1932

Abstract

The COVID-19 pandemic was caused by the recently emerged β-coronavirus SARS-CoV-2. SARS-CoV-2 has had a catastrophic impact, resulting in nearly 7 million fatalities worldwide to date. The innate immune system is the first line of defense against infections, including the detection and response to SARS-CoV-2. Here, we discuss the innate immune mechanisms that sense coronaviruses, with a focus on SARS-CoV-2 infection and how these protective responses can become detrimental in severe cases of COVID-19, contributing to cytokine storm, inflammation, long-COVID, and other complications. We also highlight the complex cross talk among cytokines and the cellular components of the innate immune system, which can aid in viral clearance but also contribute to inflammatory cell death, cytokine storm, and organ damage in severe COVID-19 pathogenesis. Furthermore, we discuss how SARS-CoV-2 evades key protective innate immune mechanisms to enhance its virulence and pathogenicity, as well as how innate immunity can be therapeutically targeted as part of the vaccination and treatment strategy. Overall, we highlight how a comprehensive understanding of innate immune mechanisms has been crucial in the fight against SARS-CoV-2 infections and the development of novel host-directed immunotherapeutic strategies for various diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-083122-043545
2024-06-28
2024-06-30
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-083122-043545.html?itemId=/content/journals/10.1146/annurev-immunol-083122-043545&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kronvall G, Nordenfelt E. 2021.. On the history of human coronaviruses. . APMIS 129::38183
    [Crossref] [Google Scholar]
  2. 2.
    Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, et al. 2003.. Coronavirus as a possible cause of severe acute respiratory syndrome. . Lancet 361::131925
    [Crossref] [Google Scholar]
  3. 3.
    Memish ZA, Perlman S, Van Kerkhove MD, Zumla A. 2020.. Middle East respiratory syndrome. . Lancet 395::106377
    [Crossref] [Google Scholar]
  4. 4.
    Fung TS, Liu DX. 2021.. Similarities and dissimilarities of COVID-19 and other coronavirus diseases. . Annu. Rev. Microbiol. 75::1947
    [Crossref] [Google Scholar]
  5. 5.
    Huang C, Wang Y, Li X, Ren L, Zhao J, et al. 2020.. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. . Lancet 395::497506
    [Crossref] [Google Scholar]
  6. 6.
    Tan W, Zhao X, Ma X, Wang W, Niu P, et al. 2020.. A novel coronavirus genome identified in a cluster of pneumonia cases – Wuhan, China 2019–2020. . China CDC Wkly. 2::6162
    [Crossref] [Google Scholar]
  7. 7.
    Zhou P, Yang XL, Wang XG, Hu B, Zhang L, et al. 2020.. A pneumonia outbreak associated with a new coronavirus of probable bat origin. . Nature 579::27073
    [Crossref] [Google Scholar]
  8. 8.
    Cucinotta D, Vanelli M. 2020.. WHO declares COVID-19 a pandemic. . Acta Biomed. 91::15760
    [Google Scholar]
  9. 9.
    Dong E, Du H, Gardner L. 2020.. An interactive web-based dashboard to track COVID-19 in real time. . Lancet Infect. Dis. 20::53334
    [Crossref] [Google Scholar]
  10. 10.
    Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, et al. 2020.. An inflammatory cytokine signature predicts COVID-19 severity and survival. . Nat. Med. 26::163643
    [Crossref] [Google Scholar]
  11. 11.
    Karki R, Kanneganti T-D. 2021.. The ‘cytokine storm’: molecular mechanisms and therapeutic prospects. . Trends Immunol. 42::681705
    [Crossref] [Google Scholar]
  12. 12.
    Bai C, Zhong Q, Gao GF. 2022.. Overview of SARS-CoV-2 genome-encoded proteins. . Sci. China Life Sci. 65::28094
    [Crossref] [Google Scholar]
  13. 13.
    Lu R, Zhao X, Li J, Niu P, Yang B, et al. 2020.. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. . Lancet 395::56574
    [Crossref] [Google Scholar]
  14. 14.
    Wu F, Zhao S, Yu B, Chen YM, Wang W, et al. 2020.. A new coronavirus associated with human respiratory disease in China. . Nature 579::26569
    [Crossref] [Google Scholar]
  15. 15.
    Li Q, Wu J, Nie J, Zhang L, Hao H, et al. 2020.. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. . Cell 182::128494.e9
    [Crossref] [Google Scholar]
  16. 16.
    Shang J, Wan Y, Luo C, Ye G, Geng Q, et al. 2020.. Cell entry mechanisms of SARS-CoV-2. . PNAS 117::1172734
    [Crossref] [Google Scholar]
  17. 17.
    Diamond MS, Kanneganti T-D. 2022.. Innate immunity: the first line of defense against SARS-CoV-2. . Nat. Immunol. 23::16576
    [Crossref] [Google Scholar]
  18. 18.
    Karki R, Kanneganti T-D. 2022.. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. . J. Transl. Med. 20::542
    [Crossref] [Google Scholar]
  19. 19.
    Haring J, Perlman S. 2001.. Mouse hepatitis virus. . Curr. Opin. Microbiol. 4::46266
    [Crossref] [Google Scholar]
  20. 20.
    Lee S, Channappanavar R, Kanneganti T-D. 2020.. Coronaviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. . Trends Immunol. 41::108399
    [Crossref] [Google Scholar]
  21. 21.
    Karki R, Lee S, Mall R, Pandian N, Wang Y, et al. 2022.. ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. . Sci. Immunol. 7::eabo6294
    [Crossref] [Google Scholar]
  22. 22.
    Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, et al. 2021.. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. . Cell 184::14968.e17
    [Crossref] [Google Scholar]
  23. 23.
    Akira S, Takeda K. 2004.. Toll-like receptor signalling. . Nat. Rev. Immunol. 4::499511
    [Crossref] [Google Scholar]
  24. 24.
    Uematsu S, Akira S. 2007.. Toll-like receptor and innate immunity. . Seikagaku 79::76976
    [Google Scholar]
  25. 25.
    Planès R, Bert JB, Tairi S, BenMohamed L, Bahraoui E. 2022.. SARS-CoV-2 envelope (E) protein binds and activates TLR2 pathway: a novel molecular target for COVID-19 interventions. . Viruses 14::999
    [Crossref] [Google Scholar]
  26. 26.
    Zheng M, Karki R, Williams EP, Yang D, Fitzpatrick E, et al. 2021.. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. . Nat. Immunol. 22::82938
    [Crossref] [Google Scholar]
  27. 27.
    Sung PS, Yang SP, Peng YC, Sun CP, Tao MH, Hsieh SL. 2022.. CLEC5A and TLR2 are critical in SARS-CoV-2-induced NET formation and lung inflammation. . J. Biomed. Sci. 29::52
    [Crossref] [Google Scholar]
  28. 28.
    Su W, Ju J, Gu M, Wang X, Liu S, et al. 2023.. SARS-CoV-2 envelope protein triggers depression-like behaviors and dysosmia via TLR2-mediated neuroinflammation in mice. . J. Neuroinflamm. 20::110
    [Crossref] [Google Scholar]
  29. 29.
