1932

Abstract

Over the past two decades, studies have revealed profound evolutionary connections between prokaryotic and eukaryotic immune systems, challenging the notion of their unrelatedness. Immune systems across the tree of life share an operational framework, shaping their biochemical logic and evolutionary trajectories. The diversification of immune genes in the prokaryotic superkingdoms, followed by lateral transfer to eukaryotes, was central to the emergence of innate immunity in the latter. These include protein domains related to nucleotide second messenger–dependent systems, NAD+/nucleotide degradation, and P-loop NTPase domains of the STAND and GTPase clades playing pivotal roles in eukaryotic immunity and inflammation. Moreover, several domains orchestrating programmed cell death, ultimately of prokaryotic provenance, suggest an intimate link between immunity and the emergence of multicellularity in eukaryotes such as animals. While eukaryotes directly adopted some proteins from bacterial immune systems, they repurposed others for new immune functions from bacterial interorganismal conflict systems. These emerging immune components hold substantial biotechnological potential.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102448
2024-11-25
2025-04-09
The full text of this item is not currently available.

Literature Cited

  1. 1.
    Al Jewari C, Baldauf SL. 2023.. An excavate root for the eukaryote tree of life. . Sci. Adv. 9::eade4973
    [Crossref] [Google Scholar]
  2. 2.
    Aravind L, Anantharaman V, Zhang D, de Souza RF, Iyer LM. 2012.. Gene flow and biological conflict systems in the origin and evolution of eukaryotes. . Front. Cell. Infect. Microbiol. 2::89
    [Crossref] [Google Scholar]
  3. 3.
    Aravind L, Burroughs AM, Zhang D, Iyer LM. 2014.. Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics. . Cold Spring Harb. Perspect. Biol. 6::a016063
    [Crossref] [Google Scholar]
  4. 4.
    Aravind L, Dixit VM, Koonin EV. 1999.. The domains of death: evolution of the apoptosis machinery. . Trends Biochem. Sci. 24::4753 4. Established the presence of prokaryotic homologs of key players in the apoptosis–immunity axis.
    [Crossref] [Google Scholar]
  5. 5.
    Aravind L, Iyer LM, Burroughs AM. 2022.. Discovering biological conflict systems through genome analysis: evolutionary principles and biochemical novelty. . Annu. Rev. Biomed. Data Sci. 5::36791
    [Crossref] [Google Scholar]
  6. 6.
    Aravind L, Koonin EV. 2002.. Classification of the caspase–hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins. . Proteins 46::35567
    [Crossref] [Google Scholar]
  7. 7.
    Aravind L, Zhang D, de Souza RF, Anand S, Iyer LM. 2015.. The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. . Curr. Top. Microbiol. Immunol. 384::332
    [Google Scholar]
  8. 8.
    Arber W. 1974.. DNA modification and restriction. . Prog. Nucleic Acid Res. Mol. Biol. 14::137
    [Crossref] [Google Scholar]
  9. 9.
    Athukoralage JS, Graham S, Rouillon C, Gruschow S, Czekster CM, White MF. 2020.. The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling. . eLife 9::e55852
    [Crossref] [Google Scholar]
  10. 10.
    Athukoralage JS, Rouillon C, Graham S, Gruschow S, White MF. 2018.. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. . Nature 562::27780
    [Crossref] [Google Scholar]
  11. 11.
    Austin B, Trivers R, Burt A. 2009.. Genes in Conflict: The Biology of Selfish Genetic Elements. Cambridge, MA:: Harvard University Press
    [Google Scholar]
  12. 12.
    Balint-Kurti P. 2019.. The plant hypersensitive response: concepts, control and consequences. . Mol. Plant Pathol. 20::116378
    [Crossref] [Google Scholar]
  13. 13.
    Bayly-Jones C, Bubeck D, Dunstone MA. 2017.. The mystery behind membrane insertion: a review of the complement membrane attack complex. . Philos. Trans. R. Soc. B 372::20160221
    [Crossref] [Google Scholar]
  14. 14.
    Belizário JE, Neyra JM, Setúbal Destro Rodrigues MF. 2018.. When and how NK cell-induced programmed cell death benefits immunological protection against intracellular pathogen infection. . Innate Immun. 24::45265
    [Crossref] [Google Scholar]
  15. 15.
