1932

Abstract

Ice structures such as accretion on airplanes, wires, or roadways; ice falls; ice stalactites; frozen rivers; and aufeis are formed by the freezing of capillary flows (drops, rivulets, and films). To understand these phenomena, a detailed exploration of the complex coupling between capillary flow and solidification is necessary. Among the many scientific questions that remain open in order to understand these problems are the confinement of the thermal boundary layer by the free surface, the interaction between a freezing front and a free surface, the effect of freezing on the contact line motion, etc. This review focuses mainly on water and ice, discussing the theoretical framework and recent developments in the main areas of the freezing–capillarity interaction. The text deeply explores the freezing of a moving drop and the fundamental problem of wetting water on ice. Additionally, it highlights some of the main open questions on the subject.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-111652
2025-01-22
2025-02-19
The full text of this item is not currently available.

Literature Cited

  1. Ambler M, Vorselaars B, Allen MP, Quigley D. 2017.. Solid–liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method. . J. Chem. Phys. 146:(7):074701
    [Crossref] [Google Scholar]
  2. Anderson D, Worster MG, Davis S. 1996.. The case for a dynamic contact angle in containerless solidification. . J. Cryst. Growth 163:(3):32938
    [Crossref] [Google Scholar]
  3. Anderson DM, Guba P. 2020.. Convective phenomena in mushy layers. . Annu. Rev. Fluid Mech. 52::93119
    [Crossref] [Google Scholar]
  4. Asakawa H, Sazaki G, Nagashima K, Nakatsubo S, Furukawa Y. 2016.. Two types of quasi-liquid layers on ice crystals are formed kinetically. . PNAS 113:(7):174953
    [Crossref] [Google Scholar]
  5. Attinger D, Zhao Z, Poulikakos D. 2000.. An experimental study of molten microdroplet surface deposition and solidification: transient behavior and wetting angle dynamics. . J. Heat Transf. 122:(3):54456
    [Crossref] [Google Scholar]
  6. Aziz SD, Chandra S. 2000.. Impact, recoil and splashing of molten metal droplets. . Int. J. Heat Mass Transf. 43:(16):284157
    [Crossref] [Google Scholar]
  7. Bartels-Rausch T, Jacobi HW, Kahan TF, Thomas JL, Thomson ES, et al. 2014.. A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. . Atmos. Chem. Phys. 14:(3):1587633
    [Crossref] [Google Scholar]
  8. Belozerov AA, Shikhmurzaev YD. 2022.. The onset of solidification: from interface formation to the Stefan regime. . J. Chem. Phys. 156:(19):194701
    [Crossref] [Google Scholar]
  9. Bhola R, Chandra S. 1999.. Parameters controlling solidification of molten wax droplets falling on a solid surface. . J. Mater. Sci. 34::488394
    [Crossref] [Google Scholar]
  10. Biance AL, Clanet C, Quéré D. 2004.. First steps in the spreading of a liquid droplet. . Phys. Rev. E 69:(1):016301
    [Crossref] [Google Scholar]
  11. Boettinger WJ, Warren JA, Beckermann C, Karma A. 2002.. Phase-field simulation of solidification. . Annu. Rev. Mater. Res. 32::16394
    [Crossref] [Google Scholar]
  12. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E. 2009.. Wetting and spreading. . Rev. Mod. Phys. 81:(2):739805
    [Crossref] [Google Scholar]
  13. Boulogne F, Salonen A. 2020.. Drop freezing: fine detection of contaminants by measuring the tip angle. . Appl. Phys. Lett. 116:(10):103701
    [Crossref] [Google Scholar]
  14. Brochard-Wyart F, Di Meglio JM, Quére D, De Gennes PG. 1991.. Spreading of nonvolatile liquids in a continuum picture. . Langmuir 7:(2):33538
    [Crossref] [Google Scholar]
  15. Bumma K, Huerre A, Pierre J, Séon T. 2023.. Early freezing dynamics of an aqueous foam. . Soft Matter 19::537984
    [Crossref] [Google Scholar]
  16. Canale L, Comtet J, Niguès A, Cohen C, Clanet C, et al. 2019.. Nanorheology of interfacial water during ice gliding. . Phys. Rev. X 9:(4):041025
    [Google Scholar]