    Khan S, Shafiei MS, Longoria C, Schoggins JW, Savani RC, Zaki H. 2021.. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. . eLife 10::e68563
    [Crossref] [Google Scholar]
  30. 30.
    Zhao Y, Kuang M, Li J, Zhu L, Jia Z, et al. 2021.. SARS-CoV-2 spike protein interacts with and activates TLR4. . Cell Res. 31::81820
    [Crossref] [Google Scholar]
  31. 31.
    Petruk G, Puthia M, Petrlova J, Samsudin F, Stromdahl AC, et al. 2020.. SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. . J. Mol. Cell Biol. 12::91632
    [Crossref] [Google Scholar]
  32. 32.
    Fontes-Dantas FL, Fernandes GG, Gutman EG, De Lima EV, Antonio LS, et al. 2023.. SARS-CoV-2 Spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice. . Cell Rep. 42::112189
    [Crossref] [Google Scholar]
  33. 33.
    Totura AL, Whitmore A, Agnihothram S, Schafer A, Katze MG, et al. 2015.. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. . mBio 6::e00638-15
    [Google Scholar]
  34. 34.
    Tamir H, Melamed S, Erez N, Politi B, Yahalom-Ronen Y, et al. 2022.. Induction of innate immune response by TLR3 agonist protects mice against SARS-CoV-2 infection. . Viruses 14::189
    [Crossref] [Google Scholar]
  35. 35.
    Menezes MCS, Veiga ADM, Martins de Lima T, Kunimi Kubo Ariga S, Vieira Barbeiro H, et al. 2021.. Lower peripheral blood Toll-like receptor 3 expression is associated with an unfavorable outcome in severe COVID-19 patients. . Sci. Rep. 11::15223
    [Crossref] [Google Scholar]
  36. 36.
    Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, et al. 2020.. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. . Science 370::eabd4570
    [Crossref] [Google Scholar]
  37. 37.
    Farkas D, Bogamuwa S, Piper B, Newcomb G, Gunturu P, et al. 2023.. A role for Toll-like receptor 3 in lung vascular remodeling associated with SARS-CoV-2 infection. . bioRxiv 2023.01.25.524586. https://doi.org/10.1101/2023.01.25.524586
  38. 38.
    Bortolotti D, Gentili V, Rizzo S, Schiuma G, Beltrami S, et al. 2021.. TLR3 and TLR7 RNA sensor activation during SARS-CoV-2 infection. . Microorganisms 9::1820
    [Crossref] [Google Scholar]
  39. 39.
    van der Sluis RM, Cham LB, Gris-Oliver A, Gammelgaard KR, Pedersen JG, et al. 2022.. TLR2 and TLR7 mediate distinct immunopathological and antiviral plasmacytoid dendritic cell responses to SARS-CoV-2 infection. . EMBO J. 41::e109622
    [Crossref] [Google Scholar]
  40. 40.
    Moreno-Eutimio MA, Lopez-Macias C, Pastelin-Palacios R. 2020.. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. . Microbes Infect. 22::22629
    [Crossref] [Google Scholar]
  41. 41.
    Amezcua-Guerra LM, Rojas-Velasco G, Brianza-Padilla M, Vázquez-Rangel A, Márquez-Velasco R, et al. 2021.. Presence of antiphospholipid antibodies in COVID-19: a case series study. . Ann. Rheum. Dis. 80::e73
    [Crossref] [Google Scholar]
  42. 42.
    Abolhassani H, Landegren N, Bastard P, Materna M, Modaresi M, et al. 2022.. Inherited IFNAR1 deficiency in a child with both critical COVID-19 pneumonia and multisystem inflammatory syndrome. . J. Clin. Immunol. 42::47183
    [Crossref] [Google Scholar]
  43. 43.
    Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, et al. 2021.. X-linked recessive TLR7 deficiency in ∼1% of men under 60 years old with life-threatening COVID-19. . Sci. Immunol. 6::eabl4348
    [Crossref] [Google Scholar]
  44. 44.
    Campbell TM, Liu Z, Zhang Q, Moncada-Velez M, Covill LE, et al. 2022.. Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. . J. Exp. Med. 219::e20220202
    [Crossref] [Google Scholar]
  45. 45.
    Khanmohammadi S, Rezaei N, Khazaei M, Shirkani A. 2022.. A case of autosomal recessive interferon alpha/beta receptor alpha chain (IFNAR1) deficiency with severe COVID-19. . J. Clin. Immunol. 42::1924
    [Crossref] [Google Scholar]
  46. 46.
    Zhang Q, Matuozzo D, Le Pen J, Lee D, Moens L, et al. 2022.. Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. . J. Exp. Med. 219::e20220131
    [Crossref] [Google Scholar]
  47. 47.
    Loo YM, Gale M Jr. 2011.. Immune signaling by RIG-I-like receptors. . Immunity 34::68092
    [Crossref] [Google Scholar]
  48. 48.
    Rehwinkel J, Gack MU. 2020.. RIG-I-like receptors: their regulation and roles in RNA sensing. . Nat. Rev. Immunol. 20::53751
    [Crossref] [Google Scholar]
  49. 49.
    Yin X, Riva L, Pu Y, Martin-Sancho L, Kanamune J, et al. 2021.. MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells. . Cell Rep. 34::108628
    [Crossref] [Google Scholar]
  50. 50.
    Yang D, Geng T, Harrison AG, Wang P. 2021.. Differential roles of RIG-I-like receptors in SARS-CoV-2 infection. . Mil. Med. Res. 8::49
    [Google Scholar]
  51. 51.
    Thorne LG, Reuschl AK, Zuliani-Alvarez L, Whelan MVX, Turner J, et al. 2021.. SARS-CoV-2 sensing by RIG-I and MDA5 links epithelial infection to macrophage inflammation. . EMBO J. 40::e107826
    [Crossref] [Google Scholar]
  52. 52.
    Kouwaki T, Nishimura T, Wang G, Oshiumi H. 2021.. RIG-I-like receptor-mediated recognition of viral genomic RNA of severe acute respiratory syndrome coronavirus-2 and viral escape from the host innate immune responses. . Front. Immunol. 12::700926
    [Crossref] [Google Scholar]
  53. 53.
    Yamada T, Sato S, Sotoyama Y, Orba Y, Sawa H, et al. 2021.. RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells. . Nat. Immunol. 22::82028
    [Crossref] [Google Scholar]
  54. 54.
    Loske J, Rohmel J, Lukassen S, Stricker S, Magalhaes VG, et al. 2022.. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. . Nat. Biotechnol. 40::31924
    [Crossref] [Google Scholar]
  55. 55.
    O'Neill LAJ, Netea MG. 2020.. BCG-induced trained immunity: Can it offer protection against COVID-19?. Nat. Rev. Immunol. 20::33537
    [Crossref] [Google Scholar]
  56. 56.
    Sharma BR, Kanneganti T-D. 2021.. NLRP3 inflammasome in cancer and metabolic diseases. . Nat. Immunol. 22::55059
    [Crossref] [Google Scholar]
  57. 57.
    Pan P, Shen M, Yu Z, Ge W, Chen K, et al. 2021.. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. . Nat. Commun. 12::4664
    [Crossref] [Google Scholar]
  58. 58.
