1932

Abstract

Circadian rhythms of approximately 24 h have emerged as important modulators of the immune system. These oscillations are important for mounting short-term, innate immune responses, but surprisingly also long-term, adaptive immune responses. Recent data indicate that they play a central role in antitumor immunity, in both mice and humans. In this review, we discuss the evolving literature on circadian antitumor immune responses and the underlying mechanisms that control them. We further provide an overview of circadian treatment regimens—chrono-immunotherapies—that harness time-of-day differences in immunity for optimal efficacy. Our aim is to provide an overview for researchers and clinicians alike, for a better understanding of the circadian immune system and how to best harness it for chronotherapeutic interventions. This knowledge is important for a better understanding of immune responses per se and could revolutionize the way we approach the treatment of cancer and a range of other diseases, ultimately improving clinical practice.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-090122-050842
2024-06-28
2024-06-30
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-090122-050842.html?itemId=/content/journals/10.1146/annurev-immunol-090122-050842&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aschoff J. 1965.. Circadian rhythms in man. . Science 148:(3676):142732
    [Crossref] [Google Scholar]
  2. 2.
    Paranjpe DA, Sharma VK. 2005.. Evolution of temporal order in living organisms. . J. Circadian Rhythms 3::7
    [Crossref] [Google Scholar]
  3. 3.
    Hastings MH, Maywood ES, Brancaccio M. 2018.. Generation of circadian rhythms in the suprachiasmatic nucleus. . Nat. Rev. Neurosci. 19::45369
    [Crossref] [Google Scholar]
  4. 4.
    Kavakli IH, Sancar A. 2002.. Circadian photoreception in humans and mice. . Mol. Interv. 2::48492
    [Crossref] [Google Scholar]
  5. 5.
    Dickmeis T. 2009.. Glucocorticoids and the circadian clock. . J. Endocrinol. 200::322
    [Crossref] [Google Scholar]
  6. 6.
    Engeland WC, Arnhold MM. 2005.. Neural circuitry in the regulation of adrenal corticosterone rhythmicity. . Endocrine 28::32532
    [Crossref] [Google Scholar]
  7. 7.
    Logan RW, Arjona A, Sarkar DK. 2011.. Role of sympathetic nervous system in the entrainment of circadian natural-killer cell function. . Brain Behav. Immun. 25::1019
    [Crossref] [Google Scholar]
  8. 8.
    Takahashi JS. 2017.. Transcriptional architecture of the mammalian circadian clock. . Nat. Rev. Genet. 18::16479
    [Crossref] [Google Scholar]
  9. 9.
    Scheiermann C, Gibbs J, Ince L, Loudon A. 2018.. Clocking in to immunity. . Nat. Rev. Immunol. 18::42337
    [Crossref] [Google Scholar]
  10. 10.
    Elmadjian F, Pincus G. 1946.. A study of the diurnal variations in circulating lymphocytes in normal and psychotic subjects. . J. Clin. Endocrinol. Metab. 6::28794
    [Crossref] [Google Scholar]
  11. 11.
    Haus E, Smolensky MH. 1999.. Biologic rhythms in the immune system. . Chronobiol. Int. 16::581622
    [Crossref] [Google Scholar]
  12. 12.
    He W, Holtkamp S, Hergenhan SM, Kraus K, de Juan A, et al. 2018.. Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues. . Immunity 49::117590.e7 12. This study demonstrates that circadian clocks are crucial in regulating factors for rhythmic leukocyte homing.
    [Crossref] [Google Scholar]
  13. 13.
    Wyse C, O'Malley G, Coogan AN, McConkey S, Smith DJ. 2021.. Seasonal and daytime variation in multiple immune parameters in humans: evidence from 329,261 participants of the UK Biobank cohort. . iScience 24::102255
    [Crossref] [Google Scholar]
  14. 14.
    Esposito E, Li W, Mandeville ET, Park J-H, Şencan I, et al. 2020.. Potential circadian effects on translational failure for neuroprotection. . Nature 582::39598
    [Crossref] [Google Scholar]
  15. 15.
    Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang J-E, et al. 2012.. Adrenergic nerves govern circadian leukocyte recruitment to tissues. . Immunity 37::290301
    [Crossref] [Google Scholar]
  16. 16.
    Pick R, He W, Chen C-S, Scheiermann C. 2019.. Time-of-day-dependent trafficking and function of leukocyte subsets. . Trends Immunol. 40::52437
    [Crossref] [Google Scholar]
  17. 17.
    Holtkamp SJ, Ince LM, Barnoud C, Schmitt MT, Sinturel F, et al. 2021.. Circadian clocks guide dendritic cells into skin lymphatics. . Nat. Immunol. 22::137581
    [Crossref] [Google Scholar]
  18. 18.
    Druzd D, Matveeva O, Ince L, Harrison U, He W, et al. 2017.. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. . Immunity 46::12032
    [Crossref] [Google Scholar]
  19. 19.
    Shimba A, Cui G, Tani-Ichi S, Ogawa M, Abe S, et al. 2018.. Glucocorticoids drive diurnal oscillations in T cell distribution and responses by inducing interleukin-7 receptor and CXCR4. . Immunity 48::28698.e6
    [Crossref] [Google Scholar]
  20. 20.
    Suzuki K, Hayano Y, Nakai A, Furuta F, Noda M. 2016.. Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. . J. Exp. Med. 213::256774
    [Crossref] [Google Scholar]
  21. 21.
    Wang C, Lutes LK, Barnoud C, Scheiermann C. 2022.. The circadian immune system. . Sci. Immunol. 7::eabm2465
    [Crossref] [Google Scholar]
  22. 22.
    Tuganbaev T, Mor U, Bashiardes S, Liwinski T, Nobs SP, et al. 2020.. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. . Cell 182::144159.e21
    [Crossref] [Google Scholar]
  23. 23.
    Bollinger T, Bollinger A, Skrum L, Dimitrov S, Lange T, Solbach W. 2009.. Sleep-dependent activity of T cells and regulatory T cells. . Clin. Exp. Immunol. 155::23138
    [Crossref] [Google Scholar]
  24. 24.
    Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, et al. 2012.. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. . PNAS 109::58287
    [Crossref] [Google Scholar]
  25. 25.
    Knyszynski A, Fischer H. 1981.. Circadian fluctuations in the activity of phagocytic cells in blood, spleen, and peritoneal cavity of mice as measured by zymosan-induced chemiluminescence. . J. Immunol. 127::250811
    [Crossref] [Google Scholar]
  26. 26.
    Curtis AM, Bellet MM, Sassone-Corsi P, O'Neill LA. 2014.. Circadian clock proteins and immunity. . Immunity 40::17886
    [Crossref] [Google Scholar]
  27. 27.
    Labrecque N, Cermakian N. 2015.. Circadian clocks in the immune system. . J. Biol. Rhythms 30::27790
    [Crossref] [Google Scholar]
  28. 28.
    Man K, Loudon A, Chawla A. 2016.. Immunity around the clock. . Science 354::9991003
    [Crossref] [Google Scholar]
  29. 29.
    Scheiermann C, Kunisaki Y, Frenette PS. 2013.. Circadian control of the immune system. . Nat. Rev. Immunol. 13::19098
    [Crossref] [Google Scholar]
  30. 30.
    Palomino-Segura M, Hidalgo A. 2021.. Circadian immune circuits. . J. Exp. Med. 218:(2):e20200798
    [Crossref] [Google Scholar]
  31. 31.
    Rijo-Ferreira F, Takahashi JS. 2022.. Circadian rhythms in infectious diseases and symbiosis. . Semin. Cell Dev. Biol. 126::3744
    [Crossref] [Google Scholar]
  32. 32.
    Zhuang X, Edgar RS, McKeating JA. 2022.. The role of circadian clock pathways in viral replication. . Semin. Immunopathol. 44::17582
    [Crossref] [Google Scholar]
  33. 33.