  17. Chang S, Song H, Wu K. 2021.. Experimental investigation on impact dynamics and freezing performance of water droplet on horizontal cold surface. . Sustain. Energy Technol. Assess. 45::101128
    [Google Scholar]
  18. Chen ASH, Morris SW. 2011.. Experiments on the morphology of icicles. . Phys. Rev. E 83:(2):026307
    [Crossref] [Google Scholar]
  19. Chen ASH, Morris SW. 2013.. On the origin and evolution of icicle ripples. . New J. Phys. 15:(10):103012
    [Crossref] [Google Scholar]
  20. Dash J, Rempel A, Wettlaufer J. 2006.. The physics of premelted ice and its geophysical consequences. . Rev. Mod. Phys. 78:(3):695
    [Crossref] [Google Scholar]
  21. de Gennes P-G, Brochard-Wyart F, Quéré D. 2013.. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. New York:: Springer
    [Google Scholar]
  22. de Reuck A. 1957.. The surface free energy of ice. . Nature 179:(4570):111920
    [Crossref] [Google Scholar]
  23. de Ruiter J, Soto D, Varanasi KK. 2018.. Self-peeling of impacting droplets. . Nat. Phys. 14:(1):3539
    [Crossref] [Google Scholar]
  24. de Ruiter R, Colinet P, Brunet P, Snoeijer JH, Gelderblom H. 2017.. Contact line arrest in solidifying spreading drops. . Phys. Rev. Fluids 2:(4):043602
    [Crossref] [Google Scholar]
  25. Dedovets D, Monteux C, Deville S. 2018.. Five-dimensional imaging of freezing emulsions with solute effects. . Science 360:(6386):3036
    [Crossref] [Google Scholar]
  26. Demmenie M, Kolpakov P, Nagata Y, Woutersen S, Bonn D. 2022.. Scratch-healing behavior of ice by local sublimation and condensation. . J. Phys. Chem. C 126:(4):217983
    [Crossref] [Google Scholar]
  27. Demmenie M, Reus L, Kolpakov P, Woutersen S, Bonn D, Shahidzadeh N. 2023.. Growth and form of rippled icicles. . Phys. Rev. Appl. 19:(2):024005
    [Crossref] [Google Scholar]
  28. Deville S, Saiz E, Nalla RK, Tomsia AP. 2006.. Freezing as a path to build complex composites. . Science 311:(5760):51518
    [Crossref] [Google Scholar]
  29. Djikaev Y, Ruckenstein E. 2017.. Self-consistent determination of the ice–air interfacial tension and ice–water–air line tension from experiments on the freezing of water droplets. . J. Phys. Chem. C 121:(30):1643239
    [Crossref] [Google Scholar]
  30. Döppenschmidt A, Butt HJ. 2000.. Measuring the thickness of the liquid-like layer on ice surfaces with atomic force microscopy. . Langmuir 16:(16):670914
    [Crossref] [Google Scholar]
  31. Drake L, Shreve R. 1973.. Pressure melting and regelation of ice by round wires. . Proc. R. Soc. A 332:(1588):5183
    [Google Scholar]
  32. Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP. 1961.. The general theory of van der Waals forces. . Adv. Phys. 10:(38):165209
    [Crossref] [Google Scholar]
  33. Elbaum M, Lipson S, Dash J. 1993.. Optical study of surface melting on ice. . J. Cryst. Growth 129:(3–4):491505
    [Crossref] [Google Scholar]
  34. Elbaum M, Schick M. 1991.. Application of the theory of dispersion forces to the surface melting of ice. . Phys. Rev. Lett. 66:(13):171316
    [Crossref] [Google Scholar]
  35. Espinosa JR, Vega C, Sanz E. 2016.. Ice–water interfacial free energy for the TIP4P, TIP4P/2005, TIP4P/ice, and mW models as obtained from the mold integration technique. . J. Phys. Chem. C 120:(15):806875
    [Crossref] [Google Scholar]
  36. Fanfoni M, Tomellini M. 1998.. The Johnson-Mehl-Avrami-Kolmogorov model: a brief review. . Nuovo Cimento D 20:(7–8):117182
    [Crossref] [Google Scholar]
  37. Fang W-Z, Zhu F, Tao W-Q, Yang C. 2021.. How different freezing morphologies of impacting droplets form. . J. Colloid Interface Sci. 584::40310
    [Crossref] [Google Scholar]
  38. Fang W-Z, Zhu F, Zhu L, Tao W-Q, Yang C. 2022.. Self-peeling of frozen water droplets upon impacting a cold surface. . Commun. Phys. 5:(1):51
    [Crossref] [Google Scholar]
  39. Faraday M. 1859.. Experimental Researches in Chemistry and Physics. London:: Taylor & Francis
    [Google Scholar]