    Bernheim A, Millman A, Ofir G, Meitav G, Avraham C, et al. 2021.. Prokaryotic viperins produce diverse antiviral molecules. . Nature 589::12024 15. Prokaryotic viperins play a role in immunity comparable to their animal counterparts.
    [Crossref] [Google Scholar]
  16. 16.
    Bialik S, Kimchi A. 2012.. Biochemical and functional characterization of the ROC domain of DAPK establishes a new paradigm of GTP regulation in ROCO proteins. . Biochem. Soc. Trans. 40::105257
    [Crossref] [Google Scholar]
  17. 17.
    Bickle TA, Krüger DH. 1993.. Biology of DNA restriction. . Microbiol. Rev. 57::43450
    [Crossref] [Google Scholar]
  18. 18.
    Biffen RH. 1905.. Mendel's laws of inheritance and wheat breeding. . J. Agric. Sci. 1::448
    [Crossref] [Google Scholar]
  19. 19.
    Boehm T, Hirano M, Holland SJ, Das S, Schorpp M, Cooper MD. 2018.. Evolution of alternative adaptive immune systems in vertebrates. . Annu. Rev. Immunol. 36::1942
    [Crossref] [Google Scholar]
  20. 20.
    Buchon N, Vaury C. 2006.. RNAi: a defensive RNA-silencing against viruses and transposable elements. . Heredity 96::195202
    [Crossref] [Google Scholar]
  21. 21.
    Burroughs AM, Ando Y, Aravind L. 2014.. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. . Wiley Interdiscip. Rev. RNA 5::14181
    [Crossref] [Google Scholar]
  22. 22.
    Burroughs AM, Aravind L. 2020.. Identification of uncharacterized components of prokaryotic immune systems and their diverse eukaryotic reformulations. . J. Bacteriol. 202::e00365-20 22. Discovery of a broad array of bacterial immune systems, several with eukaryotic homologs.
    [Crossref] [Google Scholar]
  23. 23.
    Burroughs AM, Zhang D, Schäffer DE, Iyer LM, Aravind L. 2015.. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. . Nucleic Acids Res. 43::1063354
    [Crossref] [Google Scholar]
  24. 24.
    Busby JN, Panjikar S, Landsberg MJ, Hurst MR, Lott JS. 2013.. The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. . Nature 501::54750
    [Crossref] [Google Scholar]
  25. 25.
    Cai X, Xu H, Chen ZJ. 2017.. Prion-like polymerization in immunity and inflammation. . Cold Spring Harb. Perspect. Biol. 9::a023580
    [Crossref] [Google Scholar]
  26. 26.
    Carpusca I, Jank T, Aktories K. 2006.. Bacillus sphaericus mosquitocidal toxin (MTX) and pierisin: the enigmatic offspring from the family of ADP-ribosyltransferases. . Mol. Microbiol. 62::62130
    [Crossref] [Google Scholar]
  27. 27.
    Castro-Roa D, Garcia-Pino A, De Gieter S, van Nuland NAJ, Loris R, Zenkin N. 2013.. The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. . Nat. Chem. Biol. 9::81117
    [Crossref] [Google Scholar]
  28. 28.
    Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, et al. 2010.. Arabidopsis type I metacaspases control cell death. . Science 330::139397
    [Crossref] [Google Scholar]
  29. 29.
    Danov A, Segev O, Bograd A, Ben Eliyahu Y, Dotan N, et al. 2024.. Toxinome—the bacterial protein toxin database. . mBio 15::e0191123
    [Crossref] [Google Scholar]
  30. 30.
    Daskalov A, Heller J, Herzog S, Fleissner A, Glass NL. 2017.. Molecular mechanisms regulating cell fusion and heterokaryon formation in filamentous fungi. . Microbiol. Spectr. 5:: 10.1128/microbiolspec.funk-0015-2016
    [Crossref] [Google Scholar]
  31. 31.
    Daskalov A, Mitchell PS, Sandstrom A, Vance RE, Glass NL. 2020.. Molecular characterization of a fungal gasdermin-like protein. . PNAS 117::186007
    [Crossref] [Google Scholar]
  32. 32.
    Daugherty MD, Malik HS. 2012.. Rules of engagement: molecular insights from host-virus arms races. . Annu. Rev. Genet. 46::677700
    [Crossref] [Google Scholar]
  33. 33.
