1932

Abstract

In the last decade, it has become clear that extracellular vesicles (EVs) are a ubiquitous component of living systems. These small membrane-enclosed particles can confer diverse functions to the cells that release, capture, or coexist with them in an environment. We use examples across living systems to produce a conceptual framework that classifies three modes by which EVs exert functions: () EV release that serves a function for producing cells, () EV modification of the extracellular environment, and () EV interactions with, and alteration of, receiving cells. We provide an overview of the inherent properties of EVs (i.e., their nature) as well as factors in the environment and receiving cell (i.e., nurture) that determine whether transmission of EV cargo leads to functional cellular responses. This review broadens the context for ruminating on EV functions and highlights the emergent properties of EVs that define their role in biology and will shape their applications in medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102725
2024-11-25
2025-01-08
The full text of this item is not currently available.

Literature Cited

  1. 1.
    Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, et al. 2015.. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. . Nat. Commun. 6::7321
    [Crossref] [Google Scholar]
  2. 2.
    Ambrosone A, Barbulova A, Cappetta E, Cillo F, De Palma M, et al. 2023.. Plant extracellular vesicles: current landscape and future directions. . Plants 12::4141
    [Crossref] [Google Scholar]
  3. 3.
    Ansari S, de Wildt BWM, Vis MAM, de Korte CE, Ito K, et al. 2021.. Matrix vesicles: role in bone mineralization and potential use as therapeutics. . Pharmaceuticals 14::289
    [Crossref] [Google Scholar]
  4. 4.
    Bahar O, Mordukhovich G, Luu DD, Schwessinger B, Daudi A, et al. 2016.. Bacterial outer membrane vesicles induce plant immune responses. . Mol. Plant Microbe Interact. 29::37484
    [Crossref] [Google Scholar]
  5. 5.
    Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, et al. 2011.. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. . Nat. Commun. 2::180
    [Crossref] [Google Scholar]
  6. 6.
    Barman B, Sung BH, Krystofiak E, Ping J, Ramirez M, et al. 2022.. VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites. . Dev. Cell 57::97494.e8
    [Crossref] [Google Scholar]
  7. 7.
    Bauza-Martinez J, Heck AJR, Wu W. 2021.. HLA-B and cysteinylated ligands distinguish the antigen presentation landscape of extracellular vesicles. . Commun. Biol. 4::825
    [Crossref] [Google Scholar]
  8. 8.
    Bebawy M, Combes V, Lee E, Jaiswal R, Gong J, et al. 2009.. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. . Leukemia 23::164349
    [Crossref] [Google Scholar]
  9. 9.
    Bellingham SA, Coleman BM, Hill AF. 2012.. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. . Nucleic Acids Res. 40::1093749
    [Crossref] [Google Scholar]
  10. 10.
    Bielska E, Birch PRJ, Buck AH, Abreu-Goodger C, Innes RW, et al. 2019.. Highlights of the mini-symposium on extracellular vesicles in inter-organismal communication, held in Munich, Germany, August 2018. . J. Extracell. Vesicles 8::1590116
    [Crossref] [Google Scholar]
  11. 11.
    Bittel M, Reichert P, Sarfati I, Dressel A, Leikam S, et al. 2021.. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo. . J. Extracell. Vesicles 10::e12159
    [Crossref] [Google Scholar]
  12. 12.
    Bodega G, Alique M, Bohorquez L, Ciordia S, Mena MC, Ramirez MR. 2017.. The antioxidant machinery of young and senescent human umbilical vein endothelial cells and their microvesicles. . Oxid. Med. Cell Longev. 2017::7094781
    [Crossref] [Google Scholar]
  13. 13.
    Bonnington KE, Kuehn MJ. 2016.. Outer membrane vesicle production facilitates LPS remodeling and outer membrane maintenance in Salmonella during environmental transitions. . mBio
    [Crossref] [Google Scholar]
  14. 14.
    Brameyer S, Plener L, Muller A, Klingl A, Wanner G, Jung K. 2018.. Outer membrane vesicles facilitate trafficking of the hydrophobic signaling molecule CAI-1 between Vibrio harveyi cells. . J. Bacteriol.
    [Crossref] [Google Scholar]
  15. 15.
    Brown L, Wolf JM, Prados-Rosales R, Casadevall A. 2015.. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. . Nat. Rev. Microbiol. 13::62030
    [Crossref] [Google Scholar]
  16. 16.
    Buck AH. 2022.. Cells choose their words wisely. . Cell 185::111416
    [Crossref] [Google Scholar]
  17. 17.
    Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, et al. 2014.. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. . Nat. Commun. 5::5488
    [Crossref] [Google Scholar]
  18. 18.