  40. Faraday M. 1860.. I. Note on regelation. . Proc. R. Soc. Lond. 10::44050
    [Crossref] [Google Scholar]
  41. Favier B, Purseed J, Duchemin L. 2019.. Rayleigh–Bénard convection with a melting boundary. . J. Fluid Mech. 858::43773
    [Crossref] [Google Scholar]
  42. Feltham DL, Untersteiner N, Wettlaufer JS, Worster MG. 2006.. Sea ice is a mushy layer. . Geophys. Res. Lett. 33:(14):L14501
    [Crossref] [Google Scholar]
  43. Fletcher NH. 1962.. Surface structure of water and ice. . Philos. Mag. 7:(74):25569
    [Crossref] [Google Scholar]
  44. Furukawa Y, Yamamoto M, Kuroda T. 1987.. Ellipsometric study of the transition layer on the surface of an ice crystal. . J. Cryst. Growth 82:(4):66577
    [Crossref] [Google Scholar]
  45. Gent RW, Dart NP, Cansdale JT. 2000.. Aircraft icing. . Philos. Trans. R. Soc. A 358:( 1776.):2873911
    [Crossref] [Google Scholar]
  46. Gerber D, Wilen LA, Dufresne ER, Style RW. 2023.. Polycrystallinity enhances stress build-up around ice. . Phys. Rev. Lett. 131:(20):208201
    [Crossref] [Google Scholar]
  47. Gerber D, Wilen LA, Poydenot F, Dufresne ER, Style RW. 2022.. Stress accumulation by confined ice in a temperature gradient. . PNAS 119:(31):e2200748119
    [Crossref] [Google Scholar]
  48. Ghabache E, Josserand C, Séon T. 2016.. Frozen impacted drop: from fragmentation to hierarchical crack patterns. . Phys. Rev. Lett. 117:(7):074501
    [Crossref] [Google Scholar]
  49. Gibou F, Fedkiw R, Osher S. 2018.. A review of level-set methods and some recent applications. . J. Comput. Phys. 353::82109
    [Crossref] [Google Scholar]
  50. Gielen MV, de Ruiter R, Koldeweij RBJ, Lohse D, Snoeijer JH, Gelderblom H. 2020.. Solidification of liquid metal drops during impact. . J. Fluid Mech. 883::A32
    [Crossref] [Google Scholar]
  51. Gladich I, Pfalzgraff W, Maršálek O, Jungwirth P, Roeselová M, Neshyba S. 2011.. Arrhenius analysis of anisotropic surface self-diffusion on the prismatic facet of ice. . Phys. Chem. Chem. Phys. 13:(44):1996069
    [Crossref] [Google Scholar]
  52. Goertz M, Zhu XY, Houston J. 2009.. Exploring the liquid-like layer on the ice surface. . Langmuir 25:(12):69058
    [Crossref] [Google Scholar]
  53. Gorin B, Bonn D, Kellay H. 2022.. Droplet impacts on cold surfaces. . J. Fluid Mech. 944::A23
    [Crossref] [Google Scholar]
  54. Grivet R, Huerre A, Séon T, Duchemin L, Josserand C. 2024.. Freezing receding contact lines. . arXiv:2409.00385 [physics.flu-dyn]
  55. Grivet R, Huerre A, Séon T, Josserand C. 2023.. Making superhydrophobic splashes by surface cooling. . Phys. Rev. Fluids 8:(6):063603
    [Crossref] [Google Scholar]
  56. Grivet R, Monier A, Huerre A, Josserand C, Séon T. 2022.. Contact line catch up by growing ice crystals. . Phys. Rev. Lett. 128:(25):254501
    [Crossref] [Google Scholar]
  57. Henson B, Voss L, Wilson KR, Robinson J. 2005.. Thermodynamic model of quasiliquid formation on H2O ice: comparison with experiment. . J. Chem. Phys. 123:(14):144707
    [Crossref] [Google Scholar]
  58. Herbaut R, Brunet P, Limat L, Royon L. 2019.. Liquid spreading on cold surfaces: solidification-induced stick-slip dynamics. . Phys. Rev. Fluids 4:(3):033603
    [Crossref] [Google Scholar]
  59. Herbaut R, Dervaux J, Brunet P, Royon L, Limat L. 2020.. A criterion for the pinning and depinning of an advancing contact line on a cold substrate. . Eur. Phys. J. Spec. Top. 229:(10):186780
    [Crossref] [Google Scholar]
  60. Hu M, Wang F, Tao Q, Chen L, Rubinstein SM, Deng D. 2020.. Frozen patterns of impacted droplets: from conical tips to toroidal shapes. . Phys. Rev. Fluids 5(8):081601
    [Google Scholar]
  61. Hudait A, Allen MT, Molinero V. 2017.. Sink or swim: ions and organics at the ice–air interface. . J. Am. Chem. Soc. 139:(29):10095103
    [Crossref] [Google Scholar]
  62. Huerre A, Monier A, Séon T, Josserand C. 2021.. Solidification of a rivulet: shape and temperature fields. . J. Fluid Mech. 914::A32
    [Crossref] [Google Scholar]