    Eltobgy MM, Zani A, Kenney AD, Estfanous S, Kim E, et al. 2022.. Caspase-4/11 exacerbates disease severity in SARS-CoV-2 infection by promoting inflammation and immunothrombosis. . PNAS 119::e2202012119
    [Crossref] [Google Scholar]
  59. 59.
    Rodrigues TS, de Sá KSG, Ishimoto AY, Becerra A, Oliveira S, et al. 2021.. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. . J. Exp. Med. 218::e20201707
    [Crossref] [Google Scholar]
  60. 60.
    Ferreira AC, Soares VC, de Azevedo-Quintanilha IG, Dias S, Fintelman-Rodrigues N, et al. 2021.. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. . Cell Death Discov. 7::43
    [Crossref] [Google Scholar]
  61. 61.
    Zheng M, Williams EP, Malireddi RKS, Karki R, Banoth B, et al. 2020.. Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection. . J. Biol. Chem. 295::1404052
    [Crossref] [Google Scholar]
  62. 62.
    Planès R, Pinilla M, Santoni K, Hessel A, Passemar C, et al. 2022.. Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells. . Mol. Cell 82::2385400.e9
    [Crossref] [Google Scholar]
  63. 63.
    Junqueira C, Crespo A, Ranjbar S, de Lacerda LB, Lewandrowski M, et al. 2022.. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. . Nature 606::57684
    [Crossref] [Google Scholar]
  64. 64.
    Schifanella L, Anderson J, Wieking G, Southern PJ, Antinori S, et al. 2023.. The defenders of the alveolus succumb in COVID-19 pneumonia to SARS-CoV-2 and necroptosis, pyroptosis, and PANoptosis. . J. Infect. Dis. 227::124554
    [Crossref] [Google Scholar]
  65. 65.
    Zeng J, Xie X, Feng XL, Xu L, Han JB, et al. 2022.. Specific inhibition of the NLRP3 inflammasome suppresses immune overactivation and alleviates COVID-19 like pathology in mice. . EBioMedicine 75::103803
    [Crossref] [Google Scholar]
  66. 66.
    Albornoz EA, Amarilla AA, Modhiran N, Parker S, Li XX, et al. 2022.. SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. . Mol. Psychiatry 28::287893
    [Crossref] [Google Scholar]
  67. 67.
    Akpinar S, Oran M, Dogan M, Celikkol A, Erdem I, Turgut B. 2021.. The role of oxidized phospholipids in COVID-19-associated hypercoagulopathy. . Eur. Rev. Med. Pharmacol. Sci. 25::53049
    [Google Scholar]
  68. 68.
    Ahn M, Chen VC, Rozario P, Ng WL, Kong PS, et al. 2023.. Bat ASC2 suppresses inflammasomes and ameliorates inflammatory diseases. . Cell 186::214459.e22
    [Crossref] [Google Scholar]
  69. 69.
    Zhang L, Zhang Y, Wang R, Liu X, Zhao J, et al. 2022.. SARS-CoV-2 infection of intestinal epithelia cells sensed by RIG-I and DHX-15 evokes innate immune response and immune cross-talk. . Front. Cell. Infect. Microbiol. 12::1035711
    [Crossref] [Google Scholar]
  70. 70.
    Chen YM, Zheng Y, Yu Y, Wang Y, Huang Q, et al. 2020.. Blood molecular markers associated with COVID-19 immunopathology and multi-organ damage. . EMBO J. 39::e105896
    [Crossref] [Google Scholar]
  71. 71.
    Decout A, Katz JD, Venkatraman S, Ablasser A. 2021.. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. . Nat. Rev. Immunol. 21::54869
    [Crossref] [Google Scholar]
  72. 72.
    Zhou Z, Zhang X, Lei X, Xiao X, Jiao T, et al. 2021.. Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection. . Signal Transduct. Target Ther. 6::382
    [Crossref] [Google Scholar]
  73. 73.
    Liu X, Wei L, Xu F, Zhao F, Huang Y, et al. 2022.. SARS-CoV-2 spike protein-induced cell fusion activates the cGAS-STING pathway and the interferon response. . Sci. Signal. 15::eabg8744
    [Crossref] [Google Scholar]
  74. 74.
    Humphries F, Shmuel-Galia L, Jiang Z, Wilson R, Landis P, et al. 2021.. A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection. . Sci. Immunol. 6::eabi9002
    [Crossref] [Google Scholar]
  75. 75.
    Li M, Ferretti M, Ying B, Descamps H, Lee E, et al. 2021.. Pharmacological activation of STING blocks SARS-CoV-2 infection. . Sci. Immunol. 6::eabi9007
    [Crossref] [Google Scholar]
  76. 76.
    Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, et al. 2014.. Activated STING in a vascular and pulmonary syndrome. . N. Engl. J. Med. 371::50718
    [Crossref] [Google Scholar]
  77. 77.
    Domizio JD, Gulen MF, Saidoune F, Thacker VV, Yatim A, et al. 2022.. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. . Nature 603::14551
    [Crossref] [Google Scholar]
  78. 78.
    Neufeldt CJ, Cerikan B, Cortese M, Frankish J, Lee JY, et al. 2022.. SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB. . Commun. Biol. 5::45
    [Crossref] [Google Scholar]
  79. 79.
    Brown GD, Willment JA, Whitehead L. 2018.. C-type lectins in immunity and homeostasis. . Nat. Rev. Immunol. 18::37489
    [Crossref] [Google Scholar]
  80. 80.
    Lu Q, Liu J, Zhao S, Gomez Castro MF, Laurent-Rolle M, et al. 2021.. SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. . Immunity 54::130419.e9
    [Crossref] [Google Scholar]
  81. 81.
    Katz DH, Tahir UA, Ngo D, Benson MD, Bick AG, et al. 2020.. Proteomic profiling in biracial cohorts implicates DC-SIGN as a mediator of genetic risk in COVID-19. . medRxiv 2020.06.09.20125690. https://doi.org/10.1101/2020.06.09.20125690
  82. 82.
    Thepaut M, Luczkowiak J, Vives C, Labiod N, Bally I, et al. 2021.. DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist. . PLOS Pathog. 17::e1009576
    [Crossref] [Google Scholar]
  83. 83.
    Lempp FA, Soriaga LB, Montiel-Ruiz M, Benigni F, Noack J, et al. 2021.. Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. . Nature 598::34247
    [Crossref] [Google Scholar]
  84. 84.
    Strich JR, Ramos-Benitez MJ, Randazzo D, Stein SR, Babyak A, et al. 2021.. Fostamatinib inhibits neutrophils extracellular traps induced by COVID-19 patient plasma: a potential therapeutic. . J. Infect. Dis. 223::98184
    [Crossref] [Google Scholar]
  85. 85.
    Strich JR, Tian M, Samour CS, King O, Shlobin R, et al. 2021.. Fostamatinib for the treatment of hospitalized adults with COVD-19: a randomized trial. . Clin. Infect. Dis. 75::e49198
    [Crossref] [Google Scholar]
  86. 86.
    Wigerblad G, Warner SA, Ramos-Benitez MJ, Kardava L, Tian X, et al. 2023.. Spleen tyrosine kinase inhibition restores myeloid homeostasis in COVID-19. . Sci. Adv. 9::eade8272
    [Crossref] [Google Scholar]
  87. 87.
