1932

Abstract

Nonclonal innate immune responses mediated by germ line–encoded receptors, such as Toll-like receptors or natural killer receptors, are commonly contrasted with diverse, clonotypic adaptive responses of lymphocyte antigen receptors generated by somatic recombination. However, the Variable (V) regions of antigen receptors include germ line–encoded motifs unaltered by somatic recombination, and theoretically available to mediate nonclonal, innate responses, that are independent of or largely override clonotypic responses. Recent evidence demonstrates that such responses exist, underpinning the associations of particular γδ T cell receptors (TCRs) with specific anatomical sites. Thus, TCRγδ can make innate and adaptive responses with distinct functional outcomes. Given that αβ T cells and B cells can also make nonclonal responses, we consider that innate responses of antigen receptor V-regions may be more widespread, for example, inducing states of preparedness from which adaptive clones are better selected. We likewise consider that potent, nonclonal T cell responses to microbial superantigens may reflect subversion of physiologic innate responses of TCRα/β chains.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-102819-023144
2020-04-26
2025-01-08
The full text of this item is not currently available.

Literature Cited

  1. 1. 
    Tonegawa S. 1983. Somatic generation of antibody diversity. Nature 302:575–81
    [Google Scholar]
  2. 2. 
    Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–63
    [Google Scholar]
  3. 3. 
    Ott JA, Castro CD, Deiss TC, Ohta Y, Flajnik MF, Criscitiello MF 2018. Somatic hypermutation of T cell receptor alpha chain contributes to selection in nurse shark thymus. eLife 7:e28477
    [Google Scholar]
  4. 4. 
    Wu TT, Kabat EA. 1970. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. 132:211–50
    [Google Scholar]
  5. 5. 
    Throsby M, van den Brink E, Jongeneelen M, Poon LL, Alard P et al. 2008. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLOS ONE 3:e3942
    [Google Scholar]
  6. 6. 
    Medzhitov R, Janeway CA Jr 1997. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–98
    [Google Scholar]
  7. 7. 
    Abeler-Dorner L, Swamy M, Williams G, Hayday AC, Bas A 2012. Butyrophilins: an emerging family of immune regulators. Trends Immunol 33:34–41
    [Google Scholar]
  8. 8. 
    Salim M, Knowles TJ, Hart R, Mohammed F, Woodward MJ et al. 2016. Characterization of a putative receptor binding surface on Skint-1, a critical determinant of dendritic epidermal T cell selection. J. Biol. Chem. 291:9310–21
    [Google Scholar]
  9. 9. 
    Arnett HA, Escobar SS, Viney JL 2009. Regulation of costimulation in the era of butyrophilins. Cytokine 46:370–75
    [Google Scholar]
  10. 10. 
    Messal N, Mamessier E, Sylvain A, Celis-Gutierrez J, Thibult ML et al. 2011. Differential role for CD277 as a co-regulator of the immune signal in T and NK cells. Eur. J. Immunol. 41:3443–54
    [Google Scholar]
  11. 11. 
    Rhodes DA, Reith W, Trowsdale J 2016. Regulation of immunity by butyrophilins. Annu. Rev. Immunol. 34:151–72
    [Google Scholar]
  12. 12. 
    Barbee SD, Woodward MJ, Turchinovich G, Mention JJ, Lewis JM et al. 2011. Skint-1 is a highly specific, unique selecting component for epidermal T cells. PNAS 108:3330–35
    [Google Scholar]
  13. 13. 
    Boyden LM, Lewis JM, Barbee SD, Bas A, Girardi M et al. 2008. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. Nat. Genet. 40:656–62
    [Google Scholar]
  14. 14. 
    Lewis JM, Girardi M, Roberts SJ, Barbee SD, Hayday AC, Tigelaar RE 2006. Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant. Nat. Immunol. 7:843–50
    [Google Scholar]
  15. 15. 
    Mallick-Wood CA, Lewis JM, Richie LI, Owen MJ, Tigelaar RE, Hayday AC 1998. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science 279:1729–33
    [Google Scholar]
  16. 16. 
    Harly C, Guillaume Y, Nedellec S, Peigne CM, Monkkonen H et al. 2012. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120:2269–79
    [Google Scholar]
  17. 17. 
    Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O et al. 2015. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. PNAS 112:E556–65
    [Google Scholar]
  18. 18. 
    Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A et al. 2016. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. Cell 167:203–18.e17
    [Google Scholar]
  19. 19. 
    Vantourout P, Laing A, Woodward MJ, Zlatareva I, Apolonia L et al. 2018. Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing γδ T cell biology. PNAS 115:1039–44
    [Google Scholar]
  20. 20. 