    Burckhardt CJ, Suomalainen M, Schoenenberger P, Boucke K, Hemmi S, Greber UF. 2011.. Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. . Cell Host Microbe 10::10517
    [Crossref] [Google Scholar]
  19. 19.
    Buzas EI. 2022.. Opportunities and challenges in studying the extracellular vesicle corona. . Nat. Cell Biol. 24::132225
    [Crossref] [Google Scholar]
  20. 20.
    Buzas EI. 2023.. The roles of extracellular vesicles in the immune system. . Nat. Rev. Immunol. 23::23650
    [Crossref] [Google Scholar]
  21. 21.
    Cai Q, He B, Weiberg A, Buck AH, Jin H. 2019.. Small RNAs and extracellular vesicles: New mechanisms of cross-species communication and innovative tools for disease control. . PLOS Pathog. 15::e1008090
    [Crossref] [Google Scholar]
  22. 22.
    Cai Q, Qiao L, Wang M, He B, Lin FM, et al. 2018.. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. . Science 360::112629
    [Crossref] [Google Scholar]
  23. 23.
    Canonico PL, MacLeod RM. 1986.. Angiotensin peptides stimulate phosphoinositide breakdown and prolactin release in anterior pituitary cells in culture. . Endocrinology 118::23338
    [Crossref] [Google Scholar]
  24. 24.
    Capello M, Vykoukal JV, Katayama H, Bantis LE, Wang H, et al. 2019.. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. . Nat. Commun. 10::254
    [Crossref] [Google Scholar]
  25. 25.
    Carnino JM, Ni K, Jin Y. 2020.. Post-translational modification regulates formation and cargo-loading of extracellular vesicles. . Front. Immunol. 11::948
    [Crossref] [Google Scholar]
  26. 26.
    Cech TR, Steitz JA. 2014.. The noncoding RNA revolution—trashing old rules to forge new ones. . Cell 157::7794
    [Crossref] [Google Scholar]
  27. 27.
    Chalupowicz L, Mordukhovich G, Assoline N, Katsir L, Sela N, Bahar O. 2023.. Bacterial outer membrane vesicles induce a transcriptional shift in arabidopsis towards immune system activation leading to suppression of pathogen growth in planta. . J. Extracell. Vesicles 12::e12285
    [Crossref] [Google Scholar]
  28. 28.
    Cham LB, Adomati T, Li F, Ali M, Lang KS. 2020.. CD47 as a potential target to therapy for infectious diseases. . Antibodies 9::44
    [Crossref] [Google Scholar]
  29. 29.
    Chen G, Huang AC, Zhang W, Zhang G, Wu M, et al. 2018.. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. . Nature 560::38286
    [Crossref] [Google Scholar]
  30. 30.
    Chen X, Rechavi O. 2022.. Plant and animal small RNA communications between cells and organisms. . Nat. Rev. Mol. Cell Biol. 23::185203
    [Crossref] [Google Scholar]
  31. 31.
    Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, et al. 2014.. Quantitative and stoichiometric analysis of the microRNA content of exosomes. . PNAS 111::1488893
    [Crossref] [Google Scholar]
  32. 32.
    Chiou NT, Kageyama R, Ansel KM. 2018.. Selective export into extracellular vesicles and function of tRNA fragments during T cell activation. . Cell Rep. 25::335670.e4
    [Crossref] [Google Scholar]
  33. 33.
    Coakley G, Maizels RM, Buck AH. 2015.. Exosomes and other extracellular vesicles: the new communicators in parasite infections. . Trends Parasitol. 31::47789
    [Crossref] [Google Scholar]
  34. 34.
    Cocozza F, Nevo N, Piovesana E, Lahaye X, Buchrieser J, et al. 2020.. Extracellular vesicles containing ACE2 efficiently prevent infection by SARS-CoV-2 Spike protein-containing virus. . J. Extracell. Vesicles 10::e12050
    [Crossref] [Google Scholar]
  35. 35.
    Coleman BM, Hill AF. 2015.. Extracellular vesicles—their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. . Semin. Cell Dev. Biol. 40::8996
    [Crossref] [Google Scholar]
  36. 36.
    Collins SM, Brown AC. 2021.. Bacterial outer membrane vesicles as antibiotic delivery vehicles. . Front. Immunol. 12::733064
    [Crossref] [Google Scholar]
  37. 37.
    Colombo M, Raposo G, Thery C. 2014.. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. . Annu. Rev. Cell Dev. Biol. 30::25589
    [Crossref] [Google Scholar]
  38. 38.