    Daugherty MD, Young JM, Kerns JA, Malik HS. 2014.. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. . PLOS Genet. 10::e1004403
    [Crossref] [Google Scholar]
  34. 34.
    Dawkins R, Krebs JR. 1979.. Arms races between and within species. . Proc. R. Soc. B 205::489511
    [Google Scholar]
  35. 35.
    Ding J, Wang S, Liu Q, Duan Y, Cheng T, et al. 2023.. Schlafen-5 inhibits LINE-1 retrotransposition. . iScience 26::107968
    [Crossref] [Google Scholar]
  36. 36.
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, et al. 2018.. Systematic discovery of antiphage defense systems in the microbial pangenome. . Science 359::eaar4120
    [Crossref] [Google Scholar]
  37. 37.
    Duggal NK, Emerman M. 2012.. Evolutionary conflicts between viruses and restriction factors shape immunity. . Nat. Rev. Immunol. 12::68795
    [Crossref] [Google Scholar]
  38. 38.
    Durand PM, Sym S, Michod RE. 2016.. Programmed cell death and complexity in microbial systems. . Curr. Biol. 26::R58793
    [Crossref] [Google Scholar]
  39. 39.
    Endo Y, Mitsui K, Motizuki M, Tsurugi K. 1987.. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. . J. Biol. Chem. 262::590812
    [Crossref] [Google Scholar]
  40. 40.
    Essuman K, Summers DW, Sasaki Y, Mao X, Yim AKY, et al. 2018.. TIR domain proteins are an ancient family of NAD+-consuming enzymes. . Curr. Biol. 28::42130 40. Experimental confirmation of TIR domain catalytic activity predicted in Reference 23.
    [Crossref] [Google Scholar]
  41. 41.
    Farber DL, Netea MG, Radbruch A, Rajewsky K, Zinkernagel RM. 2016.. Immunological memory: lessons from the past and a look to the future. . Nat. Rev. Immunol. 16::12428
    [Crossref] [Google Scholar]
  42. 42.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998.. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. . Nature 391::80611
    [Crossref] [Google Scholar]
  43. 43.
    Fitzgerald KA, Kagan JC. 2020.. Toll-like receptors and the control of immunity. . Cell 180::104466
    [Crossref] [Google Scholar]
  44. 44.
    Flajnik MF, Kasahara M. 2010.. Origin and evolution of the adaptive immune system: genetic events and selective pressures. . Nat. Rev. Genet. 11::4759
    [Crossref] [Google Scholar]
  45. 45.
    Ford MGJ, Chappie JS. 2019.. The structural biology of the dynamin-related proteins: new insights into a diverse, multitalented family. . Traffic 20::71740
    [Crossref] [Google Scholar]
  46. 46.
    Frank SA, Schmid-Hempel P. 2019.. Evolution of negative immune regulators. . PLOS Pathog. 15::e1007913
    [Crossref] [Google Scholar]
  47. 47.
    Gahr S, Perinetti Casoni G, Falk-Paulsen M, Maschkowitz G, Bryceson YT, Voss M. 2023.. Viral host range factors antagonize pathogenic SAMD9 and SAMD9L variants. . Exp. Cell Res. 425::113541
    [Crossref] [Google Scholar]
  48. 48.
    Gao L, Altae-Tran H, Böhning F, Makarova KS, Segel M, et al. 2020.. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. . Science 369::107784
    [Crossref] [Google Scholar]
  49. 49.
    Gao LA, Wilkinson ME, Strecker J, Makarova KS, Macrae RK, et al. 2022.. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. . Science 377::eabm4096 49. Characterization of bacterial STAND proteins in antiviral immunity.
    [Crossref] [Google Scholar]
  50. 50.
    Ghosh S, Marsh ENG. 2020.. Viperin: An ancient radical SAM enzyme finds its place in modern cellular metabolism and innate immunity. . J. Biol. Chem. 295::1151328
    [Crossref] [Google Scholar]
  51. 51.
    Glass NL, Dementhon K. 2006.. Non-self recognition and programmed cell death in filamentous fungi. . Curr. Opin. Microbiol. 9::55358
    [Crossref] [Google Scholar]
  52. 52.
    Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HCT, Rice GI, et al. 2011.. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. . Nature 480::37982 52. First demonstration of nucleotide depletion in antiviral immunity.
    [Crossref] [Google Scholar]
  53. 53.