  63. Israelachvili JN. 2011.. Intermolecular and Surface Forces. Amsterdam:: Elsevier. , 3rd ed..
    [Google Scholar]
  64. Jaafar MA, Rousse DR, Gibout S, Bédécarrats JP. 2017.. A review of dendritic growth during solidification: mathematical modeling and numerical simulations. . Renew. Sustain. Energy Rev. 74::106479
    [Crossref] [Google Scholar]
  65. Josserand C, Thoroddsen ST. 2016.. Drop impact on a solid surface. . Annu. Rev. Fluid Mech. 48::36591
    [Crossref] [Google Scholar]
  66. Jung S, Tiwari MK, Doan NV, Poulikakos D. 2012a.. Mechanism of supercooled droplet freezing on surfaces. . Nat. Commun. 3:(1):615
    [Crossref] [Google Scholar]
  67. Jung S, Tiwari MK, Poulikakos D. 2012b.. Frost halos from supercooled water droplets. . PNAS 109:(40):1607378
    [Crossref] [Google Scholar]
  68. Juric D, Tryggvason G. 1996.. A front-tracking method for dendritic solidification. . J. Comput. Phys. 123:(1):12748
    [Crossref] [Google Scholar]
  69. Kant P, Koldeweij RBJ, Harth K, van Limbeek MAJ, Lohse D. 2020.. Fast-freezing kinetics inside a droplet impacting on a cold surface. . PNAS 117:(6):278894
    [Crossref] [Google Scholar]
  70. Ketcham W, Hobbs P. 1969.. An experimental determination of the surface energies of ice. . Philos. Mag. 19:(162):116173
    [Crossref] [Google Scholar]
  71. Khain AP, Pinsky M. 2018.. Microphysical processes in ice and mixed-phase clouds. . In Physical Processes in Clouds and Cloud Modeling, pp. 344496. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  72. Knight CA. 1966.. The contact angle of water on ice. . J. Colloid Interface Sci. 25:(2):28084
    [Crossref] [Google Scholar]
  73. Knight CA. 1971.. Experiments on the contact angle of water on ice. . Philos. Mag. 23:(181):15365
    [Crossref] [Google Scholar]
  74. Knight CA. 1996.. Surface layers on ice. . J. Geophys. Res. Atmos. 101:(D8):1292128
    [Crossref] [Google Scholar]
  75. Koldeweij RBJ, Kant P, Harth K, de Ruiter R, Gelderblom H, et al. 2021.. Initial solidification dynamics of spreading droplets. . Phys. Rev. Fluids 6:(12):L121601
    [Crossref] [Google Scholar]
  76. Kreder MJ, Alvarenga J, Kim P, Aizenberg J. 2016.. Design of anti-icing surfaces: smooth, textured or slippery?. Nat. Rev. Mater. 1:(1):15003
    [Crossref] [Google Scholar]
  77. Laan N, de Bruin KG, Bartolo D, Josserand C, Bonn D. 2014.. Maximum diameter of impacting liquid droplets. . Phys. Rev. Appl. 2:(4):044018
    [Crossref] [Google Scholar]
  78. Ladan J, Morris SW. 2021.. Experiments on the dynamic wetting of growing icicles. . New J. Phys. 23:(12):123017
    [Crossref] [Google Scholar]
  79. Ladan J, Morris SW. 2022.. Pattern of inclusions inside rippled icicles. . Phys. Rev. E 106:(5):054211
    [Crossref] [Google Scholar]
  80. Lamé G, Clapeyron B. 1831.. Mémoire sur la solidification par refroidissement d'un globe liquide. . Ann. Chim. Phys. 47::25056
    [Google Scholar]
  81. Langer JS. 1980.. Instabilities and pattern formation in crystal growth. . Rev. Mod. Phys. 52:(1):128
    [Crossref] [Google Scholar]
  82. Lewandowski JJ, Seifi M. 2016.. Metal additive manufacturing: a review of mechanical properties. . Annu. Rev. Mater. Res. 46::15186
    [Crossref] [Google Scholar]
  83. Li R, Ashgriz N, Chandra S, Andrews J, Drappel S. 2008.. Deposition of molten ink droplets on a solid surface. . J. Imaging Sci. Technol. 52:(2):20502120502-10
    [Crossref] [Google Scholar]
  84. Li Y, Somorjai GA. 2007.. Surface premelting of ice. . J. Phys. Chem. C 111:(27):963137
    [Crossref] [Google Scholar]
  85. Lide DR. 2005.. CRC Handbook of Chemistry and Physics. Boca Raton, FL:: CRC Press
    [Google Scholar]
  86. Lifshitz EM. 1956.. The theory of molecular attractive forces between solids. . Sov. Phys. JETP 2:(1):7383
    [Google Scholar]
  87. Limare A, Popinet S, Josserand C, Xue Z, Ghigo A. 2023.. A hybrid level-set / embedded boundary method applied to solidification-melt problems. . J. Comput. Phys. 474::111829
    [Crossref] [Google Scholar]
  88. Lolla VY, Ahmadi SF, Park H, Fugaro AP, Boreyko JB. 2022.. Arrested dynamics of droplet spreading on ice. . Phys. Rev. Lett. 129:(7):074502