    Arunachalam PS, Wimmers F, Mok CKP, Perera R, Scott M, et al. 2020.. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. . Science 369::121020
    [Crossref] [Google Scholar]
  88. 88.
    Chang T, Yang J, Deng H, Chen D, Yang X, Tang ZH. 2022.. Depletion and dysfunction of dendritic cells: understanding SARS-CoV-2 infection. . Front. Immunol. 13::843342
    [Crossref] [Google Scholar]
  89. 89.
    Chen Z, Wherry EJ. 2020.. T cell responses in patients with COVID-19. . Nat. Rev. Immunol. 20::52936
    [Crossref] [Google Scholar]
  90. 90.
    Sette A, Crotty S. 2021.. Adaptive immunity to SARS-CoV-2 and COVID-19. . Cell 184::86180
    [Crossref] [Google Scholar]
  91. 91.
    Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, et al. 2020.. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. . Science 369::eabc8511
    [Crossref] [Google Scholar]
  92. 92.
    Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martinez-Colon GJ, et al. 2020.. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. . Nat. Med. 26::107076
    [Crossref] [Google Scholar]
  93. 93.
    Lourda M, Dzidic M, Hertwig L, Bergsten H, Palma Medina LM, et al. 2021.. High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of granulocytes in COVID-19. . PNAS 118::e2109123118
    [Crossref] [Google Scholar]
  94. 94.
    Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, et al. 2020.. COVID-19: consider cytokine storm syndromes and immunosuppression. . Lancet 395::103334
    [Crossref] [Google Scholar]
  95. 95.
    Zhou F, Yu T, Du R, Fan G, Liu Y, et al. 2020.. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. . Lancet 395::105462
    [Crossref] [Google Scholar]
  96. 96.
    Melms JC, Biermann J, Huang H, Wang Y, Nair A, et al. 2021.. A molecular single-cell lung atlas of lethal COVID-19. . Nature 595::11419
    [Crossref] [Google Scholar]
  97. 97.
    Pairo-Castineira E, Rawlik K, Bretherick AD, Qi T, Wu Y, et al. 2023.. GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19. . Nature 617::76468
    [Crossref] [Google Scholar]
  98. 98.
    Liao M, Liu Y, Yuan J, Wen Y, Xu G, et al. 2020.. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. . Nat. Med. 26::84244
    [Crossref] [Google Scholar]
  99. 99.
    Wauters E, Van Mol P, Garg AD, Jansen S, Van Herck Y, et al. 2021.. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. . Cell Res. 31::27290
    [Crossref] [Google Scholar]
  100. 100.
    Dalskov L, Mohlenberg M, Thyrsted J, Blay-Cadanet J, Poulsen ET, et al. 2020.. SARS-CoV-2 evades immune detection in alveolar macrophages. . EMBO Rep. 21::e51252
    [Crossref] [Google Scholar]
  101. 101.
    Ren X, Wen W, Fan X, Hou W, Su B, et al. 2021.. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. . Cell 184::1895913.e19
    [Crossref] [Google Scholar]
  102. 102.
    Zhang F, Mears JR, Shakib L, Beynor JI, Shanaj S, et al. 2021.. IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. . Genome Med. 13::64
    [Crossref] [Google Scholar]
  103. 103.
    Schulte-Schrepping J, Reusch N, Paclik D, Bassler K, Schlickeiser S, et al. 2020.. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. . Cell 182::141940.e23
    [Crossref] [Google Scholar]
  104. 104.
    Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, et al. 2020.. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. . Cell Host Microbe 27::9921000.e3
    [Crossref] [Google Scholar]
  105. 105.
    Silvin A, Chapuis N, Dunsmore G, Goubet AG, Dubuisson A, et al. 2020.. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. . Cell 182::140118.e18
    [Crossref] [Google Scholar]
  106. 106.
    Spinetti T, Hirzel C, Fux M, Walti LN, Schober P, et al. 2020.. Reduced monocytic human leukocyte antigen-DR expression indicates immunosuppression in critically ill COVID-19 patients. . Anesth. Analg. 131::99399
    [Crossref] [Google Scholar]
  107. 107.
    Johansson C, Kirsebom FCM. 2021.. Neutrophils in respiratory viral infections. . Mucosal Immunol. 14::81527
    [Crossref] [Google Scholar]
  108. 108.
    Borges L, Pithon-Curi TC, Curi R, Hatanaka E. 2020.. COVID-19 and neutrophils: the relationship between hyperinflammation and neutrophil extracellular traps. . Mediat. Inflamm. 2020::8829674
    [Crossref] [Google Scholar]
  109. 109.
    Hariri L, Hardin CC. 2020.. Covid-19, angiogenesis, and ARDS endotypes. . N. Engl. J. Med. 383::18283
    [Crossref] [Google Scholar]
  110. 110.
    Liu J, Liu Y, Xiang P, Pu L, Xiong H, et al. 2020.. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. . J. Transl. Med. 18::206
    [Crossref] [Google Scholar]
  111. 111.
    Veras FP, Pontelli MC, Silva CM, Toller-Kawahisa JE, de Lima M, et al. 2020.. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. . J. Exp. Med. 217::e20201129
    [Crossref] [Google Scholar]
  112. 112.
    Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, et al. 2020.. Neutrophil extracellular traps in COVID-19. . JCI Insight 5::e138999
    [Google Scholar]
  113. 113.
    Middleton EA, He XY, Denorme F, Campbell RA, Ng D, et al. 2020.. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. . Blood 136::116979
    [Crossref] [Google Scholar]
  114. 114.
    Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, et al. 2022.. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. . Nat. Med. 28::20111
    [Crossref] [Google Scholar]
  115. 115.
    Margaroli C, Fram T, Sharma NS, Patel SB, Tipper J, et al. 2023.. Interferon-dependent signaling is critical for viral clearance in airway neutrophils. . JCI Insight 8::e167042
    [Crossref] [Google Scholar]
  116. 116.
    Murdaca G, Di Gioacchino M, Greco M, Borro M, Paladin F, et al. 2021.. Basophils and mast cells in COVID-19 pathogenesis. . Cells 10::2754
    [Crossref] [Google Scholar]
  117. 117.
    Flores-Torres AS, Salinas-Carmona MC, Salinas E, Rosas-Taraco AG. 2019.. Eosinophils and respiratory viruses. . Viral Immunol. 32::198207
    [Crossref] [Google Scholar]
  118. 118.
    Kim DM, Kim Y, Seo JW, Lee J, Park U, et al. 2021.. Enhanced eosinophil-mediated inflammation associated with antibody and complement-dependent pneumonic insults in critical COVID-19. . Cell Rep. 37::109798
    [Crossref] [Google Scholar]
  119. 119.
    Cazzaniga M, Fumagalli LAM, D'Angelo L, Cerino M, Bonfanti G, et al. 2021.. Eosinopenia is a reliable marker of severe disease and unfavourable outcome in patients with COVID-19 pneumonia. . Int. J. Clin. Pract. 75::e14047
    [Crossref] [Google Scholar]
  120. 120.
    Rodriguez L, Pekkarinen PT, Lakshmikanth T, Tan Z, Consiglio CR, et al. 2020.. Systems-level immunomonitoring from acute to recovery phase of severe COVID-19. . Cell Rep. Med. 1::100078
    [Crossref] [Google Scholar]
  121. 121.
