWW nexus, such as lever-
aging local waste heat resources and organic waste to produce renewable natural gas for use in
flex-fuel district energy systems, can enhance diversity of energy sources locally, contributing to
energy system resilience during both extreme heat and extreme cold episodes. Valorization of
biogenic carbon from food waste and wastewater can also generate biochar and nutrient-rich di-
gestate that can contribute to decarbonization by reducing fertilizer application and enhancing
carbon storage in soil, the latter of which can improve landscape resilience of farms (254), although
there is much uncertainty about long-term carbon storage. Industrial symbiosis can also improve
supply chain resilience by increasing redundancy and diversity (255), including for food systems
(256).

4.2.5. ZEC Strategy #5: Carbon sequestration. Carbon sequestration by increasing urban
tree canopy, wetlands, and mass timber buildings can offer multiple resilient co-benefits. As noted
in the discussion on ZEC Strategy #2, increased tree canopy can mitigate heat stress and flood-
ing from modest rainfall events (see, e.g., 257). Numerous studies show that estuarine wetlands
can contribute substantially to coastal flood mitigation, with estimated savings of millions of dol-
lars in damages (258, 259). The ability of urban constructed wetlands to mitigate peak storm
flows has been demonstrated in numerous case studies designed for typical flooding events, e.g.,
10-year flood return period, with Keeler et al. (89) noting substantial variability/uncertainties in
measuring resilience benefits of urban nature-based solutions, particularly. Furthermore, cop-
ing with high-intensity, rare storms (e.g., with 500- or 5,000-year recurrence intervals) such as
Hurricane Harvey will require substantial complementarity gray infrastructure in conjunction
with nature-based solutions, e.g., sponge city designs, to minimize damages (260). Mass timber
buildings, another strategy for carbon sequestration in urban areas, offer resilience to wildfires
better than conventional wood-frame buildings (34, 261). Furthermore, carbon storage in the
form of wood products, such as mass timber in urban construction, can enhance long-term stor-
age in urban areas versus retaining wood in forests at risk. Sustainably harvesting timber products
also can improve resilience of forests at risk from wildfires, as demonstrated in a recent case study
of California, which in turn can reduce vulnerability of the power systems to wildfires (262). Mul-
tiscale and multisector models connecting building materials supply chains and power supply and
wildfires are a new frontier in urban resilience modeling at the nexus with carbon sequestration.

Opverall, the evidence base is mixed on the resilience co-benefits of urban zero-carbon pathways.
Both positive and negative impacts on resilience are described in the literature and are difficult
to quantify without the development of next-generation multiscale nested energy system mod-
els linked with multiple and multiscale climate risks. Such integrated modeling is known to be
challenging. Furthermore, efforts to advance resilience to urban and coastal flooding through
investments in gray infrastructure will increase demand for cement and concrete and may ad-
versely impact pathways to zero-carbon cities. To date, there are few quantitative models that
assess the material requirements of structural reinforcements needed to harden infrastructure to
create resilient cities in the face of high winds and urban and coastal flooding. Such second-order
interactions, presently unquantified, are also an important area of future research.
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5. DESIGN FOR EQUITY
5.1. Defining and Measuring Social Inequality and Equity

Social inequality is different but related to social equity. In general, inequality describes empirical
variation in the distribution of any urban systems attribute (e.g., income, access to infrastructure
provisioning systems, and environmental hazard exposure). Efforts to measure inequality include
population-wide measures of dispersion, such as relative standard deviation, Gini coefficient, as
well as percentile ratios (P90/P10) and share ratios, comparing top and bottom percentages of the
population. However, these do not inform social stratification effects explicitly.