    [Crossref] [Google Scholar]
  89. Loulou T, Delaunay D. 1997.. The interface temperature of two suddenly contacting bodies, one of them undergoing phase change. . Int. J. Heat Mass Transf. 40:(7):171316
    [Crossref] [Google Scholar]
  90. Lyu S, Wang K, Zhang Z, Pedrono A, Sun C, Legendre D. 2021.. A hybrid VOF-IBM method for the simulation of freezing liquid films and freezing drops. . J. Comput. Phys. 432::110160
    [Crossref] [Google Scholar]
  91. Madejski J. 1976.. Solidification of droplets on a cold surface. . Int. J. Heat Mass Transf. 19:(9):100913
    [Crossref] [Google Scholar]
  92. Makkonen L. 1997.. Surface melting of ice. . J. Phys. Chem. B 101:(32):6196200
    [Crossref] [Google Scholar]
  93. Marín A, Enríquez O, Brunet P, Colinet P, Snoeijer J. 2014.. Universality of tip singularity formation in freezing water drops. . Phys. Rev. Lett. 113:(5):054301
    [Crossref] [Google Scholar]
  94. McGuire AD, Lawrence DM, Koven C, Clein JS, Burke E, et al. 2018.. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. . PNAS 115:(15):388287
    [Crossref] [Google Scholar]
  95. Meijer JG, Bertin V, Lohse D. 2023.. Frozen Cheerios effect: particle-particle interaction induced by an advancing solidification front. . arXiv:2311.09477 [cond-mat.soft]
  96. Meijer JG, Rocha D, Linnenbank AM, Diddens C, Lohse D. 2024.. Enhanced bubble growth near an advancing solidification front. . arXiv:2402.06409 [physics.flu-dyn]
  97. Miao S, Zhang C, Liu X. 2024.. Tunable tip singularity of a water droplet freezing on surfaces under forced convection. . Appl. Therm. Eng. 241::122362
    [Crossref] [Google Scholar]
  98. Monier A, Huerre A, Josserand C, Séon T. 2020.. Freezing a rivulet. . Phys. Rev. Fluids 5:(6):062301
    [Crossref] [Google Scholar]
  99. Moore MR, Mughal MS, Papageorgiou DT. 2017.. Ice formation within a thin film flowing over a flat plate. . J. Fluid Mech. 817::45589
    [Crossref] [Google Scholar]
  100. Mullins WW. 1957.. Theory of thermal grooving. . J. Appl. Phys. 28:(3):33339
    [Crossref] [Google Scholar]
  101. Mullins WW, Sekerka RF. 1964.. Stability of a planar interface during solidification of a dilute binary alloy. . J. Appl. Phys. 35:(2):44451
    [Crossref] [Google Scholar]
  102. Murata K-i, Asakawa H, Nagashima K, Furukawa Y, Sazaki G. 2015.. In situ determination of surface tension-to-shear viscosity ratio for quasiliquid layers on ice crystal surfaces. . Phys. Rev. Lett. 115:(25):256103
    [Crossref] [Google Scholar]
  103. Murata K-i, Asakawa H, Nagashima K, Furukawa Y, Sazaki G. 2016.. Thermodynamic origin of surface melting on ice crystals. . PNAS 113:(44):E674148
    [Crossref] [Google Scholar]
  104. Nagata Y, Hama T, Backus EHG, Mezger M, Bonn D, et al. 2019.. The surface of ice under equilibrium and nonequilibrium conditions. . Acc. Chem. Res. 52:(4):100615
    [Crossref] [Google Scholar]
  105. Nasello OB, de Juarez SN, Di Prinzio CL. 2007.. Measurement of self-diffusion on ice surface. . Scr. Mater. 56:(12):107173
    [Crossref] [Google Scholar]
  106. Nauenberg M. 2013.. Comment on “Pointy ice-drops: How water freezes into a singular shape” [Am. J. Phys. 80, 764–771 (2012)]. . Am. J. Phys. 81:(2):15051
    [Crossref] [Google Scholar]
  107. Nauenberg M. 2016.. Theory and experiments on the ice–water front propagation in droplets freezing on a subzero surface. . Eur. J. Phys. 37:(4):045102
    [Crossref] [Google Scholar]
  108. Neufeld JA, Goldstein RE, Worster MG. 2010.. On the mechanisms of icicle evolution. . J. Fluid Mech. 647::287308
    [Crossref] [Google Scholar]
  109. Pasandideh-Fard M, Bhola R, Chandra S, Mostaghimi J. 1998.. Deposition of tin droplets on a steel plate: simulations and experiments. . Int. J. Heat Mass Transf. 41:(19):292945
    [Crossref] [Google Scholar]
  110. Peppin SSL, Wettlaufer JS, Worster MG. 2008.. Experimental verification of morphological instability in freezing aqueous colloidal suspensions. . Phys. Rev. Lett. 100:(23):238301
    [Crossref] [Google Scholar]
  111. Petrenko VF, Whitworth RW. 1999.. Physics of Ice. Oxford, UK:: Clarendon Press