    Gonzalez S, González-Rodríguez AP, Suárez-Álvarez B, López-Soto A, Huergo-Zapico L, Lopez-Larrea C. 2011.. Conceptual aspects of self and nonself discrimination. . Self Nonself 2::1925
    [Crossref] [Google Scholar]
  54. 54.
    Guo L, Sattler L, Shafqat S, Graumann PL, Bramkamp M. 2021.. A bacterial dynamin-like protein confers a novel phage resistance strategy on the population level in Bacillus subtilis. . mBio 13::e0375321
    [Google Scholar]
  55. 55.
    Hartley MR, Lord JM. 2004.. Cytotoxic ribosome-inactivating lectins from plants. . Biochim. Biophys. Acta Proteins Proteom. 1701::114
    [Crossref] [Google Scholar]
  56. 56.
    Hille F, Charpentier E. 2016.. CRISPR-Cas: biology, mechanisms and relevance. . Philos. Trans. R. Soc. B 371::20150496
    [Crossref] [Google Scholar]
  57. 57.
    Hofmann K. 2020.. The evolutionary origins of programmed cell death signaling. . Cold Spring Harb. Perspect. Biol. 12::a036442
    [Crossref] [Google Scholar]
  58. 58.
    Hogrel G, Guild A, Graham S, Rickman H, Gruschow S, et al. 2022.. Cyclic nucleotide-induced helical structure activates a TIR immune effector. . Nature 608::80812
    [Crossref] [Google Scholar]
  59. 59.
    Hsueh BY, Severin GB, Elg CA, Waldron EJ, Kant A, et al. 2022.. Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria. . Nat. Microbiol. 7::121020
    [Crossref] [Google Scholar]
  60. 60.
    Hu C, van Beljouw SPB, Nam KH, Schuler G, Ding F, et al. 2022.. Craspase is a CRISPR RNA-guided, RNA-activated protease. . Science 377::127885
    [Crossref] [Google Scholar]
  61. 61.
    Hughes KJ, Chen X, Burroughs AM, Aravind L, Wolin SL. 2020.. An RNA repair operon regulated by damaged tRNAs. . Cell Rep. 33::108527
    [Crossref] [Google Scholar]
  62. 62.
    Hutinet G, Lee Y-J, de Crécy-Lagard V, Weigele PR. 2021.. Hypermodified DNA in viruses of E. coli and Salmonella. . EcoSal Plus 9::eESP-0028
    [Crossref] [Google Scholar]
  63. 63.
    Ishikawa KEN, Fukuda ERI, Kobayashi I. 2010.. Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems. . DNA Res. 17::32542
    [Crossref] [Google Scholar]
  64. 64.
    Iyer LM, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. 2021.. Jumbo phages: a comparative genomic overview of core functions and adaptions for biological conflicts. . Viruses 13::63
    [Crossref] [Google Scholar]
  65. 65.
    Iyer LM, Zhang D, Maxwell Burroughs A, Aravind L. 2013.. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. . Nucleic Acids Res. 41::763555
    [Crossref] [Google Scholar]
  66. 66.
    Jenson JM, Li T, Du F, Ea C-K, Chen ZJ. 2023.. Ubiquitin-like conjugation by bacterial cGAS enhances anti-phage defence. . Nature 616::32631
    [Crossref] [Google Scholar]
  67. 67.
    Jo U, Pommier Y. 2022.. Structural, molecular, and functional insights into Schlafen proteins. . Exp. Mol. Med. 54::73038
    [Crossref] [Google Scholar]
  68. 68.
    Johnson AG, Wein T, Mayer ML, Duncan-Lowey B, Yirmiya E, et al. 2022.. Bacterial gasdermins reveal an ancient mechanism of cell death. . Science 375::22125 68. Demonstration of bacterial gasdermins in immunity via induction of cell death.
    [Crossref] [Google Scholar]
  69. 69.
    Jones JDG, Dangl JL. 2006.. The plant immune system. . Nature 444::32329
    [Crossref] [Google Scholar]
  70. 70.
    Jones JDG, Vance RE, Dangl JL. 2016.. Intracellular innate immune surveillance devices in plants and animals. . Science 354::aaf6395
    [Crossref] [Google Scholar]
  71. 71.