    Rigau M, Ostrouska S, Fulford TS, Johnson DN, Woods K et al. 2020. Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science 367:eaay5516 https://doi.org/10.1126/science.aay5516
    [Crossref] [Google Scholar]
  21. 21. 
    Melandri D, Zlatareva I, Chaleil RAG, Dart RJ, Chancellor A et al. 2018. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat. Immunol. 19:1352–65
    [Google Scholar]
  22. 22. 
    Green N, Rosebrook J, Cochran N, Tan K, Wang JH et al. 1999. Mutational analysis of MAdCAM-1/α4β7 interactions reveals significant binding determinants in both the first and second immunoglobulin domains. Cell Adhes. Commun. 7:167–81
    [Google Scholar]
  23. 23. 
    Jones EY, Harlos K, Bottomley MJ, Robinson RC, Driscoll PC et al. 1995. Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 Å resolution. Nature 373:539–44
    [Google Scholar]
  24. 24. 
    Moebius U, Pallai P, Harrison SC, Reinherz EL 1993. Delineation of an extended surface contact area on human CD4 involved in class II major histocompatibility complex binding. PNAS 90:8259–63
    [Google Scholar]
  25. 25. 
    Somoza C, Driscoll PC, Cyster JG, Williams AF 1993. Mutational analysis of the CD2/CD58 interaction: the binding site for CD58 lies on one face of the first domain of human CD2. J. Exp. Med. 178:549–58
    [Google Scholar]
  26. 26. 
    Willcox CR, Vantourout P, Salim M, Zlatareva I, Melandri D et al. 2019. Butyrophilin-like 3 directly binds a human Vγ4+ T cell receptor using a modality distinct from clonally-restricted antigen. Immunity 51:813–25
    [Google Scholar]
  27. 27. 
    Mayassi T, Ladell K, Gudjonson H, McLaren JE, Shaw DG et al. 2019. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell 176:967–81.e19
    [Google Scholar]
  28. 28. 
    Hayday A, Vantourout P. 2013. A long-playing CD about the γδ TCR repertoire. Immunity 39:994–96
    [Google Scholar]
  29. 29. 
    Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L et al. 2013. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 39:1032–42
    [Google Scholar]
  30. 30. 
    Willcox CR, Pitard V, Netzer S, Couzi L, Salim M et al. 2012. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 13:872–79
    [Google Scholar]
  31. 31. 
    Hayday AC. 2019. γδ T cell update: adaptate orchestrators of immune surveillance. J. Immunol. 203:311–20
    [Google Scholar]
  32. 32. 
    Rock EP, Sibbald PR, Davis MM, Chien YH 1994. CDR3 length in antigen-specific immune receptors. J. Exp. Med. 179:323–28
    [Google Scholar]
  33. 33. 
    Davey MS, Willcox CR, Hunter S, Kasatskaya SA, Remmerswaal EBM et al. 2018. The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9 subsets. Nat. Commun. 9:1760
    [Google Scholar]
  34. 34. 
    Davey MS, Willcox CR, Joyce SP, Ladell K, Kasatskaya SA et al. 2017. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun. 8:14760
    [Google Scholar]
  35. 35. 
    Ravens S, Schultze-Florey C, Raha S, Sandrock I, Drenker M et al. 2017. Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol. 18:393–401
    [Google Scholar]
  36. 36. 
    Chodaczek G, Papanna V, Zal MA, Zal T 2012. Body-barrier surveillance by epidermal γδ TCRs. Nat. Immunol. 13:272–82
    [Google Scholar]
  37. 37. 
    Hayday AC. 2009. γδ T cells and the lymphoid stress-surveillance response. Immunity 31:184–96
    [Google Scholar]
  38. 38. 
    Strid J, Roberts SJ, Filler RB, Lewis JM, Kwong BY et al. 2008. Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat. Immunol. 9:146–54
    [Google Scholar]
  39. 39. 
    Strid J, Sobolev O, Zafirova B, Polic B, Hayday A 2011. The intraepithelial T cell response to NKG2D-ligands links lymphoid stress surveillance to atopy. Science 334:1293–97
    [Google Scholar]
  40. 40. 
    Bukowski JF, Morita CT, Band H, Brenner MB 1998. Crucial role of TCRγ chain junctional region in prenyl pyrophosphate antigen recognition by γδ T cells. J. Immunol. 161:286–93
    [Google Scholar]
  41. 41. 
    Davodeau F, Peyrat MA, Hallet MM, Houde I, Vie H, Bonneville M 1993. Peripheral selection of antigen receptor junctional features in a major human γδ subset. Eur. J. Immunol. 23:804–8
    [Google Scholar]
  42. 42. 