    [Google Scholar]
  112. Pickering I, Paleico M, Sirkin YAP, Scherlis DA, Factorovich MH. 2018.. Grand canonical investigation of the quasi liquid layer of ice: Is it liquid?. J. Phys. Chem. B 122:(18):488090
    [Crossref] [Google Scholar]
  113. Plapp M. 2011.. Remarks on some open problems in phase-field modelling of solidification. . Philos. Mag. 91:(1):2544
    [Crossref] [Google Scholar]
  114. Poulikakos D, Attinger D, Zhao Z. 2002.. Heat transfer and solidification during the impact of a droplet on a surface. . In Drop-Surface Interactions, ed. M Rein , pp. 15984. CISM Int. Cent. Mech. Sci. Courses Lect. Vol. 456. Vienna:: Springer
    [Google Scholar]
  115. Qiu Y, Molinero V. 2018.. Why is it so difficult to identify the onset of ice premelting?. J. Phys. Chem. Lett. 9:(17):517982
    [Crossref] [Google Scholar]
  116. Ralston J, Popescu M, Sedev R. 2008.. Dynamics of wetting from an experimental point of view. . Annu. Rev. Mater. Res. 38::2343
    [Crossref] [Google Scholar]
  117. Rempel AW, Worster MG. 1999.. The interaction between a particle and an advancing solidification front. . J. Cryst. Growth 205:(3):42740
    [Crossref] [Google Scholar]
  118. Reuther K, Rettenmayr M. 2014.. Simulating dendritic solidification using an anisotropy-free meshless front-tracking method. . J. Comput. Phys. 279::6366
    [Crossref] [Google Scholar]
  119. Roisman IV. 2010a.. Fast forced liquid film spreading on a substrate: flow, heat transfer and phase transition. . J. Fluid Mech. 656::189204
    [Crossref] [Google Scholar]
  120. Roisman IV. 2010b.. On the instability of a free viscous rim. . J. Fluid Mech. 661::20628
    [Crossref] [Google Scholar]
  121. Roisman IV, Tropea C. 2021.. Wetting and icing of surfaces. . Curr. Opin. Colloid Interface Sci. 53::101400
    [Crossref] [Google Scholar]
  122. Rosenberg R. 2005.. Why is ice slippery?. Phys. Today 58:(12):5054
    [Crossref] [Google Scholar]
  123. Saint-Michel B, Georgelin M, Deville S, Pocheau A. 2017.. Interaction of multiple particles with a solidification front: from compacted particle layer to particle trapping. . Langmuir 33:(23):561727
    [Crossref] [Google Scholar]
  124. Sánchez MA, Kling T, Ishiyama T, van Zadel MJ, Bisson PJ, et al. 2017.. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. . PNAS 114:(2):22732
    [Crossref] [Google Scholar]
  125. Sarlin W, Grivet R, Xu J, Huerre A, Séon T, Josserand C. 2024.. Role of melting and solidification in the spreading of an impacting water drop. . J. Fluid Mech. 996::A14
    [Crossref] [Google Scholar]
  126. Sazaki G, Asakawa H, Nagashima K, Nakatsubo S, Furukawa Y. 2013.. How do quasi-liquid layers emerge from ice crystal surfaces?. Cryst. Growth Des. 13:(4):176166
    [Crossref] [Google Scholar]
  127. Sazaki G, Asakawa H, Nagashima K, Nakatsubo S, Furukawa Y. 2014.. Double spiral steps on Ih ice crystal surfaces grown from water vapor just below the melting point. . Cryst. Growth Des. 14:(5):213337
    [Crossref] [Google Scholar]
  128. Sazaki G, Matsui T, Tsukamoto K, Usami N, Ujihara T, et al. 2004.. In situ observation of elementary growth steps on the surface of protein crystals by laser confocal microscopy. . J. Cryst. Growth 262:(1–4):53642
    [Crossref] [Google Scholar]
  129. Sazaki G, Zepeda S, Nakatsubo S, Yokomine M, Furukawa Y. 2012.. Quasi-liquid layers on ice crystal surfaces are made up of two different phases. . PNAS 109:(4):105255
    [Crossref] [Google Scholar]
  130. Sazaki G, Zepeda S, Nakatsubo S, Yokoyama E, Furukawa Y. 2010.. Elementary steps at the surface of ice crystals visualized by advanced optical microscopy. . PNAS 107:(46):197027
    [Crossref] [Google Scholar]
  131. Schetnikov A, Matiunin V, Chernov V. 2015.. Conical shape of frozen water droplets. . Am. J. Phys. 83:(1):3638
    [Crossref] [Google Scholar]
  132. Schiaffino S, Sonin AA. 1997a.. Motion and arrest of a molten contact line on a cold surface: an experimental study. . Phys. Fluids 9:(8):221726
    [Crossref] [Google Scholar]
  133. Schiaffino S, Sonin AA. 1997b.. On the theory for the arrest of an advancing molten contact line on a cold solid of the same material. . Phys. Fluids 9:(8):222733