    Silverstein NJ, Wang Y, Manickas-Hill Z, Carbone C, Dauphin A, et al. 2022.. Innate lymphoid cells and COVID-19 severity in SARS-CoV-2 infection. . eLife 11::e74681
    [Crossref] [Google Scholar]
  122. 122.
    Lee J, Kim H, Kim M, Yoon S, Lee S. 2023.. Role of lymphoid lineage cells aberrantly expressing alarmins S100A8/A9 in determining the severity of COVID-19. . Genes Genom. 45::33746
    [Crossref] [Google Scholar]
  123. 123.
    Diaz-Salazar C, Sun JC. 2020.. Natural killer cell responses to emerging viruses of zoonotic origin. . Curr. Opin. Virol. 44::97111
    [Crossref] [Google Scholar]
  124. 124.
    Schultze JL, Aschenbrenner AC. 2021.. COVID-19 and the human innate immune system. . Cell 184::167192
    [Crossref] [Google Scholar]
  125. 125.
    Malireddi RK, Kanneganti T-D. 2013.. Role of type I interferons in inflammasome activation, cell death, and disease during microbial infection. . Front. Cell. Infect. Microbiol. 3::77
    [Crossref] [Google Scholar]
  126. 126.
    Pestka S, Krause CD, Walter MR. 2004.. Interferons, interferon-like cytokines, and their receptors. . Immunol. Rev. 202::832
    [Crossref] [Google Scholar]
  127. 127.
    Busnadiego I, Fernbach S, Pohl MO, Karakus U, Huber M, et al. 2020.. Antiviral activity of type I, II, and III interferons counterbalances ACE2 inducibility and restricts SARS-CoV-2. . mBio 11::e01928-20
    [Crossref] [Google Scholar]
  128. 128.
    Felgenhauer U, Schoen A, Gad HH, Hartmann R, Schaubmar AR, et al. 2020.. Inhibition of SARS-CoV-2 by type I and type III interferons. . J. Biol. Chem. 295::1395864
    [Crossref] [Google Scholar]
  129. 129.
    Vanderheiden A, Ralfs P, Chirkova T, Upadhyay AA, Zimmerman MG, et al. 2020.. Type I and type III interferons restrict SARS-CoV-2 infection of human airway epithelial cultures. . J. Virol. 94::e00985-20
    [Crossref] [Google Scholar]
  130. 130.
    Stanifer ML, Kee C, Cortese M, Zumaran CM, Triana S, et al. 2020.. Critical role of type III interferon in controlling SARS-CoV-2 infection in human intestinal epithelial cells. . Cell Rep. 32::107863
    [Crossref] [Google Scholar]
  131. 131.
    Gulluev M, Yucel A, Kahraman ME, Bor MA. 2021.. Measurement of some serum cytokines in nasal polyp and evaluation of its correlation with disease severity. . Eur. Arch. Otorhinolaryngol. 278::334549
    [Crossref] [Google Scholar]
  132. 132.
    Lei X, Dong X, Ma R, Wang W, Xiao X, et al. 2020.. Activation and evasion of type I interferon responses by SARS-CoV-2. . Nat. Commun. 11::3810
    [Crossref] [Google Scholar]
  133. 133.
    Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, et al. 2021.. Autoantibodies neutralizing type I IFNs are present in ∼4% of uninfected individuals over 70 years old and account for ∼20% of COVID-19 deaths. . Sci. Immunol. 6::eabl4340
    [Crossref] [Google Scholar]
  134. 134.
    Bastard P, Orlova E, Sozaeva L, Levy R, James A, et al. 2021.. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. . J. Exp. Med. 218::e20210554
    [Crossref] [Google Scholar]
  135. 135.
    Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, et al. 2020.. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. . Science 370::eabd4585
    [Crossref] [Google Scholar]
  136. 136.
    Metz-Zumaran C, Kee C, Doldan P, Guo C, Stanifer ML, Boulant S. 2022.. Increased sensitivity of SARS-CoV-2 to type III interferon in human intestinal epithelial cells. . J. Virol. 96::e0170521
    [Crossref] [Google Scholar]
  137. 137.
    Sohn SY, Hearing J, Mugavero J, Kirillov V, Gorbunova E, et al. 2021.. Interferon-lambda intranasal protection and differential sex pathology in a murine model of SARS-CoV-2 infection. . mBio 12::e0275621
    [Crossref] [Google Scholar]
  138. 138.
    Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, et al. 2020.. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. . Cell 181::103645.e9
    [Crossref] [Google Scholar]
  139. 139.
    Galani IE, Rovina N, Lampropoulou V, Triantafyllia V, Manioudaki M, et al. 2021.. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. . Nat. Immunol. 22::3240
    [Crossref] [Google Scholar]
  140. 140.
    Lucas C, Wong P, Klein J, Castro TBR, Silva J, et al. 2020.. Longitudinal analyses reveal immunological misfiring in severe COVID-19. . Nature 584::46369
    [Crossref] [Google Scholar]
  141. 141.
    Bucciol G, Effort CHG, Meyts I. 2023.. Inherited and acquired errors of type I interferon immunity govern susceptibility to COVID-19 and multisystem inflammatory syndrome in children. . J. Allergy Clin. Immunol. 151::83240
    [Crossref] [Google Scholar]
  142. 142.
    Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, et al. 2020.. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. . Science 369::71824
    [Crossref] [Google Scholar]
  143. 143.
    Chou J, Platt CD, Habiballah S, Nguyen AA, Elkins M, et al. 2021.. Mechanisms underlying genetic susceptibility to multisystem inflammatory syndrome in children (MIS-C). . J. Allergy Clin. Immunol. 148::7328.e1
    [Crossref] [Google Scholar]
  144. 144.
    Lee D, Le Pen J, Yatim A, Dong B, Aquino Y, et al. 2023.. Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children. . Science 379::eabo3627
    [Crossref] [Google Scholar]
  145. 145.
    Lee PY, Platt CD, Weeks S, Grace RF, Maher G, et al. 2020.. Immune dysregulation and multisystem inflammatory syndrome in children (MIS-C) in individuals with haploinsufficiency of SOCS1. . J. Allergy Clin. Immunol. 146::1194200.e1
    [Crossref] [Google Scholar]
  146. 146.
    Davis HE, McCorkell L, Vogel JM, Topol EJ. 2023.. Long COVID: major findings, mechanisms and recommendations. . Nat. Rev. Microbiol. 21::13346
    [Crossref] [Google Scholar]
  147. 147.
    Chen N, Zhou M, Dong X, Qu J, Gong F, et al. 2020.. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. . Lancet 395::50713
    [Crossref] [Google Scholar]
  148. 148.
    Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, et al. 2020.. A dynamic COVID-19 immune signature includes associations with poor prognosis. . Nat. Med. 26:(10):162335
    [Crossref] [Google Scholar]
  149. 149.
    Zhang J, Wu H, Yao X, Zhang D, Zhou Y, et al. 2021.. Pyroptotic macrophages stimulate the SARS-CoV-2-associated cytokine storm. . Cell. Mol. Immunol. 18::13057
    [Crossref] [Google Scholar]
  150. 150.