    Corbeil D, Santos MF, Karbanova J, Kurth T, Rappa G, Lorico A. 2020.. Uptake and fate of extracellular membrane vesicles: nucleoplasmic reticulum-associated late endosomes as a new gate to intercellular communication. . Cells 9::1931
    [Crossref] [Google Scholar]
  39. 39.
    Couch Y, Buzas EI, Di Vizio D, Gho YS, Harrison P, et al. 2021.. A brief history of nearly EV-erything—The rise and rise of extracellular vesicles. . J. Extracell. Vesicles 10::e12144
    [Crossref] [Google Scholar]
  40. 40.
    de Jong OG, Murphy DE, Mager I, Willms E, Garcia-Guerra A, et al. 2020.. A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA. . Nat. Commun. 11::1113
    [Crossref] [Google Scholar]
  41. 41.
    de Oliveira HC, Kato AF, Sena BAG, Duarte I, Jozefowicz LJ, et al. 2021.. Biogenesis of fungal extracellular vesicles: What do we know?. Curr. Top. Microbiol. Immunol. 432::111
    [Google Scholar]
  42. 42.
    Dekel E, Yaffe D, Rosenhek-Goldian I, Ben-Nissan G, Ofir-Birin Y, et al. 2021.. 20S proteasomes secreted by the malaria parasite promote its growth. . Nat. Commun. 12::1172
    [Crossref] [Google Scholar]
  43. 43.
    Deo P, Chow SH, Hay ID, Kleifeld O, Costin A, et al. 2018.. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. . PLOS Pathog. 14::e1006945
    [Crossref] [Google Scholar]
  44. 44.
    Dhurve G, Madikonda AK, Jagannadham MV, Siddavattam D. 2022.. Outer membrane vesicles of Acinetobacter baumannii DS002 are selectively enriched with TonB-dependent transporters and play a key role in iron acquisition. . Microbiol. Spectr. 10::e0029322
    [Crossref] [Google Scholar]
  45. 45.
    Dixson AC, Dawson TR, Di Vizio D, Weaver AM. 2023.. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. . Nat. Rev. Mol. Cell Biol. 24::45476
    [Crossref] [Google Scholar]
  46. 46.
    Driedonks TAP, Nolte-’t Hoen ENM. 2018.. Circulating Y-RNAs in extracellular vesicles and ribonucleoprotein complexes; implications for the immune system. . Front. Immunol. 9::3164
    [Crossref] [Google Scholar]
  47. 47.
    Dunker F, Trutzenberg A, Rothenpieler JS, Kuhn S, Prols R, et al. 2020.. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. . eLife 9::e56096
    [Crossref] [Google Scholar]
  48. 48.
    Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, et al. 2020.. Extracellular vesicles as drug delivery systems: Why and how?. Adv. Drug Deliv. Rev. 159::33243
    [Crossref] [Google Scholar]
  49. 49.
    El-Shennawy L, Hoffmann AD, Dashzeveg NK, McAndrews KM, Mehl PJ, et al. 2022.. Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. . Nat. Commun. 13::405
    [Crossref] [Google Scholar]
  50. 50.
    Erdmann S, Tschitschko B, Zhong L, Raftery MJ, Cavicchioli R. 2017.. A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells. . Nat. Microbiol. 2::144655
    [Crossref] [Google Scholar]
  51. 51.
    Erttmann SF, Swacha P, Aung KM, Brindefalk B, Jiang H, et al. 2022.. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. . Immunity 55::84761.e10
    [Crossref] [Google Scholar]
  52. 52.
    Ewers H, Smith AE, Sbalzarini IF, Lilie H, Koumoutsakos P, Helenius A. 2005.. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. . PNAS 102::1511015
    [Crossref] [Google Scholar]
  53. 53.
    Ezzat K, Pernemalm M, Palsson S, Roberts TC, Jarver P, et al. 2019.. The viral protein corona directs viral pathogenesis and amyloid aggregation. . Nat. Commun. 10::2331
    [Crossref] [Google Scholar]
  54. 54.
    Fabbri M, Paone A, Calore F, Galli R, Gaudio E, et al. 2012.. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. . PNAS 109::E211016
    [Crossref] [Google Scholar]
  55. 55.
    Fan Y, Che X, Qu J, Hou K, Wen T, et al. 2019.. Exosomal PD-L1 retains immunosuppressive activity and is associated with gastric cancer prognosis. . Ann. Surg. Oncol. 26::374555
    [Crossref] [Google Scholar]
  56. 56.
    Fedele C, Singh A, Zerlanko BJ, Iozzo RV, Languino LR. 2015.. The αvβ6 integrin is transferred intercellularly via exosomes. . J. Biol. Chem. 290::454551
    [Crossref] [Google Scholar]
  57. 57.