    [Crossref] [Google Scholar]
  134. Schremb M, Roisman IV, Tropea C. 2017.. Transient effects in ice nucleation of a water drop impacting onto a cold substrate. . Phys. Rev. E 95:(2):022805
    [Crossref] [Google Scholar]
  135. Schremb M, Roisman IV, Tropea C. 2018.. Normal impact of supercooled water drops onto a smooth ice surface: experiments and modelling. . J. Fluid Mech. 835::1087107
    [Crossref] [Google Scholar]
  136. Schultz WW, Worster MG, Anderson DM. 2001.. Solidifying sessile water droplets. . In Interactive Dynamics of Convection and Solidification, ed. P Ehrhard, DS Riley, PH Steen , pp. 20926. Dordrecht, Neth:.: Springer
    [Google Scholar]
  137. Sebilleau J, Ablonet E, Tordjeman P, Legendre D. 2021.. Air humidity effects on water-drop icing. . Phys. Rev. E 104:(3):L032802
    [Crossref] [Google Scholar]
  138. Séguy L, Protière S, Huerre A. 2023.. Role of geometry and adhesion in droplet freezing dynamics. . Phys. Rev. Fluids 8:(3):033601
    [Crossref] [Google Scholar]
  139. Séguy L, Huerre A, Protière S. 2024.. Deformation of hydrogel during freezing. . arXiv:2410.06766 [cond-mat.soft]
  140. Shang Y, Zhang Y, Hou Y, Bai B, Zhong X. 2020.. Effects of surface subcooling on the spreading dynamics of an impact water droplet. . Phys. Fluids 32:(12):123309
    [Crossref] [Google Scholar]
  141. Shen F, Fang WZ, Zhu FQ, Chai D, Tao WQ. 2024.. Freezing behaviors of an impacting droplet on subcooled hydrophobic surfaces. . Appl. Therm. Eng. 236::121535
    [Crossref] [Google Scholar]
  142. Shibkov A, Zheltov M, Korolev A, Kazakov A, Leonov A. 2005.. Crossover from diffusion-limited to kinetics-limited growth of ice crystals. . J. Cryst. Growth 285:(1–2):21527
    [Crossref] [Google Scholar]
  143. Shikhmurzaev YD. 2021.. Solidification and dynamic wetting: a unified modeling framework. . Phys. Fluids 33:(7):072101
    [Crossref] [Google Scholar]
  144. Shikhmurzaev YD. 2023.. Interaction of non-isothermal flow and solidification. . Presented at the 4th International Conference on Fluid Flow and Thermal Science, Lisbon
  145. Short MB, Baygents JC, Goldstein RE. 2006.. A free-boundary theory for the shape of the ideal dripping icicle. . Phys. Fluids 18:(8):083101
    [Crossref] [Google Scholar]
  146. Shultz MJ. 2017.. Ice surfaces. . Annu. Rev. Phys. Chem. 68::285304
    [Crossref] [Google Scholar]
  147. Slater B, Michaelides A. 2019.. Surface premelting of water ice. . Nat. Rev. Chem. 3:(3):17288
    [Crossref] [Google Scholar]
  148. Stairs RA. 1971.. Changes of drop-shapes on freezing. . Anal. Chem. 43:(11):153536
    [Crossref] [Google Scholar]
  149. Stiti M, Castanet G, Labergue A, Lemoine F. 2020.. Icing of a droplet deposited onto a subcooled surface. . Int. J. Heat Mass Transf. 159::120116
    [Crossref] [Google Scholar]
  150. Taber S. 1930.. The mechanics of frost heaving. . J. Geol. 38:(4):30317
    [Crossref] [Google Scholar]
  151. Tavakoli F, Davis SH, Kavehpour HP. 2014.. Spreading and arrest of a molten liquid on cold substrates. . Langmuir 30:(34):1015155
    [Crossref] [Google Scholar]
  152. Tavares M, Josserand C, Limare A, Lopez-Herrera J-M, Popinet S. 2024.. A coupled VOF/embedded boundary method to model two-phase flows on arbitrary solid surfaces. . Comput. Fluids 278:106317
    [Google Scholar]
  153. Thiévenaz V, Josserand C, Séon T. 2020a.. Retraction and freezing of a water film on ice. . Phys. Rev. Fluids 5:(4):041601
    [Crossref] [Google Scholar]
  154. Thiévenaz V, Meijer JG, Lohse D, Sauret A. 2024.. Universal equation describes the shape of air bubbles trapped in ice. . arXiv:2402.13456 [cond-mat.soft]
  155. Thiévenaz V, Séon T, Josserand C. 2019.. Solidification dynamics of an impacted drop. . J. Fluid Mech. 874::75673
    [Crossref] [Google Scholar]
  156. Thiévenaz V, Séon T, Josserand C. 2020b.. Freezing-damped impact of a water drop. . Europhys. Lett. 132:(2):24002
    [Crossref] [Google Scholar]
  157. Tryggvason G, Scardovelli R, Zaleski S. 2011.. Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge, UK:: Cambridge Univ. Press. , 1st ed..