    Kaiser D, Robinson M, Kroos L. 2010.. Myxobacteria, polarity, and multicellular morphogenesis. . Cold Spring Harb. Perspect. Biol. 2::a000380
    [Crossref] [Google Scholar]
  72. 72.
    Karvelis T, Druteika G, Bigelyte G, Budre K, Zedaveinyte R, et al. 2021.. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. . Nature 599::69296
    [Crossref] [Google Scholar]
  73. 73.
    Kaufmann SH. 2008.. Elie Metchnikoff's and Paul Ehrlich's impact on infection biology. . Microbes Infect. 10::141719
    [Crossref] [Google Scholar]
  74. 74.
    Kaur G, Burroughs AM, Iyer LM, Aravind L. 2020.. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. . eLife 9::e52696 74. Discovery of bacterial systems linking immunity to apoptosis and multicellularity (see also Reference 75).
    [Crossref] [Google Scholar]
  75. 75.
    Kaur G, Iyer LM, Burroughs AM, Aravind L. 2021.. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. . eLife 10::e70394
    [Crossref] [Google Scholar]
  76. 76.
    Kawai T, Akira S. 2010.. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. . Nat. Immunol. 11::37384
    [Crossref] [Google Scholar]
  77. 77.
    Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G, Siksnys V. 2017.. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. . Science 357::6059
    [Crossref] [Google Scholar]
  78. 78.
    Kelman A, Peterson PD. 2002.. Contributions of plant scientists to the development of the germ theory of disease. . Microbes Infect. 4::25760
    [Crossref] [Google Scholar]
  79. 79.
    Kibby EM, Conte AN, Burroughs AM, Nagy TA, Vargas JA, et al. 2023.. Bacterial NLR-related proteins protect against phage. . Cell 186::241024
    [Crossref] [Google Scholar]
  80. 80.
    Koonin EV, Aravind L. 2000.. The NACHT family—a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. . Trends Biochem. Sci. 25::22324
    [Crossref] [Google Scholar]
  81. 81.
    Koopal B, Potocnik A, Mutte SK, Aparicio-Maldonado C, Lindhoud S, et al. 2022.. Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA. . Cell 185::147186.e19
    [Crossref] [Google Scholar]
  82. 82.
    Krishnan A, Iyer LM, Holland SJ, Boehm T, Aravind L. 2018.. Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. . PNAS 115::E320110
    [Google Scholar]
  83. 83.
    Krupovic M, Dolja VV, Koonin EV. 2019.. Origin of viruses: primordial replicators recruiting capsids from hosts. . Nat. Rev. Microbiol. 17::44958
    [Crossref] [Google Scholar]
  84. 84.
    Kwak S-H, Song S-K, Lee MM, Schiefelbein J. 2015.. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana. . Plant Signal. Behav. 10::e1103407
    [Crossref] [Google Scholar]
  85. 85.
    Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, et al. 2011.. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. . Nature 474::65457
    [Crossref] [Google Scholar]
  86. 86.
    Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, et al. 2012.. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. . Nat. Immunol. 13::22328
    [Crossref] [Google Scholar]
  87. 87.
    Lapadula WJ, Ayub MJ. 2017.. Ribosome Inactivating Proteins from an evolutionary perspective. . Toxicon 136::614
    [Crossref] [Google Scholar]
  88. 88.
    Le Coq J, Ghosh P. 2011.. Conservation of the C-type lectin fold for massive sequence variation in a Treponema diversity-generating retroelement. . PNAS 108::1464953
    [Crossref] [Google Scholar]
  89. 89.
    Leclercq S, Gilbert C, Cordaux R. 2012.. Cargo capacity of phages and plasmids and other factors influencing horizontal transfers of prokaryote transposable elements. . Mob. Genet. Elements 2::11518
    [Crossref] [Google Scholar]
  90. 90.
    Ledvina HE, Ye Q, Gu Y, Sullivan AE, Quan Y, et al. 2023.. An E1–E2 fusion protein primes antiviral immune signalling in bacteria. . Nature 616::31925
    [Crossref] [Google Scholar]
  91. 91.
    Leipe DD, Koonin EV, Aravind L. 2004.. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. . J. Mol. Biol. 343::128
    [Crossref] [Google Scholar]
  92. 92.
    Leipe DD, Wolf YI, Koonin EV, Aravind L. 2002.. Classification and evolution of P-loop GTPases and related ATPases. . J. Mol. Biol. 317::4172
    [Crossref] [Google Scholar]
  93. 93.