    Fruhbeis C, Kuo-Elsner WP, Muller C, Barth K, Peris L, et al. 2020.. Oligodendrocytes support axonal transport and maintenance via exosome secretion. . PLOS Biol. 18::e3000621
    [Crossref] [Google Scholar]
  58. 58.
    Gauthier SA, Pérez-González R, Sharma A, Huang F-K, Alldred MJ, et al. 2017.. Enhanced exosome secretion in Down syndrome brain—a protective mechanism to alleviate neuronal endosomal abnormalities. . Acta Neuropathol. Commun. 5::65
    [Crossref] [Google Scholar]
  59. 59.
    Gill S, Catchpole R, Forterre P. 2019.. Extracellular membrane vesicles in the three domains of life and beyond. . FEMS Microbiol. Rev. 43::273303
    [Crossref] [Google Scholar]
  60. 60.
    Goldie BJ, Dun MD, Lin M, Smith ND, Verrills NM, et al. 2014.. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. . Nucleic Acids Res. 42::9195208
    [Crossref] [Google Scholar]
  61. 61.
    Gomez-Herranz M, Taylor J, Sloan RD. 2023.. IFITM proteins: understanding their diverse roles in viral infection, cancer, and immunity. . J. Biol. Chem. 299::102741
    [Crossref] [Google Scholar]
  62. 62.
    Hendricks MR, Lane S, Melvin JA, Ouyang Y, Stolz DB, et al. 2021.. Extracellular vesicles promote transkingdom nutrient transfer during viral-bacterial co-infection. . Cell Rep. 34::108672
    [Crossref] [Google Scholar]
  63. 63.
    Heusermann W, Hean J, Trojer D, Steib E, von Bueren S, et al. 2016.. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. . J. Cell Biol. 213::17384
    [Crossref] [Google Scholar]
  64. 64.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, et al. 2015.. Tumour exosome integrins determine organotropic metastasis. . Nature 527::32935
    [Crossref] [Google Scholar]
  65. 65.
    Islam MN, Das SR, Emin MT, Wei M, Sun L, et al. 2012.. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. . Nat. Med. 18::75965
    [Crossref] [Google Scholar]
  66. 66.
    Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. 1987.. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). . J. Biol. Chem. 262::941220
    [Crossref] [Google Scholar]
  67. 67.
    Johnstone RM, Mathew A, Mason AB, Teng K. 1991.. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. . J. Cell Physiol. 147::2736
    [Crossref] [Google Scholar]
  68. 68.
    Kadurugamuwa JL, Beveridge TJ. 1995.. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. . J. Bacteriol. 177::39984008
    [Crossref] [Google Scholar]
  69. 69.
    Keller MD, Ching KL, Liang FX, Dhabaria A, Tam K, et al. 2020.. Decoy exosomes provide protection against bacterial toxins. . Nature 579::26064
    [Crossref] [Google Scholar]
  70. 70.
    Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ. 2004.. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. . EMBO J. 23::453849
    [Crossref] [Google Scholar]
  71. 71.
    Kish A, Miot J, Lombard C, Guigner JM, Bernard S, et al. 2016.. Preservation of archaeal surface layer structure during mineralization. . Sci. Rep. 6::26152
    [Crossref] [Google Scholar]
  72. 72.
    Kuang H, Dou G, Cheng L, Wang X, Xu H, et al. 2023.. Humoral regulation of iron metabolism by extracellular vesicles drives antibacterial response. . Nat. Metab. 5::11128
    [Crossref] [Google Scholar]
  73. 73.
    Kuipers ME, Nguyen DL, van Diepen A, Mes L, Bos E, et al. 2023.. Life stage-specific glycosylation of extracellular vesicles from Schistosoma mansoni schistosomula and adult worms drives differential interaction with C-type lectin receptors DC-SIGN and MGL. . Front. Mol. Biosci. 10::1125438
    [Crossref] [Google Scholar]
  74. 74.
    Kulaj K, Harger A, Bauer M, Caliskan OS, Gupta TK, et al. 2023.. Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo. . Nat. Commun. 14::709
    [Crossref] [Google Scholar]
  75. 75.
    Kur IM, Prouvot PH, Fu T, Fan W, Muller-Braun F, et al. 2020.. Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo. . PLOS Biol. 18::e3000643
    [Crossref] [Google Scholar]
  76. 76.
    Kuscu C, Kumar P, Kiran M, Su Z, Malik A, Dutta A. 2018.. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. . RNA 24::1093105
    [Crossref] [Google Scholar]
  77. 77.