Social equity, in contrast to population-level measures of inequality, addresses social stratifi-
cation, including by class, caste, race, gender, disability status, and immigration status. Drawing
on multiple literatures rooted in the Rawlsian theory of social justice (263-265), we define so-
cial equity as addressing fairness in the distribution of burdens and benefits across social groups,
with the goal of reducing disparities for the most disadvantaged, across both determinants (e.g.,
income and infrastructure) and outcomes (e.g., health disparities) (10). In particular, Braveman
(263) notes that fairness can be ambiguous and hence reducing inequalities (i.e., disparities) for
the most disadvantaged must be stated explicitly. Distributional equity can be measured through
population-stratified metrics such as disparity ratios across income or race (263). In urban areas,
social stratification is often manifested spatially; thus analysis of inequality of various parameters
(income, infrastructure access and use, pollution exposure, health outcomes) across neighborhoods
by race and income can inform distributional equity (265).

The above definition of equity focuses on distributional outcomes. Increasingly, it is ac-
knowledged that equity must include additional elements—procedural and recognitional (266).
Procedural equity seeks to expand the participation of traditionally disadvantaged communities
and social groups in decision-making processes that impact them, particularly those charting equi-
table futures. Recognitional equity recognizes systemic and historic contexts and constraints that
have generated social disparities and shape pathways going forward—Ilegal structures and cultural
norms. Bozeman et al. (267) assert that addressing all three elements—distributive, procedural,
and recognitional—is essential; leaving out any one will not result functionally in beneficial out-
comes. Besides the three equity dimensions, reparational aspects (often used interchangeably with
restorative equity) have also recently gained traction (268, 269).

In terms of social justice, varying definitions include Rawls’s original conceptualization of jus-
tice and fairness, i.e., equal liberty principles, equal opportunity, and difference principles that
allow differences in income associated with higher offices, as long as those positions are open
to all (equal opportunity) and work to improve the least advantaged groups in society (270).
More recently, justice is defined as efforts to remove barriers to achieve distributional equity
(267). Therefore, in many ways, efforts that address all aspects of equity can often be considered
synonymous with efforts to advance justice (10, 266).

5.2. Designing for Equitable Urban Zero-Carbon Transitions
with Well-Being, Health, Equity, and Resilience Benefits

Distributive equity outcomes associated with the zero-carbon strategies cannot be assumed to
occur naturally; instead, they will have to be designed explicitly to advance equity. We provide
case examples that illustrate design for equity covering many of the zero-carbon strategies, using
case examples from India and the United States.

5.2.1. Equity case examples from India. India is experiencing massive urbanization with
>400 million more people expected to live in cities by 2050, as well as substantial inequality
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in infrastructure access both within and across cities (271). Therefore, developing inclusive in-
frastructure addressing both mobility as well as housing is a first step toward equity. Specific
design strategies have emerged and shown success in case studies in India. These include land
pooling and town planning schemes (32). In land pooling, rural farmers pool their land for in-
frastructure development in an organized manner. Rather than eminent domain, farmers retain
their stake in the economic gains that accrue with urbanization; at the same time, urban devel-
opment authorities ensure inclusive growth requirements, e.g., housing for economically weaker
sections of society and land set aside for greenery, supporting long-term urban master planning
as well as neighborhood-level equitable, mixed-income, and mixed-use housing (relevant to ZEC
Strategy #1) with integration of nature-based solutions, important for resilience.

Well-designed urban planning schemes can also prevent slums formation. Concomitantly,
slum rehabilitation efforts must ensure that slum dwellers are not displaced to job-inaccessible
or disaster-prone neighborhoods. Case studies in Mumbai describe in situ slum rehabilitation
wherein public, private, and community partnerships between local government, real-estate de-
velopers, and slum dwellers have resulted in multistory in situ slum rehabilitation. In this case, the
developers bear the cost of constructing new high-rise buildings to government standards with
water, electricity, and sanitation to rehabilitate slum dwellers, and in turn are allowed to develop
on land previously occupied by their dense horizontally constructed informal settlements. The
in situ rehabilitation also highlights procedural equity, with guidelines requiring engagement and
approval of at least 70% of the slum dwellers (32, 272). With increases in heat stress expected in
many cities in India, improved building designs can incorporate passive design principles to ensure
that the multistory low-income housing can mitigate extreme heat stress (273).