    LeRoux M, Srikant S, Teodoro GIC, Zhang T, Littlehale ML, et al. 2022.. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. . Nat. Microbiol. 7::102840
    [Crossref] [Google Scholar]
  94. 94.
    Letarov AV. 2020.. History of early bacteriophage research and emergence of key concepts in virology. . Biochemistry 85::1093112
    [Google Scholar]
  95. 95.
    Lipsitch M, Moxon ER. 1997.. Virulence and transmissibility of pathogens: What is the relationship?. Trends Microbiol. 5::3137
    [Crossref] [Google Scholar]
  96. 96.
    Liu X, Xia S, Zhang Z, Wu H, Lieberman J. 2021.. Channelling inflammation: gasdermins in physiology and disease. . Nat. Rev. Drug Discov. 20::384405
    [Crossref] [Google Scholar]
  97. 97.
    Lohöfener J, Steinke N, Kay-Fedorov P, Baruch P, Nikulin A, et al. 2015.. The activation mechanism of 2′-5′-oligoadenylate synthetase gives new insights into OAS/cGAS triggers of innate immunity. . Structure 23::85162
    [Crossref] [Google Scholar]
  98. 98.
    Lowey B, Whiteley AT, Keszei AFA, Morehouse BR, Mathews IT, et al. 2020.. CBASS immunity uses CARF-related effectors to sense 3′-5′- and 2′-5′-linked cyclic oligonucleotide signals and protect bacteria from phage infection. . Cell 182::3849.e17
    [Crossref] [Google Scholar]
  99. 99.
    Luria SE, Human ML. 1952.. A nonhereditary, host-induced variation of bacterial viruses. . J. Bacteriol. 64::55769
    [Crossref] [Google Scholar]
  100. 100.
    Luthe T, Kever L, Hansch S, Hardy A, Tschowri N, et al. 2023.. Streptomyces development is involved in the efficient containment of viral infections. . Microlife 4::uqad002
    [Crossref] [Google Scholar]
  101. 101.
    Lynch M. 2006.. Streamlining and simplification of microbial genome architecture. . Annu. Rev. Microbiol. 60::32749
    [Crossref] [Google Scholar]
  102. 102.
    Lyons NA, Kolter R. 2015.. On the evolution of bacterial multicellularity. . Curr. Opin. Microbiol. 24::2128
    [Crossref] [Google Scholar]
  103. 103.
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, et al. 2020.. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. . Nat. Rev. Microbiol. 18::6783
    [Crossref] [Google Scholar]
  104. 104.
    Makarova KS, Wolf YI, Snir S, Koonin EV. 2011.. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. . J. Bacteriol. 193::603956
    [Crossref] [Google Scholar]
  105. 105.
    Manik MK, Shi Y, Li S, Zaydman MA, Damaraju N, et al. 2022.. Cyclic ADP ribose isomers: production, chemical structures, and immune signaling. . Science 377::eadc8969 105. Characterization of multiple cADPR variants generated from NAD+ by TIR domains.
    [Crossref] [Google Scholar]
  106. 106.
    Maynard Smith J. 1998.. Evolutionary Genetics. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  107. 107.
    Maynard Smith J, Price G. 1973.. The logic of animal conflict. . Nature 246::1518
    [Crossref] [Google Scholar]
  108. 108.
    McIlwain DR, Berger T, Mak TW. 2013.. Caspase functions in cell death and disease. . Cold Spring Harb. Perspect. Biol. 5::a008656
    [Crossref] [Google Scholar]
  109. 109.
    McLaughlin RN Jr., Malik HS. 2017.. Genetic conflicts: the usual suspects and beyond. . J. Exp. Biol. 220::617
    [Crossref] [Google Scholar]
  110. 110.
    Medzhitov R, Janeway CA Jr. 2002.. Decoding the patterns of self and nonself by the innate immune system. . Science 296::298300
    [Crossref] [Google Scholar]
  111. 111.
    Mermigka G, Amprazi M, Mentzelopoulou A, Amartolou A, Sarris PF. 2020.. Plant and animal innate immunity complexes: fighting different enemies with similar weapons. . Trends Plant Sci. 25::8091
    [Crossref] [Google Scholar]
  112. 112.