    La Rocca G, Olejniczak SH, Gonzalez AJ, Briskin D, Vidigal JA, et al. 2015.. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. . PNAS 112::76772
    [Crossref] [Google Scholar]
  78. 78.
    Lehmann MJ, Sherer NM, Marks CB, Pypaert M, Mothes W. 2005.. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. . J. Cell Biol. 170::31725
    [Crossref] [Google Scholar]
  79. 79.
    Leidal AM, Debnath J. 2021.. Emerging roles for the autophagy machinery in extracellular vesicle biogenesis and secretion. . FASEB Bioadv. 3::37786
    [Crossref] [Google Scholar]
  80. 80.
    Li Y, Wu Y, Federzoni EA, Wang X, Dharmawan A, et al. 2022.. CD47 cross-dressing by extracellular vesicles expressing CD47 inhibits phagocytosis without transmitting cell death signals. . eLife 11::e73677
    [Crossref] [Google Scholar]
  81. 81.
    Lim K, Hyun Y-M, Lambert-Emo K, Capece T, Bae S, et al. 2015.. Neutrophil trails guide influenza-specific CD8+ T cells in the airways. . Science 349::aaa4352
    [Crossref] [Google Scholar]
  82. 82.
    Liu J, Zhu L, Wang J, Qiu L, Chen Y, et al. 2019.. Schistosoma japonicum extracellular vesicle miRNA cargo regulates host macrophage functions facilitating parasitism. . PLOS Pathog. 15::e1007817
    [Crossref] [Google Scholar]
  83. 83.
    Ma L, Li Y, Peng J, Wu D, Zhao X, et al. 2015.. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. . Cell Res. 25::2438
    [Crossref] [Google Scholar]
  84. 84.
    Mantel PY, Hoang AN, Goldowitz I, Potashnikova D, Hamza B, et al. 2013.. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. . Cell Host Microbe 13::52134
    [Crossref] [Google Scholar]
  85. 85.
    Marinacci B, Krzyzek P, Pellegrini B, Turacchio G, Grande R. 2023.. Latest update on outer membrane vesicles and their role in horizontal gene transfer: a mini-review. . Membranes 13::860
    [Crossref] [Google Scholar]
  86. 86.
    Mary B, Asokan N, Jerabkova-Roda K, Larnicol A, Busnelli I, et al. 2023.. Blood flow diverts extracellular vesicles from endothelial degradative compartments to promote angiogenesis. . EMBO Rep. 24::e57042
    [Crossref] [Google Scholar]
  87. 87.
    Mateescu B, Kowal EJ, van Balkom BW, Bartel S, Bhattacharyya SN, et al. 2017.. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA—an ISEV position paper. . J. Extracell. Vesicles 6::1286095
    [Crossref] [Google Scholar]
  88. 88.
    Mathieu M, Martin-Jaular L, Lavieu G, Thery C. 2019.. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. . Nat. Cell Biol. 21::917
    [Crossref] [Google Scholar]
  89. 89.
    Matusek T, Wendler F, Poles S, Pizette S, D'Angelo G, et al. 2014.. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. . Nature 516::99103
    [Crossref] [Google Scholar]
  90. 90.
    McMillan HM, Kuehn MJ. 2021.. The extracellular vesicle generation paradox: a bacterial point of view. . EMBO J. 40::e108174
    [Crossref] [Google Scholar]
  91. 91.
    Moller-Tank S, Maury W. 2014.. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. . Virology 468–470::56580
    [Crossref] [Google Scholar]
  92. 92.
    Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, et al. 2012.. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. . Blood 119::75666
    [Crossref] [Google Scholar]
  93. 93.
    Murray LMA, Krasnodembskaya AD. 2019.. Concise review: intercellular communication via organelle transfer in the biology and therapeutic applications of stem cells. . Stem Cells 37::1425
    [Crossref] [Google Scholar]
  94. 94.
    Nabet BY, Qiu Y, Shabason JE, Wu TJ, Yoon T, et al. 2017.. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. . Cell 170::35266.e13
    [Crossref] [Google Scholar]
  95. 95.
    Nolte-’t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, ’t Hoen PA. 2012.. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. . Nucleic Acids Res. 40::927285
    [Crossref] [Google Scholar]
  96. 96.
    Nolte-’t Hoen EN, Buschow SI, Anderton SM, Stoorvogel W, Wauben MHM. 2009.. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. . Blood 113::197781
    [Crossref] [Google Scholar]
  97. 97.
    Noren Hooten N, Yanez-Mo M, DeRita R, Russell A, Quesenberry P, et al. 2020.. Hitting the bullseye: Are extracellular vesicles on target?. J. Extracell. Vesicles 10::e12032
    [Crossref] [Google Scholar]
  98. 98.