    Stenger S, Grasshoff H, Hundt JE, Lange T. 2022.. Potential effects of shift work on skin autoimmune diseases. . Front. Immunol. 13::1000951
    [Crossref] [Google Scholar]
  34. 34.
    Pivovarova-Ramich O, Zimmermann HG, Paul F. 2023.. Multiple sclerosis and circadian rhythms: Can diet act as a treatment?. Acta Physiol. 237:(4):e13939
    [Crossref] [Google Scholar]
  35. 35.
    Jacob H, Curtis AM, Kearney CJ. 2020.. Therapeutics on the clock: circadian medicine in the treatment of chronic inflammatory diseases. . Biochem. Pharmacol. 182::114254
    [Crossref] [Google Scholar]
  36. 36.
    Giebfried J, Lorentz A. 2023.. Relationship between the biological clock and inflammatory bowel disease. . Clocks Sleep 5::26075
    [Crossref] [Google Scholar]
  37. 37.
    Miro C, Docimo A, Barrea L, Verde L, Cernea S, et al. 2023.. “ Time” for obesity-related cancer: the role of the circadian rhythm in cancer pathogenesis and treatment. . Semin. Cancer Biol. 91::99109
    [Crossref] [Google Scholar]
  38. 38.
    Lee Y. 2021.. Roles of circadian clocks in cancer pathogenesis and treatment. . Exp. Mol. Med. 53::152938
    [Crossref] [Google Scholar]
  39. 39.
    Xuan W, Khan F, James CD, Heimberger AB, Lesniak MS, Chen P. 2021.. Circadian regulation of cancer cell and tumor microenvironment crosstalk. . Trends Cell Biol. 31::94050
    [Crossref] [Google Scholar]
  40. 40.
    Diamantopoulou Z, Gvozdenovic A, Aceto N. 2023.. A new time dimension in the fight against metastasis. . Trends Cell Biol. 33:(9):73648
    [Crossref] [Google Scholar]
  41. 41.
    Wang C, Barnoud C, Cenerenti M, Sun M, Caffa I, et al. 2023.. Dendritic cells direct circadian anti-tumor immune responses. . Nature 614:(7946):13643 41. This study demonstrates the effectiveness of vaccination in tumor chrono-immunotherapy.
    [Crossref] [Google Scholar]
  42. 42.
    Hrushesky WJ, Lester B, Lannin D. 1999.. Circadian coordination of cancer growth and metastatic spread. . Int. J. Cancer 83::36573
    [Crossref] [Google Scholar]
  43. 43.
    Wagner PM, Prucca CG, Velazquez FN, Sosa Alderete LG, Caputto BL, Guido ME. 2021.. Temporal regulation of tumor growth in nocturnal mammals: in vivo studies and chemotherapeutical potential. . FASEB J. 35::e21231
    [Crossref] [Google Scholar]
  44. 44.
    Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, et al. 2011.. Circadian clocks in mouse and human CD4+ T cells. . PLOS ONE 6::e29801
    [Crossref] [Google Scholar]
  45. 45.
    Nobis CC, Dubeau Laramée G, Kervezee L, De Sousa DM, Labrecque N, Cermakian N. 2019.. The circadian clock of CD8 T cells modulates their early response to vaccination and the rhythmicity of related signaling pathways. . PNAS 116::2007786
    [Crossref] [Google Scholar]
  46. 46.
    Holtkamp SJ, Ince LM, Barnoud C, Schmitt MT, Sinturel F, et al. 2021.. Circadian clocks guide dendritic cells into skin lymphatics. . Nat. Immunol. 22::137581
    [Crossref] [Google Scholar]
  47. 47.
    Ince LM, Barnoud C, Lutes LK, Pick R, Wang C, et al. 2023.. Influence of circadian clocks on adaptive immunity and vaccination responses. . Nat. Commun. 14::476
    [Crossref] [Google Scholar]
  48. 48.