    Michod RE. 1996.. Cooperation and conflict in the evolution of individuality. II. Conflict mediation. . Proc. Biol. Sci. 263::81322
    [Crossref] [Google Scholar]
  113. 113.
    Mitchell PS, Emerman M, Malik HS. 2013.. An evolutionary perspective on the broad antiviral specificity of MxA. . Curr. Opin. Microbiol. 16::49399
    [Crossref] [Google Scholar]
  114. 114.
    Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, et al. 2020.. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. . Nature 583::63137
    [Crossref] [Google Scholar]
  115. 115.
    Morehouse BR, Govande AA, Millman A, Keszei AFA, Lowey B, et al. 2020.. STING cyclic dinucleotide sensing originated in bacteria. . Nature 586::42933
    [Crossref] [Google Scholar]
  116. 116.
    Nathans D, Smith HO. 1975.. Restriction endonucleases in the analysis and restructuring of DNA molecules. . Annu. Rev. Biochem. 44::27393
    [Crossref] [Google Scholar]
  117. 117.
    Nicastro GG, Burroughs AM, Iyer LM, Aravind L. 2023.. Functionally comparable but evolutionarily distinct nucleotide-targeting effectors help identify conserved paradigms across diverse immune systems. . Nucleic Acids Res. 51::11479503
    [Crossref] [Google Scholar]
  118. 118.
    Niewoehner O, Garcia-Doval C, Rostol JT, Berk C, Schwede F, et al. 2017.. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. . Nature 548::54348
    [Crossref] [Google Scholar]
  119. 119.
    Nishida T, Hattori K, Watanabe K. 2017.. The regulatory and signaling mechanisms of the ASK family. . Adv. Biol. Regul. 66::222
    [Crossref] [Google Scholar]
  120. 120.
    Ofir G, Herbst E, Baroz M, Cohen D, Millman A, et al. 2021.. Antiviral activity of bacterial TIR domains via immune signalling molecules. . Nature 600::11620
    [Crossref] [Google Scholar]
  121. 121.
    Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H. 2007.. The death domain superfamily in intracellular signaling of apoptosis and inflammation. . Annu. Rev. Immunol. 25::56186
    [Crossref] [Google Scholar]
  122. 122.
    Park YC, Ye H, Hsia C, Segal D, Rich RL, et al. 2000.. A novel mechanism of TRAF signaling revealed by structural and functional analyses of the TRADD–TRAF2 interaction. . Cell 101::77787
    [Crossref] [Google Scholar]
  123. 123.
    Paul WE. 2011.. Bridging innate and adaptive immunity. . Cell 147::121215
    [Crossref] [Google Scholar]
  124. 124.
    Rakesh S, Aravind L, Krishnan A. 2024.. Reappraisal of the DNA phosphorothioate modification machinery: uncovering neglected functional modalities and identification of new counter-invader defense systems. . Nucleic Acids Res. 52::100526
    [Crossref] [Google Scholar]
  125. 125.
    Rey S, Moiche V, Boltana S, Teles M, MacKenzie S. 2017.. Behavioural fever in zebrafish larvae. . Dev. Comp. Immunol. 67::28792
    [Crossref] [Google Scholar]
  126. 126.
    Roberts RJ. 1987.. Restriction and modification enzymes and their recognition sequences. . Gene Amplif. Anal. 5::149
    [Google Scholar]
  127. 127.
    Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. 1998.. A family of human receptors structurally related to Drosophila Toll. . PNAS 95::58893
    [Crossref] [Google Scholar]
  128. 128.
    Roff DA. 2001.. Life History Evolution. Sunderland, MA:: Sinauer Assoc.
    [Google Scholar]
  129. 129.
    Rousset F, Depardieu F, Miele S, Dowding J, Laval A-L, et al. 2022.. Phages and their satellites encode hotspots of antiviral systems. . Cell Host Microbe 30::74053
    [Crossref] [Google Scholar]
  130. 130.
    Rousset F, Yirmiya E, Nesher S, Brandis A, Mehlman T, et al. 2023.. A conserved family of immune effectors cleaves cellular ATP upon viral infection. . Cell 186::361931.e13
    [Crossref] [Google Scholar]
  131. 131.
    Sauguet L. 2019.. The extended “two-barrel” polymerases superfamily: structure, function and evolution. . J. Mol. Biol. 431::416783
    [Crossref] [Google Scholar]
  132. 132.