    O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. 2020.. RNA delivery by extracellular vesicles in mammalian cells and its applications. . Nat. Rev. Mol. Cell Biol. 21::585606
    [Crossref] [Google Scholar]
  99. 99.
    Ofir-Birin Y, Regev-Rudzki N. 2019.. Extracellular vesicles in parasite survival. . Science 363::81718
    [Crossref] [Google Scholar]
  100. 100.
    Olsen I, Amano A. 2015.. Outer membrane vesicles—offensive weapons or good Samaritans?. J. Oral Microbiol. 7::27468
    [Crossref] [Google Scholar]
  101. 101.
    Orench-Rivera N, Kuehn MJ. 2016.. Environmentally controlled bacterial vesicle-mediated export. . Cell Microbiol. 18::152536
    [Crossref] [Google Scholar]
  102. 102.
    Orench-Rivera N, Kuehn MJ. 2021.. Differential packaging into outer membrane vesicles upon oxidative stress reveals a general mechanism for cargo selectivity. . Front. Microbiol. 12::561863
    [Crossref] [Google Scholar]
  103. 103.
    Palmulli R, Couty M, Piontek MC, Ponnaiah M, Dingli F, et al. 2024.. CD63 sorts cholesterol into endosomes for storage and distribution via exosomes. . Nat. Cell Biol. 26::1093109
    [Crossref] [Google Scholar]
  104. 104.
    Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, et al. 2010.. Functional delivery of viral miRNAs via exosomes. . PNAS 107::632833
    [Crossref] [Google Scholar]
  105. 105.
    Perez GI, Bernard MP, Vocelle D, Zarea AA, Saleh NA, et al. 2023.. Phosphatidylserine-exposing annexin A1-positive extracellular vesicles: potential cancer biomarkers. . Vaccines 11::639
    [Crossref] [Google Scholar]
  106. 106.
    Pilo HBA, Khiji SK, Lühle J, Biskup K, Gal BL, et al. 2022.. Sialylated N-glycans mediate monocyte uptake of extracellular vesicles secreted from Plasmodium falciparum-infected red blood cells. . J. Extracell. Biol. 1::e33. https://doi.org/10.1002/jex2.33
    [Crossref] [Google Scholar]
  107. 107.
    Rakoff-Nahoum S, Coyne MJ, Comstock LE. 2014.. An ecological network of polysaccharide utilization among human intestinal symbionts. . Curr. Biol. 24::4049
    [Crossref] [Google Scholar]
  108. 108.
    Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, et al. 1996.. B lymphocytes secrete antigen-presenting vesicles. . J. Exp. Med. 183::116172
    [Crossref] [Google Scholar]
  109. 109.
    Rappa G, Santos MF, Green TM, Karbanová J, Hassler J, et al. 2017.. Nuclear transport of cancer extracellular vesicle-derived biomaterials through nuclear envelope invagination-associated late endosomes. . Oncotarget 8::144361
    [Crossref] [Google Scholar]
  110. 110.
    Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, et al. 2006.. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. . Leukemia 20::84756
    [Crossref] [Google Scholar]
  111. 111.
    Record M, Carayon K, Poirot M, Silvente-Poirot S. 2014.. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1841::10820
    [Crossref] [Google Scholar]
  112. 112.
    Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, et al. 2013.. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. . Cell 153::112033
    [Crossref] [Google Scholar]
  113. 113.
    Ressel S, Rosca A, Gordon K, Buck AH. 2019.. Extracellular RNA in viral–host interactions: thinking outside the cell. . Wiley Interdiscip. Rev. RNA 10::e1535
    [Crossref] [Google Scholar]
  114. 114.
    Ribeiro CMS, Sarrami-Forooshani R, Setiawan LC, Zijlstra-Willems EM, van Hamme JL, et al. 2016.. Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets. . Nature 540::44852
    [Crossref] [Google Scholar]
  115. 115.
    Ridder K, Keller S, Dams M, Rupp AK, Schlaudraff J, et al. 2014.. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. . PLOS Biol. 12::e1001874
    [Crossref] [Google Scholar]
  116. 116.
    Rilla K. 2021.. Diverse plasma membrane protrusions act as platforms for extracellular vesicle shedding. . J. Extracell. Vesicles 10::e12148
    [Crossref] [Google Scholar]
  117. 117.
    Rizzo J, Rodrigues ML, Janbon G. 2020.. Extracellular vesicles in fungi: past, present, and future perspectives. . Front. Cell Infect. Microbiol. 10::346
    [Crossref] [Google Scholar]
  118. 118.