    Zheng J, Wang Y, Li K, Meyerholz DK, Allamargot C, Perlman S. 2021.. Severe acute respiratory syndrome coronavirus 2-induced immune activation and death of monocyte-derived human macrophages and dendritic cells. . J. Infect. Dis. 223::78595
    [Crossref] [Google Scholar]
  151. 151.
    Sefik E, Qu R, Junqueira C, Kaffe E, Mirza H, et al. 2022.. Inflammasome activation in infected macrophages drives COVID-19 pathology. . Nature 606::58593
    [Crossref] [Google Scholar]
  152. 152.
    Simpson DS, Pang J, Weir A, Kong IY, Fritsch M, et al. 2022.. Interferon-γ primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. . Immunity 55::42341.e9
    [Crossref] [Google Scholar]
  153. 153.
    Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, et al. 2021.. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. . Cell Rep. 37::109858
    [Crossref] [Google Scholar]
  154. 154.
    Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti T-D. 2021.. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. . Nature 597::41519
    [Crossref] [Google Scholar]
  155. 155.
    Kuriakose T, Man SM, Malireddi RK, Karki R, Kesavardhana S, et al. 2016.. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. . Sci. Immunol. 1::aag2045
    [Crossref] [Google Scholar]
  156. 156.
    Kesavardhana S, Malireddi RKS, Burton AR, Porter SN, Vogel P, et al. 2020.. The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development. . J. Biol. Chem. 295::832530
    [Crossref] [Google Scholar]
  157. 157.
    Banoth B, Tuladhar S, Karki R, Sharma BR, Briard B, et al. 2020.. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). . J. Biol. Chem. 295::1827683
    [Crossref] [Google Scholar]
  158. 158.
    Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi RKS, et al. 2020.. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). . Front. Cell. Infect. Microbiol. 10::237
    [Crossref] [Google Scholar]
  159. 159.
    Gurung P, Burton A, Kanneganti T-D. 2016.. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β–mediated osteomyelitis. . PNAS 113:445257
    [Google Scholar]
  160. 160.
    Zheng M, Karki R, Vogel P, Kanneganti T-D. 2020.. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. . Cell 181::67487.e13
    [Crossref] [Google Scholar]
  161. 161.
    Sundaram B, Pandian N, Mall R, Wang Y, Sarkar R, et al. 2023.. NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs. . Cell 186::2783801.e20
    [Crossref] [Google Scholar]
  162. 162.
    Li S, Zhang Y, Guan Z, Ye M, Li H, et al. 2023.. SARS-CoV-2 Z-RNA activates the ZBP1-RIPK3 pathway to promote virus-induced inflammatory responses. . Cell Res. 33::20114
    [Crossref] [Google Scholar]
  163. 163.
    Rowley AH. 2020.. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. . Nat. Rev. Immunol. 20::45354
    [Crossref] [Google Scholar]
  164. 164.
    Leentjens J, van Haaps TF, Wessels PF, Schutgens REG, Middeldorp S. 2021.. COVID-19-associated coagulopathy and antithrombotic agents—lessons after 1 year. . Lancet Haematol. 8::e52433
    [Crossref] [Google Scholar]
  165. 165.
    Jafarzadeh A, Jafarzadeh S, Nozari P, Mokhtari P, Nemati M. 2021.. Lymphopenia an important immunological abnormality in patients with COVID-19: possible mechanisms. . Scand. J. Immunol. 93::e12967
    [Crossref] [Google Scholar]
  166. 166.
    Qin C, Zhou L, Hu Z, Zhang S, Yang S, et al. 2020.. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. . Clin. Infect. Dis. 71::76268
    [Crossref] [Google Scholar]
  167. 167.
    Tan L, Wang Q, Zhang D, Ding J, Huang Q, et al. 2020.. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. . Signal Transduct. Target Ther. 5::33
    [Crossref] [Google Scholar]
  168. 168.
    Kaneko N, Kuo HH, Boucau J, Farmer JR, Allard-Chamard H, et al. 2020.. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. . Cell 183::14357.e13
    [Crossref] [Google Scholar]
  169. 169.
    Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M. 2020.. Lymphopenia during the COVID-19 infection: what it shows and what can be learned. . Immunol. Lett. 225::3132
    [Crossref] [Google Scholar]
  170. 170.
    Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, et al. 2020.. A dynamic COVID-19 immune signature includes associations with poor prognosis. . Nat. Med. 26::162335
    [Crossref] [Google Scholar]
  171. 171.
    Burke JM, St. Clair LA, Perera R, Parker R. 2021.. SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block. . RNA 27::131829
    [Crossref] [Google Scholar]
  172. 172.
    Zhang K, Miorin L, Makio T, Dehghan I, Gao S, et al. 2021.. Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. . Sci. Adv. 7::eabe7386
    [Crossref] [Google Scholar]
  173. 173.
    Banerjee AK, Blanco MR, Bruce EA, Honson DD, Chen LM, et al. 2020.. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. . Cell 183::132539.e21
    [Crossref] [Google Scholar]
  174. 174.
    Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. 2021.. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. . PNAS 118::e2017715118
    [Crossref] [Google Scholar]
  175. 175.
    Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, et al. 2020.. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. . Science 369::124955
    [Crossref] [Google Scholar]
  176. 176.
    Tidu A, Janvier A, Schaeffer L, Sosnowski P, Kuhn L, et al. 2020.. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. . RNA 27::25364
    [Crossref] [Google Scholar]
  177. 177.
    Yuan S, Peng L, Park JJ, Hu Y, Devarkar SC, et al. 2020.. Nonstructural protein 1 of SARS-CoV-2 is a potent pathogenicity factor redirecting host protein synthesis machinery toward viral RNA. . Mol. Cell 80::105566.e6
    [Crossref] [Google Scholar]
  178. 178.
    Liu G, Lee JH, Parker ZM, Acharya D, Chiang JJ, et al. 2021.. ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. . Nat. Microbiol. 6::46778
    [Crossref] [Google Scholar]
  179. 179.
    Munnur D, Teo Q, Eggermont D, Lee HHY, Thery F, et al. 2021.. Altered ISGylation drives aberrant macrophage-dependent immune responses during SARS-CoV-2 infection. . Nat. Immunol. 22::141627
    [Crossref] [Google Scholar]
  180. 180.
    Chen K, Xiao F, Hu D, Ge W, Tian M, et al. 2020.. SARS-CoV-2 nucleocapsid protein interacts with RIG-I and represses RIG-mediated IFN-β production. . Viruses 13::47
    [Crossref] [Google Scholar]
  181. 181.
    Sui L, Zhao Y, Wang W, Wu P, Wang Z, et al. 2021.. SARS-CoV-2 membrane protein inhibits type I interferon production through ubiquitin-mediated degradation of TBK1. . Front. Immunol. 12::662989
    [Crossref] [Google Scholar]
  182. 182.
    Caruso IP, Sanches K, Da Poian AT, Pinheiro AS, Almeida FCL. 2021.. Dynamics of the SARS-CoV-2 nucleoprotein N-terminal domain triggers RNA duplex destabilization. . Biophys. J. 120::281427
    [Crossref] [Google Scholar]
  183. 183.
    Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD, et al. 2021.. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. . Nat. Commun. 12::1936
    [Crossref] [Google Scholar]
  184. 184.