    Chen DS, Mellman I. 2013.. Oncology meets immunology: the cancer-immunity cycle. . Immunity 39::110
    [Crossref] [Google Scholar]
  49. 49.
    Cervantes-Silva MP, Carroll RG, Wilk MM, Moreira D, Payet CA, et al. 2022.. The circadian clock influences T cell responses to vaccination by regulating dendritic cell antigen processing. . Nat. Commun. 13::7217
    [Crossref] [Google Scholar]
  50. 50.
    Hopwood TW, Hall S, Begley N, Forman R, Brown S, et al. 2018.. The circadian regulator BMAL1 programmes responses to parasitic worm infection via a dendritic cell clock. . Sci. Rep. 8::3782
    [Crossref] [Google Scholar]
  51. 51.
    Amir M, Campbell S, Kamenecka TM, Solt LA. 2020.. Pharmacological modulation and genetic deletion of REV-ERBα and REV-ERBβ regulates dendritic cell development. . Biochem. Biophys. Res. Commun. 527::10007
    [Crossref] [Google Scholar]
  52. 52.
    Alexander RK, Liou YH, Knudsen NH, Starost KA, Xu C, et al. 2020.. Bmal1 integrates mitochondrial metabolism and macrophage activation. . eLife 9::e54090
    [Crossref] [Google Scholar]
  53. 53.
    Diamantopoulou Z, Castro-Giner F, Schwab FD, Foerster C, Saini M, et al. 2022.. The metastatic spread of breast cancer accelerates during sleep. . Nature 607::15662
    [Crossref] [Google Scholar]
  54. 54.
    Casanova-Acebes M, Nicolas-Avila JA, Li JL, Garcia-Silva S, Balachander A, et al. 2018.. Neutrophils instruct homeostatic and pathological states in naive tissues. . J. Exp. Med. 215::277895 54. This study reveals that neutrophils regulate the timing of metastatic invasion in the lungs.
    [Crossref] [Google Scholar]
  55. 55.
    Gibbs J, Ince L, Matthews L, Mei J, Bell T, et al. 2014.. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. . Nat. Med. 20::91926
    [Crossref] [Google Scholar]
  56. 56.
    Hedrick CC, Malanchi I. 2022.. Neutrophils in cancer: heterogeneous and multifaceted. . Nat. Rev. Immunol. 22::17387
    [Crossref] [Google Scholar]
  57. 57.
    Masucci MT, Minopoli M, Del Vecchio S, Carriero MV. 2020.. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. . Front. Immunol. 11::1749
    [Crossref] [Google Scholar]
  58. 58.
    Zhang D, Chen G, Manwani D, Mortha A, Xu C, et al. 2015.. Neutrophil ageing is regulated by the microbiome. . Nature 525::52832
    [Crossref] [Google Scholar]
  59. 59.
    Adrover JM, Del Fresno C, Crainiciuc G, Cuartero MI, Casanova-Acebes M, et al. 2019.. A neutrophil timer coordinates immune defense and vascular protection. . Immunity 51::96667
    [Crossref] [Google Scholar]
  60. 60.
    Ball LJ, Palesh O, Kriegsfeld LJ. 2016.. The pathophysiologic role of disrupted circadian and neuroendocrine rhythms in breast carcinogenesis. . Endocr. Rev. 37::45066
    [Crossref] [Google Scholar]
  61. 61.
    Kettner NM, Voicu H, Finegold MJ, Coarfa C, Sreekumar A, et al. 2016.. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. . Cancer Cell 30::90924
    [Crossref] [Google Scholar]
  62. 62.
    Manouchehri E, Taghipour A, Ghavami V, Ebadi A, Homaei F, Latifnejad Roudsari R. 2021.. Night-shift work duration and breast cancer risk: an updated systematic review and meta-analysis. . BMC Women's Health 21::89
    [Crossref] [Google Scholar]
  63. 63.
    Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, et al. 2016.. Circadian rhythm disruption promotes lung tumorigenesis. . Cell Metab. 24::32431
    [Crossref] [Google Scholar]
  64. 64.
    Sulli G, Lam MTY, Panda S. 2019.. Interplay between circadian clock and cancer: new frontiers for cancer treatment. . Trends Cancer 5::47594
    [Crossref] [Google Scholar]
  65. 65.
    Aiello I, Fedele MLM, Roman F, Marpegan L, Caldart C, et al. 2020.. Circadian disruption promotes tumor-immune microenvironment remodeling favoring tumor cell proliferation. . Sci. Adv. 6::(42):eaaz4530
    [Crossref] [Google Scholar]
  66. 66.
    Roberts NT, MacDonald CR, Mohammadpour H, Antoch MP, Repasky EA. 2022.. Circadian rhythm disruption increases tumor growth rate and accumulation of myeloid-derived suppressor cells. . Adv. Biol. 6::2200031
    [Crossref] [Google Scholar]
  67. 67.
    Logan RW, Zhang C, Murugan S, O'Connell S, Levitt D, et al. 2012.. Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. . J. Immunol. 188::258391
    [Crossref] [Google Scholar]
  68. 68.
    Guerrero-Vargas NN, Navarro-Espindola R, Guzman-Ruiz MA, Basualdo MDC, Espitia-Bautista E, et al. 2017.. Circadian disruption promotes tumor growth by anabolic host metabolism: experimental evidence in a rat model. . BMC Cancer 17::625
    [Crossref] [Google Scholar]
  69. 69.
    Hadadi E, Taylor W, Li XM, Aslan Y, Villote M, et al. 2020.. Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. . Nat. Commun. 11::3193
    [Crossref] [Google Scholar]
  70. 70.
    Levi F. 2001.. Circadian chronotherapy for human cancers. . Lancet Oncol. 2::30715
    [Crossref] [Google Scholar]
  71. 71.
    Lee Y, Fong SY, Shon J, Zhang SL, Brooks R, et al. 2021.. Time-of-day specificity of anticancer drugs may be mediated by circadian regulation of the cell cycle. . Sci. Adv. 7:(7):eabd2645
    [Crossref] [Google Scholar]
  72. 72.
    Focan C. 1976.. Circadian rhythm and chemotherapy for cancer. . Lancet 2::63839
    [Crossref] [Google Scholar]
  73. 73.
    Giacchetti S, Bjarnason G, Garufi C, Genet D, Iacobelli S, et al. 2006.. Phase III trial comparing 4-day chronomodulated therapy versus 2-day conventional delivery of fluorouracil, leucovorin, and oxaliplatin as first-line chemotherapy of metastatic colorectal cancer: the European Organisation for Research and Treatment of Cancer Chronotherapy Group. . J. Clin. Oncol. 24::356269
    [Crossref] [Google Scholar]
  74. 74.
    Giacchetti S, Dugué PA, Innominato PF, Bjarnason GA, Focan C, et al. 2012.. Sex moderates circadian chemotherapy effects on survival of patients with metastatic colorectal cancer: a meta-analysis. . Ann. Oncol. 23::311016
    [Crossref] [Google Scholar]
  75. 75.
    Cain SW, Dennison CF, Zeitzer JM, Guzik AM, Khalsa SB, et al. 2010.. Sex differences in phase angle of entrainment and melatonin amplitude in humans. . J. Biol. Rhythms 25::28896
    [Crossref] [Google Scholar]
  76. 76.
    Blumenthal RD, Reising A, Lew W, Dunn R, Ying Z, Goldenberg DM. 1999.. Chronotolerance of experimental radioimmunotherapy: clearance, toxicity, and maximal tolerated dose of 131I-anti-carcinoembryonic antigen (CEA) IgG as a function of time of day of dosing in a murine model. . Eur. J. Cancer 35::81524
    [Crossref] [Google Scholar]
  77. 77.