    Rodriguez BV, Kuehn MJ. 2020.. Staphylococcus aureus secretes immunomodulatory RNA and DNA via membrane vesicles. . Sci. Rep. 10::18293
    [Crossref] [Google Scholar]
  119. 119.
    Ruf A, Oberkofler L, Robatzek S, Weiberg A. 2022.. Spotlight on plant RNA-containing extracellular vesicles. . Curr. Opin. Plant Biol. 69::102272
    [Crossref] [Google Scholar]
  120. 120.
    Rutter BD, Innes RW. 2018.. Extracellular vesicles as key mediators of plant–microbe interactions. . Curr. Opin. Plant Biol. 44::1622
    [Crossref] [Google Scholar]
  121. 121.
    Santos MF, Rappa G, Karbanová J, Diana P, Cirrincione G, et al. 2023.. HIV-1-induced nuclear invaginations mediated by VAP-A, ORP3, and Rab7 complex explain infection of activated T cells. . Nat. Commun. 14::4588
    [Crossref] [Google Scholar]
  122. 122.
    Scheepbouwer C, Aparicio-Puerta E, Gómez-Martin C, van Eijndhoven MAJ, Drees EEE, et al. 2024.. Full-length tRNAs lacking a functional CCA tail are selectively sorted into the lumen of extracellular vesicles. . bioRxiv 2024.05.12.593148. https://doi.org/10.1101/2024.05.12.593148
  123. 123.
    Sidhu VK, Vorholter FJ, Niehaus K, Watt SA. 2008.. Analysis of outer membrane vesicle associated proteins isolated from the plant pathogenic bacterium Xanthomonas campestris pv. campestris. . BMC Microbiol. 8::87
    [Crossref] [Google Scholar]
  124. 124.
    Sieben C, Sezgin E, Eggeling C, Manley S. 2020.. Influenza A viruses use multivalent sialic acid clusters for cell binding and receptor activation. . PLOS Pathog. 16::e1008656
    [Crossref] [Google Scholar]
  125. 125.
    Singh A, Fedele C, Lu H, Nevalainen MT, Keen JH, Languino LR. 2016.. Exosome-mediated transfer of αvβ3 integrin from tumorigenic to nontumorigenic cells promotes a migratory phenotype. . Mol. Cancer Res. 14::113646
    [Crossref] [Google Scholar]
  126. 126.
    Sisquella X, Ofir-Birin Y, Pimentel MA, Cheng L, Abou Karam P, et al. 2017.. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. . Nat. Commun. 8::1985
    [Crossref] [Google Scholar]
  127. 127.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, et al. 2008.. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. . Nat. Cell Biol. 10::147076
    [Crossref] [Google Scholar]
  128. 128.
    Somiya M, Kuroda S. 2021.. Reporter gene assay for membrane fusion of extracellular vesicles. . J. Extracell. Vesicles 10::e12171
    [Crossref] [Google Scholar]
  129. 129.
    Spees JL, Olson SD, Whitney MJ, Prockop DJ. 2006.. Mitochondrial transfer between cells can rescue aerobic respiration. . PNAS 103::128388
    [Crossref] [Google Scholar]
  130. 130.
    Stanton BA. 2021.. Extracellular vesicles and host–pathogen interactions: a review of inter-kingdom signaling by small noncoding RNA. . Genes 12::1010
    [Crossref] [Google Scholar]
  131. 131.
    Stentz R, Osborne S, Horn N, Li AW, Hautefort I, et al. 2014.. A bacterial homolog of a eukaryotic inositol phosphate signaling enzyme mediates cross-kingdom dialog in the mammalian gut. . Cell Rep. 6::64656
    [Crossref] [Google Scholar]
  132. 132.
    Sung BH, Parent CA, Weaver AM. 2021.. Extracellular vesicles: critical players during cell migration. . Dev. Cell 56::186174
    [Crossref] [Google Scholar]
  133. 133.
    Szklarczyk OM, Gonzalez-Segredo N, Kukura P, Oppenheim A, Choquet D, et al. 2013.. Receptor concentration and diffusivity control multivalent binding of Sv40 to membrane bilayers. . PLOS Comput. Biol. 9::e1003310
    [Crossref] [Google Scholar]
  134. 134.
    Thackray AM, Andreoletti O, Spiropoulos J, Bujdoso R. 2021.. A new model for sensitive detection of zoonotic prions by PrP transgenic Drosophila. . J. Biol. Chem. 297::100878
    [Crossref] [Google Scholar]
  135. 135.
    Tkach M, Thery C. 2016.. Communication by extracellular vesicles: where we are and where we need to go. . Cell 164::122632
    [Crossref] [Google Scholar]
  136. 136.