    Lu S, Ye Q, Singh D, Cao Y, Diedrich JK, et al. 2021.. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. . Nat. Commun. 12::502
    [Crossref] [Google Scholar]
  185. 185.
    Wang S, Dai T, Qin Z, Pan T, Chu F, et al. 2021.. Targeting liquid-liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity. . Nat. Cell Biol. 23::71832
    [Crossref] [Google Scholar]
  186. 186.
    Gori Savellini G, Anichini G, Gandolfo C, Cusi MG. 2021.. SARS-CoV-2 N protein targets TRIM25-mediated RIG-I activation to suppress innate immunity. . Viruses 13::1439
    [Crossref] [Google Scholar]
  187. 187.
    Han L, Zhuang MW, Deng J, Zheng Y, Zhang J, et al. 2021.. SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5-MAVS, TLR3-TRIF, and cGAS-STING signaling pathways. . J. Med. Virol. 93::537689
    [Crossref] [Google Scholar]
  188. 188.
    Wu J, Shi Y, Pan X, Wu S, Hou R, et al. 2021.. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. . Cell Rep. 34::108761
    [Crossref] [Google Scholar]
  189. 189.
    Li JY, Liao CH, Wang Q, Tan YJ, Luo R, et al. 2020.. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. . Virus Res. 286::198074
    [Crossref] [Google Scholar]
  190. 190.
    Konno Y, Kimura I, Uriu K, Fukushi M, Irie T, et al. 2020.. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. . Cell Rep. 32::108185
    [Crossref] [Google Scholar]
  191. 191.
    Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, et al. 2020.. An mRNA vaccine against SARS-CoV-2 – preliminary report. . N. Engl. J. Med. 383::192031
    [Crossref] [Google Scholar]
  192. 192.
    Vogel AB, Kanevsky I, Che Y, Swanson KA, Muik A, et al. 2021.. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. . Nature 592::28389
    [Crossref] [Google Scholar]
  193. 193.
    Walsh EE, Frenck RW Jr., Falsey AR, Kitchin N, Absalon J, et al. 2020.. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. . N. Engl. J. Med. 383::243950
    [Crossref] [Google Scholar]
  194. 194.
    Sadoff J, Gray G, Vandebosch A, Cardenas V, Shukarev G, et al. 2021.. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. . N. Engl. J. Med. 384::2187201
    [Crossref] [Google Scholar]
  195. 195.
    Dunkle LM, Kotloff KL, Gay CL, Anez G, Adelglass JM, et al. 2022.. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. . N. Engl. J. Med. 386::53143
    [Crossref] [Google Scholar]
  196. 196.
    Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, et al. 2021.. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. . N. Engl. J. Med. 385::117283
    [Crossref] [Google Scholar]
  197. 197.
    Pollard AJ, Bijker EM. 2021.. A guide to vaccinology: from basic principles to new developments. . Nat. Rev. Immunol. 21::83100
    [Crossref] [Google Scholar]
  198. 198.
    Sahin U, Karikó K, Türeci O. 2014.. mRNA-based therapeutics – developing a new class of drugs. . Nat. Rev. Drug Discov. 13::75980
    [Crossref] [Google Scholar]
  199. 199.
    Karikó K, Buckstein M, Ni H, Weissman D. 2005.. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. . Immunity 23::16575
    [Crossref] [Google Scholar]
  200. 200.
    Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN, Kitada T. 2015.. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. . J. Control. Release 217::33744
    [Crossref] [Google Scholar]
  201. 201.
    Kim KQ, Burgute BD, Tzeng SC, Jing C, Jungers C, et al. 2022.. N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. . Cell Rep. 40::111300
    [Crossref] [Google Scholar]
  202. 202.
    Nance KD, Meier JL. 2021.. Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. . ACS Cent. Sci. 7::74856
    [Crossref] [Google Scholar]
  203. 203.
    Tan CY, Chiew CJ, Lee VJ, Ong B, Lye DC, Tan KB. 2022.. Comparative effectiveness of 3 or 4 doses of mRNA and inactivated whole-virus vaccines against COVID-19 infection, hospitalization and severe outcomes among elderly in Singapore. . Lancet Reg. Health West. Pac. 29::100654
    [Google Scholar]
  204. 204.
    Premikha M, Chiew CJ, Wei WE, Leo YS, Ong B, et al. 2022.. Comparative effectiveness of mRNA and inactivated whole-virus vaccines against coronavirus disease 2019 infection and severe disease in Singapore. . Clin. Infect. Dis. 75::144245
    [Crossref] [Google Scholar]
  205. 205.
    Mok CKP, Cohen CA, Cheng SMS, Chen C, Kwok KO, et al. 2022.. Comparison of the immunogenicity of BNT162b2 and CoronaVac COVID-19 vaccines in Hong Kong. . Respirology 27::30110
    [Crossref] [Google Scholar]
  206. 206.
    Ella R, Reddy S, Blackwelder W, Potdar V, Yadav P, Sarangi V, et al. 2021.. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial. . Lancet 398::217384
    [Crossref] [Google Scholar]
  207. 207.
    Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, et al. 2021.. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. . JAMA 326::3545
    [Crossref] [Google Scholar]
  208. 208.
    Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, et al. 2022.. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. . N. Engl. J. Med. 386::1397408
    [Crossref] [Google Scholar]
  209. 209.
    Najjar-Debbiny R, Gronich N, Weber G, Khoury J, Amar M, et al. 2023.. Effectiveness of paxlovid in reducing severe coronavirus disease 2019 and mortality in high-risk patients. . Clin. Infect. Dis. 76::e34249
    [Crossref] [Google Scholar]
  210. 210.
    Group RC, Horby P, Lim WS, Emberson JR, Mafham M, et al. 2021.. Dexamethasone in hospitalized patients with Covid-19. . N. Engl. J. Med. 384::693704
    [Crossref] [Google Scholar]
  211. 211.
    Lamontagne F, Agarwal A, Rochwerg B, Siemieniuk RA, Agoritsas T, et al. 2020.. A living WHO guideline on drugs for covid-19. . BMJ 370::m3379
    [Google Scholar]
  212. 212.
    Ranjbar K, Moghadami M, Mirahmadizadeh A, Fallahi MJ, Khaloo V, et al. 2021.. Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: a triple-blinded randomized controlled trial. . BMC Infect. Dis. 21::337
    [Crossref] [Google Scholar]
  213. 213.
    Saeed MAM, Mohamed AH, Owaynat AH. 2022.. Comparison between methylprednisolone infusion and dexamethasone in COVID-19 ARDS mechanically ventilated patients. . Egypt. J. Intern. Med. 34::19
    [Crossref] [Google Scholar]
  214. 214.
    Salton F, Confalonieri P, Centanni S, Mondoni M, Petrosillo N, et al. 2023.. Prolonged higher dose methylprednisolone versus conventional dexamethasone in COVID-19 pneumonia: a randomised controlled trial (MEDEAS). . Eur. Respir. J. 61::2201514
    [Crossref] [Google Scholar]
  215. 215.
    Channappanavar R, Perlman S. 2017.. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. . Semin. Immunopathol. 39::52939
    [Crossref] [Google Scholar]
  216. 216.