    Depres-Brummer P, Levi F, Di Palma M, Beliard A, Lebon P, et al. 1991.. A phase I trial of 21-day continuous venous infusion of alpha-interferon at circadian rhythm modulated rate in cancer patients. . J. Immunother. 10::44047
    [Crossref] [Google Scholar]
  78. 78.
    Ott PA, Hu-Lieskovan S, Chmielowski B, Govindan R, Naing A, et al. 2020.. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. . Cell 183::34762.e24
    [Crossref] [Google Scholar]
  79. 79.
    Long JE, Drayson MT, Taylor AE, Toellner KM, Lord JM, Phillips AC. 2016.. Morning vaccination enhances antibody response over afternoon vaccination: a cluster-randomised trial. . Vaccine 34::267985
    [Crossref] [Google Scholar]
  80. 80.
    de Bree LCJ, Mourits VP, Koeken VA, Moorlag SJ, Janssen R, et al. 2020.. Circadian rhythm influences induction of trained immunity by BCG vaccination. . J. Clin. Investig. 130::560317
    [Crossref] [Google Scholar]
  81. 81.
    Zhang H, Liu Y, Liu D, Zeng Q, Li L, et al. 2021.. Time of day influences immune response to an inactivated vaccine against SARS-CoV-2. . Cell Res. 31::121517
    [Crossref] [Google Scholar]
  82. 82.
    Hazan G, Duek OA, Alapi H, Mok H, Ganninger A, et al. 2023.. Biological rhythms in COVID-19 vaccine effectiveness in an observational cohort study of 1.5 million patients. . J. Clin. Investig. 133:(11):e167339
    [Crossref] [Google Scholar]
  83. 83.
    Karaboué A, Collon T, Pavese I, Bodiguel V, Cucherousset J, et al. 2022.. Time-dependent efficacy of checkpoint inhibitor nivolumab: results from a pilot study in patients with metastatic non-small-cell lung cancer. . Cancers 14:(4):896 83. This study indicates survival benefits after morning administration of nivolumab in NSCLC patients.
    [Crossref] [Google Scholar]
  84. 84.
    Qian DC, Kleber T, Brammer B, Xu KM, Switchenko JM, et al. 2021.. Effect of immunotherapy time-of-day infusion on overall survival among patients with advanced melanoma in the USA (MEMOIR): a propensity score-matched analysis of a single-centre, longitudinal study. . Lancet Oncol. 22::177786 84. This study indicates survival benefits after morning administration of checkpoint blockade in melanoma patients.
    [Crossref] [Google Scholar]
  85. 85.
    Gonçalves L, Gonçalves D, Esteban-Casanelles T, Barroso T, Soares de Pinho I, et al. 2023.. Immunotherapy around the clock: impact of infusion timing on stage IV melanoma outcomes. . Cells 12::2068
    [Crossref] [Google Scholar]
  86. 86.
    Nomura M, Hosokai T, Tamaoki M, Yokoyama A, Matsumoto S, Muto M. 2023.. Timing of the infusion of nivolumab for patients with recurrent or metastatic squamous cell carcinoma of the esophagus influences its efficacy. . Esophagus 20:(4):72231 86. This study indicates survival benefits after morning nivolumab infusion for overall survival in esophageal squamous cell carcinoma patients.
    [Crossref] [Google Scholar]
  87. 87.
    Yeung C, Kartolo A, Tong J, Hopman W, Baetz T. 2023.. Association of circadian timing of initial infusions of immune checkpoint inhibitors with survival in advanced melanoma. . Immunotherapy 15:(11):81926 87. This study indicates that afternoon checkpoint blockade leads to poorer overall survival of melanoma patients.
    [Crossref] [Google Scholar]
  88. 88.
    Rousseau A, Tagliamento M, Auclin E, Aldea M, Frelaut M, et al. 2023.. Clinical outcomes by infusion timing of immune checkpoint inhibitors in patients with advanced non-small cell lung cancer. . Eur. J. Cancer 182::10714 88. This study indicates that afternoon checkpoint blockade infusion worsens progression-free survival of lung cancer patients.