In the context of equitable mobility transitions, most people in India (>80%) travel to work on
foot, bicycles, two-wheelers, and buses; <20% use personal cars (8). Correspondingly, a case study
of Delhi (8) attributed a preponderance of mobility-related air pollution (50-60%) and GHG
emissions (35-60%) to the top 20% wealthiest households, who predominantly own cars (274).
Nagpure et al. (8) found that prioritizing two-wheelers and bus transit electrification would sub-
stantially advance equity and decarbonization and air pollution mitigation (thereby benefiting
health), compared to prioritizing charging infrastructure for the relatively smaller number of au-
tomobiles owned by the wealthiest households. To prevent environmental burden shifting, policies
to collect and recycle batteries from battery-operated two-wheelers will be important to advance
health systemically, alongside decarbonization and local PM, 5 pollution mitigation. Similar to
social inequality in mobility, lower-income areas in Delhi also have disproportionately lower tree
canopy cover (275) as well as higher waste burning emissions (9), indicating additional sectors to
prioritize at the intersection of health, equity, and zero-carbon goals.

5.2.2. Equity case examples from the United States. The first step toward decarbonization—
integrated spatial planning with articulated density—can advance social equity as demonstrated
in an up-zoning policy recently adopted by the city of Minneapolis (276, 277), which enables
a modest increase in density via single-family to multifamily duplex conversion—benefiting the
5 D approach, reducing motorized travel, and improving affordable housing, with equity and
decarbonization benefits.

A second aspect relates to per capita floor area in residential buildings, which have been in-
creasing worldwide (278), whereas there is substantial inequality with the highest income-quintiles
having much larger floor areas. Our case study (37) found that multistory multifamily buildings
had much smaller floor areas (1,786 ft* per multifamily housing unit compared to 2,177 ft* per
single-family home in the illustrative city); the smaller homes benefit from reduced energy bur-
den, particularly for lower-income households. Multifamily home construction is also conducive
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to mass timber adoption, creating a virtuous cycle that advances decarbonization and reduces
energy burden, which is important for equity.

The third decarbonization strategy of single-sector efficiencies via adoption of green/passive
new building standards, retrofitting older homes, and behavioral nudging via smart meters can
reduce GHG emissions substantially (see Figure 25). A case study of Saint Paul, Minnesota (265),
found a racial pattern after controlling for income, wherein neighborhoods with the highest non-
white populations have higher energy use intensity reflecting less energy-efficient building stocks.
The analysis enables spatial prioritization of neighborhoods for efficiency investments, unpack-
ing income and racial inequality to advance equity. The study also highlighted that neighborhoods
that are poor and have large nonwhite populations do not fully intersect with areas experiencing
high energy burden nor those with high energy use intensity, emphasizing data-driven approaches
to chart just energy transitions. The Biden administration in the US has also developed inequality
metrics to prioritize energy efficiency investments in communities (279).

Addressing the fourth decarbonization strategy of vehicle electrification (280), a case study
modeling air pollution benefits in New York City (105) demonstrated prioritizing future invest-
ments in zero-carbon mobility systems considering existing inequalities in access to low-cost
transportation services as well as exposure to air pollution. Another study explored equity in access
to charging infrastructure.

Similarly, inequality data can inform equity in deploying the fifth strategy—carbon seques-
tration by trees, wherein high levels of racial and income inequality have been observed in tree
canopy coverage in US cities (281). However, tree-planting campaigns have not been effective
in many low-income neighborhoods, wherein Riedman et al. (282) conducted field interviews to
unpack underlying constraints and competing priorities, reflecting the application of recognition
equity. Procedural equity is also critical to ensure urban residents participate and are engaged in
the design of both tree maintenance and tree-planting programs (283). Overall, these examples
demonstrate the importance of combining analysis of inequality data (distributional equity) in
conjunction with recognition and procedural equity for sociospatial prioritization of zero-carbon
strategies in cities.