    Chen G, Wu D, Guo W, Cao Y, Huang D, et al. 2020.. Clinical and immunological features of severe and moderate coronavirus disease 2019. . J. Clin. Investig. 130::262029
    [Crossref] [Google Scholar]
  217. 217.
    Moore JB, June CH. 2020.. Cytokine release syndrome in severe COVID-19. . Science 368::47374
    [Crossref] [Google Scholar]
  218. 218.
    van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, Derde L, Leavis H, et al. 2022.. A guide to immunotherapy for COVID-19. . Nat. Med. 28::3950
    [Crossref] [Google Scholar]
  219. 219.
    Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, et al. 2018.. Chimeric antigen receptor T-cell therapy – assessment and management of toxicities. . Nat. Rev. Clin. Oncol. 15::4762
    [Crossref] [Google Scholar]
  220. 220.
    Kyriazopoulou E, Poulakou G, Milionis H, Metallidis S, Adamis G, et al. 2021.. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. . Nat. Med. 27::175260
    [Crossref] [Google Scholar]
  221. 221.
    Kyriazopoulou E, Panagopoulos P, Metallidis S, Dalekos GN, Poulakou G, et al. 2021.. An open label trial of anakinra to prevent respiratory failure in COVID-19. . eLife 10::e66125
    [Crossref] [Google Scholar]
  222. 222.
    Akinosoglou K, Kotsaki A, Gounaridi IM, Christaki E, Metallidis S, et al. 2023.. Efficacy and safety of early soluble urokinase plasminogen receptor plasma-guided anakinra treatment of COVID-19 pneumonia: a subgroup analysis of the SAVE-MORE randomised trial. . EClinicalMedicine 56::101785
    [Crossref] [Google Scholar]
  223. 223.
    Fanlo P, Gracia-Tello BDC, Fonseca Aizpuru E, Alvarez-Troncoso J, Gonzalez A, et al. 2023.. Efficacy and safety of anakinra plus standard of care for patients with severe COVID-19: a randomized phase 2/3 clinical trial. . JAMA Netw. Open 6::e237243
    [Crossref] [Google Scholar]
  224. 224.
    Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, et al. 2021.. Baricitinib plus remdesivir for hospitalized adults with Covid-19. . N. Engl. J. Med. 384::795807
    [Crossref] [Google Scholar]
  225. 225.
    RECOVERY Collab. Group. 2022.. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis. . Lancet 400::35968
    [Crossref] [Google Scholar]
  226. 226.
    Vlaar APJ, Witzenrath M, van Paassen P, Heunks LMA, Mourvillier B, et al. 2022.. Anti-C5a antibody (vilobelimab) therapy for critically ill, invasively mechanically ventilated patients with COVID-19 (PANAMO): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. . Lancet Respir. Med. 10::113746
    [Crossref] [Google Scholar]
  227. 227.
    Wang N, Zhan Y, Zhu L, Hou Z, Liu F, et al. 2020.. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. . Cell Host Microbe 28::45564.e2
    [Crossref] [Google Scholar]
  228. 228.
    Zhou Q, Chen V, Shannon CP, Wei XS, Xiang X, et al. 2020.. Interferon-α2b treatment for COVID-19. . Front. Immunol. 11::1061
    [Crossref] [Google Scholar]
  229. 229.
    Monk PD, Marsden RJ, Tear VJ, Brookes J, Batten TN, et al. 2021.. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. . Lancet Respir. Med. 9::196206
    [Crossref] [Google Scholar]
  230. 230.
    Hoagland DA, Møller R, Uhl SA, Oishi K, Frere J, et al. 2021.. Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. . Immunity 54::55770.e5
    [Crossref] [Google Scholar]
  231. 231.
    Ianevski A, Yao R, Lysvand H, Grodeland G, Legrand N, et al. 2021.. Nafamostat–interferon-α combination suppresses SARS-CoV-2 infection in vitro and in vivo by cooperatively targeting host TMPRSS2. . Viruses 13::1768
    [Crossref] [Google Scholar]
  232. 232.
    Ianevski A, Yao R, Zusinaite E, Lello LS, Wang S, et al. 2021.. Synergistic interferon-alpha-based combinations for treatment of SARS-CoV-2 and other viral infections. . Viruses 13::2489
    [Crossref] [Google Scholar]
  233. 233.
    Malhani AA, Enani MA, Sharif-Askari FS, Alghareeb MR, Bin-Brikan RT, et al. 2021.. Combination of (interferon beta-1b, lopinavir/ritonavir and ribavirin) versus favipiravir in hospitalized patients with non-critical COVID-19: a cohort study. . PLOS ONE 16::e0252984
    [Crossref] [Google Scholar]
  234. 234.
    Hung IF, Lung KC, Tso EY, Liu R, Chung TW, et al. 2020.. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. . Lancet 395::1695704
    [Crossref] [Google Scholar]
  235. 235.
    Bojkova D, Stack R, Rothenburger T, Kandler JD, Ciesek S, et al. 2022.. Synergism of interferon-beta with antiviral drugs against SARS-CoV-2 variants. . J. Infect. 85::573607
    [Crossref] [Google Scholar]
  236. 236.
    Nakhlband A, Fakhari A, Azizi H. 2021.. Interferon-beta offers promising avenues to COVID-19 treatment: a systematic review and meta-analysis of clinical trial studies. . Naunyn Schmiedebergs Arch. Pharmacol. 394::82938
    [Crossref] [Google Scholar]
  237. 237.
    Davis HE, Assaf GS, McCorkell L, Wei H, Low RJ, et al. 2021.. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. . EClinicalMedicine 38::101019
    [Crossref] [Google Scholar]
  238. 238.
    Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML, et al. 2022.. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. . Nat. Immunol. 23::21016
    [Crossref] [Google Scholar]
  239. 239.
    Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, et al. 2020.. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). . JAMA Cardiol. 5::126573
    [Crossref] [Google Scholar]
  240. 240.
    Xie Y, Xu E, Bowe B, Al-Aly Z. 2022.. Long-term cardiovascular outcomes of COVID-19. . Nat. Med. 28::58390
    [Crossref] [Google Scholar]
  241. 241.
    Fernandez-Castaneda A, Lu P, Geraghty AC, Song E, Lee MH, et al. 2022.. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. . Cell 185::245268.e16
    [Crossref] [Google Scholar]
  242. 242.
    Frere JJ, Serafini RA, Pryce KD, Zazhytska M, Oishi K, et al. 2022.. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations after recovery. . Sci. Transl. Med. 14::eabq3059
    [Crossref] [Google Scholar]
  243. 243.
    Rutkai I, Mayer MG, Hellmers LM, Ning B, Huang Z, et al. 2022.. Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates. . Nat. Commun. 13::1745
    [Crossref] [Google Scholar]
  244. 244.
    Weinstock LB, Brook JB, Walters AS, Goris A, Afrin LB, Molderings GJ. 2021.. Mast cell activation symptoms are prevalent in long-COVID. . Int. J. Infect. Dis. 112::21726
    [Crossref] [Google Scholar]
  245. 245.
    Ballering AV, van Zon SKR, Olde Hartman TC, Rosmalen JGM, Lifelines Corona Res. Initiat. 2022.. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. . Lancet 400::45261
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-083122-043545
Loading
/content/journals/10.1146/annurev-immunol-083122-043545
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error