    [Crossref] [Google Scholar]
  89. 89.
    Cortellini A, Barrichello APC, Alessi JV, Ricciuti B, Vaz VR, et al. 2022.. A multicentre study of pembrolizumab time-of-day infusion patterns and clinical outcomes in non-small-cell lung cancer: too soon to promote morning infusions. . Ann. Oncol. 33:(11):12024
    [Crossref] [Google Scholar]
  90. 90.
    Tsuruta A, Shiiba Y, Matsunaga N, Fujimoto M, Yoshida Y, et al. 2022.. Diurnal expression of PD-1 on tumor-associated macrophages underlies the dosing time-dependent antitumor effects of the PD-1/PD-L1 inhibitor BMS-1 in B16/BL6 melanoma-bearing mice. . Mol. Cancer Res. 20::97282
    [Crossref] [Google Scholar]
  91. 91.
    Wu Y, Tao B, Zhang T, Fan Y, Mao R. 2019.. Pan-cancer analysis reveals disrupted circadian clock associates with T cell exhaustion. . Front. Immunol. 10::2451
    [Crossref] [Google Scholar]
  92. 92.
    Cox KH, Takahashi JS. 2019.. Circadian clock genes and the transcriptional architecture of the clock mechanism. . J. Mol. Endocrinol. 63::R93102
    [Crossref] [Google Scholar]
  93. 93.
    Schmalen I, Reischl S, Wallach T, Klemz R, Grudziecki A, et al. 2014.. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. . Cell 157::120315
    [Crossref] [Google Scholar]
  94. 94.
    Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo S-H, et al. 2012.. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. . Science 337::18994
    [Crossref] [Google Scholar]
  95. 95.
    Kallen JA, Schlaeppi J-M, Bitsch F, Geisse S, Geiser M, et al. 2002.. X-ray structure of the hRORα LBD at 1.63 Å. . Structure 10::1697707
    [Crossref] [Google Scholar]
  96. 96.
    Murray MH, Valfort AC, Koelblen T, Ronin C, Ciesielski F, et al. 2022.. Structural basis of synthetic agonist activation of the nuclear receptor REV-ERB. . Nat. Commun. 13:(1):7131
    [Crossref] [Google Scholar]
  97. 97.
    Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, et al. 2021.. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. . Nucleic Acids Res. 50::D439D44
    [Crossref] [Google Scholar]
  98. 98.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  99. 99.
    Leach S, Suzuki K. 2020.. Adrenergic signaling in circadian control of immunity. . Front. Immunol. 11::1235
    [Crossref] [Google Scholar]
  100. 100.
    Hogenesch JB, Gu YZ, Jain S, Bradfield CA. 1998.. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. . PNAS 95::547479
    [Crossref] [Google Scholar]
  101. 101.
    Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, et al. 1994.. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. . Science 264::71925
    [Crossref] [Google Scholar]
  102. 102.
    Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, et al. 2000.. Mop3 is an essential component of the master circadian pacemaker in mammals. . Cell 103::100917
    [Crossref] [Google Scholar]
  103. 103.
    Cao X, Yang Y, Selby CP, Liu Z, Sancar A. 2021.. Molecular mechanism of the repressive phase of the mammalian circadian clock. . PNAS 118::e2021174118
    [Crossref] [Google Scholar]
  104. 104.
    Ueda HR, Hayashi S, Chen W, Sano M, Machida M, et al. 2005.. System-level identification of transcriptional circuits underlying mammalian circadian clocks. . Nat. Genet. 37::18792
    [Crossref] [Google Scholar]
  105. 105.
    Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, et al. 2002.. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. . Cell 110::25160
    [Crossref] [Google Scholar]
  106. 106.
    Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, et al. 2004.. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. . Neuron 43::52737
    [Crossref] [Google Scholar]
  107. 107.
    Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H. 2001.. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. . Genes Dev. 15::9951006
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-090122-050842
Loading
/content/journals/10.1146/annurev-immunol-090122-050842
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error