No case study to date has addressed sociospatial design for equity considering all the zero-
carbon strategies, together, considering the transboundary impacts as well on inequality due to
jobs gained/lost as new technologies are deployed. Furthermore, there are no models available
that address equity in health and climate resilience co-benefits of the five decarbonization strate-
gies, addressing multiple climate hazards. This is particularly important because more than 60%
of cities are expected to experience more than one climate hazard (see the sidebar titled Global
Impact of Infrastructure and Food Provisioning Systems on Greenhouse Gas Emissions, Social
Inequality, Health, and Climate Risks).

6. SYNTHESIS AND DIRECTIONS FOR FUTURE RESEARCH

A focus on seven key provisioning systems enables urban areas to chart pathways to a zero-carbon
future through a sequence of five zero-carbon (ZEC) strategies, and also evaluate their nexus
linkages with WHER outcomes.

The literature indicates strong evidence that net-zero-carbon strategies can also yield net
health and well-being co-benefits, with care taken to ensure health risks are not shifted to dif-
ferent sectors, locales, or risk factors. Local context and modeling are important in identifying
which ZEC pathways yield the maximum co-benefits. There are currently no studies addressing
the multiple environmental and infrastructural risk factors prevalent in cities, as well as potential
compounded effects expected from all the zero-carbon pathways. Such integrated spatial models
are urgently needed to quantify the nexus between decarbonization, health, and well-being.
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In the context of resilience, the evidence is less clear that the sequence of five zero-carbon path-
ways will inherently align beneficially with climate resilience. The lack of strong evidence is due
to a lack of multiple climate risk data across the more than 1,000 larger cities (with population
>500,000) that exist in the world today (48)—indeed multirisk data covering all 5 main envi-
ronmental risks (extreme heat/cold, hurricanes, wildfires, precipitation/drought, air pollution) are
only available for a few risk factors and for the top 20 cities (see the sidebar titled Global Impact of
Infrastructure and Food Provisioning Systems on Greenhouse Gas Emissions, Social Inequality,
Health, and Climate Risks). Interactions among risk factors are not well studied, and there have
been no comprehensive models that connect decarbonization strategies with resilience outcomes.
Even in the most mature case of modeling of heat stress, different mechanisms to mitigate heat
stress have not been investigated together in one city much less global cities.

In the context of equity, social equity will not be enabled automatically in zero-carbon transi-
tions and will require intentional efforts to integrate distributional, procedural, and recognitional
dimensions. Achieving equity while decarbonizing and achieving health and resilience co-benefits
requires intentional design in the deployment of new technologies, spatial arrangement of
infrastructure, spatial prioritization of interventions, and design of policies and procedures.

1. A transboundary urban metabolism framework, rooted in seven key infrastructure and
food provisioning systems subject to multiple risk factors, connects urban decarboniza-
tion strategies with well-being, health, equity and resilience (WHER) outcomes.

2. The evidence base for co-beneficial decarbonization is strong for health, limited for
well-being, and uncertain for resilience. Intentional design is needed to advance equity,
including distributional, procedural, and recognitional aspects.

3. The evidence base, key knowledge gaps, and broad parameters of a new urban nexus
science are delineated in this paper so as to enable zero-carbon urban transition with
WHER co-benefits.

1. A new nexus science is needed for advancing decarbonization with well-being, health,
equity, and resilience (WHER) co-benefits.

2. Fine-scale data for cities encompassing all sectors, scales, and risks including multiple
infrastructure, pollution and climate risk factors, their integration, and their combined
effects (interactions) will be imperative to advance the nexus science.

3. Next-generation nexus models must be developed that systematically inform policies and
spatial design of zero-carbon pathways across multiple provisioning systems, making vis-
ible the potential trade-offs and co-benefits among zero-carbon and WHER outcomes.

4. New modalities for co-production are needed that enable scientists, policymakers,
and practitioners to collaborate, integrating distributional, procedural, and recogni-
tion dimensions of equity to evaluate/choose alternative pathways/policy designs for
decarbonizing with health, well-being, equity, and resilience.
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