    Schirrmeister BE, Antonelli A, Bagheri HC. 2011.. The origin of multicellularity in cyanobacteria. . BMC Evol. Biol. 11::45
    [Crossref] [Google Scholar]
  133. 133.
    Schwefel D, Daumke O. 2011.. GTP-dependent scaffold formation in the GTPase of Immunity Associated Protein family. . Small GTPases 2::2730
    [Crossref] [Google Scholar]
  134. 134.
    Severin GB, Ramliden MS, Hawver LA, Wang K, Pell ME, et al. 2018.. Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. . PNAS 115::E604855
    [Crossref] [Google Scholar]
  135. 135.
    Slattery JP, Franchini G, Gessain A. 1999.. Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses. . Genome Res. 9::52540
    [Crossref] [Google Scholar]
  136. 136.
    Stearns SC. 1992.. The Evolution of Life Histories. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  137. 137.
    Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, et al. 2014.. DNA-guided DNA interference by a prokaryotic Argonaute. . Nature 507::25861
    [Crossref] [Google Scholar]
  138. 138.
    van Loo G, Bertrand MJM. 2023.. Death by TNF: a road to inflammation. . Nat. Rev. Immunol. 23::289303
    [Crossref] [Google Scholar]
  139. 139.
    van Wersch S, Tian L, Hoy R, Li X. 2020.. Plant NLRs: the whistleblowers of plant immunity. . Plant Commun. 1::100016
    [Crossref] [Google Scholar]
  140. 140.
    Varble A, Marraffini LA. 2019.. Three new Cs for CRISPR: collateral, communicate, cooperate. . Trends Genet. 35::44656
    [Crossref] [Google Scholar]
  141. 141.
    Vardi A, Haramaty L, Van Mooy BA, Fredricks HF, Kimmance SA, et al. 2012.. Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. . PNAS 109::1932732
    [Crossref] [Google Scholar]
  142. 142.
    Vassallo CN, Doering CR, Littlehale ML, Teodoro GIC, Laub MT. 2022.. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. . Nat. Microbiol. 7::156879
    [Crossref] [Google Scholar]
  143. 143.
    Vlot AC, Sales JH, Lenk M, Bauer K, Brambilla A, et al. 2021.. Systemic propagation of immunity in plants. . New Phytol. 229::123450
    [Crossref] [Google Scholar]
  144. 144.
    Wang Z, Li X. 2009.. IAN/GIMAPs are conserved and novel regulators in vertebrates and angiosperm plants. . Plant Signal. Behav. 4::16567
    [Crossref] [Google Scholar]
  145. 145.
    Wein T, Johnson AG, Millman A, Lange K, Yirmiya E, et al. 2023.. CARD-like domains mediate anti-phage defense in bacterial gasdermin systems. . bioRxiv 2023.05.28.542683. https://doi.org/10.1101/2023.05.28.542683
  146. 146.
    Wein T, Sorek R. 2022.. Bacterial origins of human cell-autonomous innate immune mechanisms. . Nat. Rev. Immunol. 22::62938
    [Crossref] [Google Scholar]
  147. 147.
    Whiteley AT, Eaglesham JB, de Oliveira Mann CC, Morehouse BR, Lowey B, et al. 2019.. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. . Nature 567::19499 147. Bacterial SMODS, similar to their eukaryotic cognates, generate a variety of cyclic nucleotide immune signals.
    [Crossref] [Google Scholar]
  148. 148.
    Wilson I, Vogel J, Somerville S. 1997.. Signalling pathways: a common theme in plants and animals?. Curr. Biol. 7::R17578
    [Crossref] [Google Scholar]
  149. 149.
    Woznica A, Kumar A, Sturge CR, Xing C, King N, Pfeiffer JK. 2021. STING mediates immune responses in the closest living relatives of animals. . eLife 10::e70436
    [Crossref] [Google Scholar]
  150. 150.
    Zhang D, Burroughs AM, Vidal ND, Iyer LM, Aravind L. 2016.. Transposons to toxins: the provenance, architecture and diversification of a widespread class of eukaryotic effectors. . Nucleic Acids Res. 44::351333
    [Crossref] [Google Scholar]
  151. 151.
    Zheng D, Liwinski T, Elinav E. 2020.. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. . Cell Discov. 6::36
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102448
Loading
/content/journals/10.1146/annurev-genet-111523-102448
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error