    [Google Scholar]
  158. Tyagi S, Huynh H, Monteux C, Deville S. 2020.. Objects interacting with solidification fronts: thermal and solute effects. . Materialia 12::100802
    [Crossref] [Google Scholar]
  159. Tyagi S, Monteux C, Deville S. 2022.. Solute effects on the dynamics and deformation of emulsion droplets during freezing. . Soft Matter 18::417888
    [Crossref] [Google Scholar]
  160. Ueno K. 2007.. Characteristics of the wavelength of ripples on icicles. . Phys. Fluids 19:(9):093602
    [Crossref] [Google Scholar]
  161. Ulvrová M, Labrosse S, Coltice N, Råback P, Tackley P. 2012.. Numerical modelling of convection interacting with a melting and solidification front: application to the thermal evolution of the basal magma ocean. . Phys. Earth Planet. Inter. 206::5166
    [Crossref] [Google Scholar]
  162. van Buuren D, Kant P, Meijer JG, Diddens C, Lohse D. 2024.. Deforming ice with drops. . arXiv:2402.18947 [physics.flu-dyn]
  163. Van Oss CJ, Giese RF, Wentzek R, Norris J, Chuvilin EM. 1992.. Surface tension parameters of ice obtained from contact angle data and from positive and negative particle adhesion to advancing freezing fronts. . J. Adhes. Sci. Technol. 6:(4):50316
    [Crossref] [Google Scholar]
  164. Walford MER, Hargreaves DM, Stuart-Smith S, Lowson M. 1991.. Freezing of water drops on a cold surface. . J. Glaciol. 37:(125):4750
    [Crossref] [Google Scholar]
  165. Wang L, Kong W, Wang F, Liu H. 2019.. Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate. . Int. J. Heat Mass Transf. 130::83142
    [Crossref] [Google Scholar]
  166. Weady S, Tong J, Zidovska A, Ristroph L. 2022.. Anomalous convective flows carve pinnacles and scallops in melting ice. . Phys. Rev. Lett. 128:(4):044502
    [Crossref] [Google Scholar]
  167. Weber B, Nagata Y, Ketzetzi S, Tang F, Smit WJ, et al. 2018.. Molecular insight into the slipperiness of ice. . J. Phys. Chem. Lett. 9:(11):283842
    [Crossref] [Google Scholar]
  168. Wei X, Miranda PB, Shen Y. 2001.. Surface vibrational spectroscopic study of surface melting of ice. . Phys. Rev. Lett. 86:(8):155457
    [Crossref] [Google Scholar]
  169. Wei X, Miranda PB, Zhang C, Shen Y. 2002.. Sum-frequency spectroscopic studies of ice interfaces. . Phys. Rev. B 66:(8):085401
    [Crossref] [Google Scholar]
  170. Wettlaufer JS, Worster MG. 2006.. Premelting dynamics. . Annu. Rev. Fluid Mech. 38::42752
    [Crossref] [Google Scholar]
  171. Worster MG. 2000.. Solidification of fluids. . In Perspectives in Fluid Dynamics: A Collective Introduction to Current Research, ed. GK Batchelor, HK Moffatt, MG Worster , pp. 393446. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  172. Yang S, Gerber D, Feng Y, Bain N, Kuster M, et al. 2024.. Dehydration drives damage in the freezing of brittle hydrogels. . Sci. Adv. 10(34):eado7750
    [Google Scholar]
  173. Yang S, Zhang Z, Liu X, Lai T, Hou Y. 2023.. Spreading dynamics of a droplet impacts on a supercooled substrate: physical models and neural networks. . Colloids Surf. A Physicochem. Eng. Aspects 677::132381
    [Crossref] [Google Scholar]
  174. Yarin A. 2006.. Drop impact dynamics: splashing, spreading, receding, bouncing.…. Annu. Rev. Fluid Mech. 38::15992
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-fluid-121021-111652
Loading
/content/journals/10.1146/annurev-fluid-121021-111652
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error