    Torres AG, Marti E. 2021.. Toward an understanding of extracellular tRNA biology. . Front. Mol. Biosci. 8::662620
    [Crossref] [Google Scholar]
  137. 137.
    Toyofuku M, Schild S, Kaparakis-Liaskos M, Eberl L. 2023.. Composition and functions of bacterial membrane vesicles. . Nat. Rev. Microbiol. 21::41530
    [Crossref] [Google Scholar]
  138. 138.
    Vabret N, Najburg V, Solovyov A, Gopal R, McClain C, et al. 2022.. Y RNAs are conserved endogenous RIG-I ligands across RNA virus infection and are targeted by HIV-1. . iScience 25::104599
    [Crossref] [Google Scholar]
  139. 139.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. 2007.. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. . Nat. Cell Biol. 9::65459
    [Crossref] [Google Scholar]
  140. 140.
    van Niel G, D'Angelo G, Raposo G. 2018.. Shedding light on the cell biology of extracellular vesicles. . Nat. Rev. Mol. Cell Biol. 19::21328
    [Crossref] [Google Scholar]
  141. 141.
    Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M, et al. 2016.. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. . Cell 165::110619
    [Crossref] [Google Scholar]
  142. 142.
    Verweij FJ, Bebelman MP, George AE, Couty M, Becot A, et al. 2022.. ER membrane contact sites support endosomal small GTPase conversion for exosome secretion. . J. Cell Biol. 221::e202112032
    [Crossref] [Google Scholar]
  143. 143.
    Verweij FJ, Revenu C, Arras G, Dingli F, Loew D, et al. 2019.. Live tracking of inter-organ communication by endogenous exosomes in vivo. . Dev. Cell 48::57389.e4
    [Crossref] [Google Scholar]
  144. 144.
    Vidakovics ML, Jendholm J, Morgelin M, Mansson A, Larsson C, et al. 2010.. B cell activation by outer membrane vesicles—a novel virulence mechanism. . PLOS Pathog. 6::e1000724
    [Crossref] [Google Scholar]
  145. 145.
    Wang J, Barr MM, Wehman AM. 2024.. Extracellular vesicles. . Genetics 17::iyae088
    [Crossref] [Google Scholar]
  146. 146.
    Wang J, Ding Y, Wang J, Hillmer S, Miao Y, et al. 2010.. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. . Plant Cell 22::400930
    [Crossref] [Google Scholar]
  147. 147.
    Wang J, Silva M, Haas LA, Morsci NS, Nguyen KC, et al. 2014.. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. . Curr. Biol. 24::51925
    [Crossref] [Google Scholar]
  148. 148.
    Wang S, He B, Wu H, Cai Q, Ramirez-Sanchez O, et al. 2024.. Plant mRNAs move into a fungal pathogen via extracellular vesicles to reduce infection. . Cell Host Microbe 32::93105.e6
    [Crossref] [Google Scholar]
  149. 149.
    Wei Z, Batagov AO, Schinelli S, Wang J, Wang Y, et al. 2017.. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. . Nat. Commun. 8::1145
    [Crossref] [Google Scholar]
  150. 150.
    White R, Sotillo J, Ancarola ME, Borup A, Boysen AT, et al. 2023.. Special considerations for studies of extracellular vesicles from parasitic helminths: a community-led roadmap to increase rigour and reproducibility. . J. Extracell. Vesicles 12::e12298
    [Crossref] [Google Scholar]
  151. 151.
    Yoo S, Choi S, Kim I, Kim IS. 2023.. Hypoxic regulation of extracellular vesicles: implications for cancer therapy. . J. Control. Release 363::20120
    [Crossref] [Google Scholar]
  152. 152.
    Zarnowski R, Sanchez H, Covelli AS, Dominguez E, Jaromin A, et al. 2018.. Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. . PLOS Biol. 16::e2006872
    [Crossref] [Google Scholar]
  153. 153.
    Zhang DX, Vu LT, Ismail NN, Le MTN, Grimson A. 2021.. Landscape of extracellular vesicles in the tumour microenvironment: interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. . Semin. Cancer Biol. 74::2444
    [Crossref] [Google Scholar]
  154. 154.
    Zhang W, Zhong W, Wang B, Yang J, Yang J, et al. 2022.. ICAM-1-mediated adhesion is a prerequisite for exosome-induced T cell suppression. . Dev. Cell 57::32943.e7
    [Crossref] [Google Scholar]
  155. 155.
    Zomer A, Maynard C, Verweij FJ, Kamermans A, Schafer R, et al. 2015.. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. . Cell 161::104657
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102725
Loading
/content/journals/10.1146/annurev-genet-111523-102725
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error