    Mamedov MR, Scholzen A, Nair RV, Cumnock K, Kenkel JA et al. 2018. A macrophage colony-stimulating-factor-producing γδ T cell subset prevents malarial parasitemic recurrence. Immunity 48:350–63.e7
    [Google Scholar]
  43. 43. 
    Sheridan BS, Romagnoli PA, Pham QM, Fu HH, Alonzo F 3rd et al. 2013. γδ T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39:184–95
    [Google Scholar]
  44. 44. 
    Simonian PL, Roark CL, Born WK, O'Brien RL, Fontenot AP 2009. γδ T cells and Th17 cytokines in hypersensitivity pneumonitis and lung fibrosis. Transl. Res. 154:222–27
    [Google Scholar]
  45. 45. 
    Macho-Fernandez E, Brigl M. 2015. The extended family of CD1d-restricted NKT cells: sifting through a mixed bag of TCRs, antigens, and functions. Front. Immunol. 6:362
    [Google Scholar]
  46. 46. 
    Siddiqui S, Visvabharathy L, Wang CR 2015. Role of group 1 CD1-restricted T cells in infectious disease. Front. Immunol. 6:337
    [Google Scholar]
  47. 47. 
    Karamooz E, Harriff MJ, Lewinsohn DM 2018. MR1-dependent antigen presentation. Semin. Cell Dev. Biol. 84:58–64
    [Google Scholar]
  48. 48. 
    Paletta D, Fichtner AS, Hahn AM, Starick L, Beyersdorf N et al. 2015. The hypervariable region 4 (HV4) and position 93 of the α chain modulate CD1d-glycolipid binding of iNKT TCRs. Eur. J. Immunol. 45:2122–33
    [Google Scholar]
  49. 49. 
    Saline M, Rödström KEJ, Fischer G, Orekhov VY, Karlsson BG, Lindkvist-Petersson K 2010. The structure of superantigen complexed with TCR and MHC reveals novel insights into superantigenic T cell activation. Nat. Commun. 1:119
    [Google Scholar]
  50. 50. 
    Festenstein H. 1973. Immunogenetic and biological aspects of in vitro lymphocyte allotransformation (MLR) in the mouse. Transplant. Rev. 15:62–88
    [Google Scholar]
  51. 51. 
    Festenstein H. 1976. The Mls system. Transplant. Proc. 8:339–42
    [Google Scholar]
  52. 52. 
    Choi Y, Kappler JW, Marrack P 1991. A superantigen encoded in the open reading frame of the 3′ long terminal repeat of mouse mammary tumour virus. Nature 350:203–7
    [Google Scholar]
  53. 53. 
    Kappler JW, Staerz U, White J, Marrack PC 1988. Self-tolerance eliminates T cells specific for Mls-modified products of the major histocompatibility complex. Nature 332:35–40
    [Google Scholar]
  54. 54. 
    MacDonald HR, Pedrazzini T, Schneider R, Louis JA, Zinkernagel RM, Hengartner H 1988. Intrathymic elimination of Mlsa-reactive (Vβ6+) cells during neonatal tolerance induction to Mlsa-encoded antigens. J. Exp. Med. 167:2005–10
    [Google Scholar]
  55. 55. 
    Acha-Orbea H, MacDonald HR. 1995. Superantigens of mouse mammary tumor virus. Annu. Rev. Immunol. 13:459–86
    [Google Scholar]
  56. 56. 
    Blackman MA, Finkel TH, Kappler J, Cambier J, Marrack P 1991. Altered antigen receptor signaling in anergic T cells from self-tolerant T-cell receptor β-chain transgenic mice. PNAS 88:6682–6
    [Google Scholar]
  57. 57. 
    Hosono M, Kurozumi M, Ideyama S, Katsura Y 1992. Neonatal tolerance induction in the thymus to MHC-class-II-associated antigens. V. Thymus medulla and the site for deletional signaling achievement in Mls tolerance. Thymus 20:31–45
    [Google Scholar]
  58. 58. 
    Webb SR, O'Rourke AM, Sprent J 1992. Factors influencing the fate of T cells responding to Mls antigens. Semin. Immunol. 4:329–36
    [Google Scholar]
  59. 59. 
    Scherer MT, Ignatowicz L, Pullen A, Kappler J, Marrack P 1995. The use of mammary tumor virus (Mtv)-negative and single-Mtv mice to evaluate the effects of endogenous viral superantigens on the T cell repertoire. J. Exp. Med. 182:1493–504
    [Google Scholar]
  60. 60. 
    Conrad B, Weissmahr RN, Boni J, Arcari R, Schupbach J, Mach B 1997. A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell 90:303–13
    [Google Scholar]
  61. 61. 
    Waanders GA, Lussow AR, MacDonald HR 1993. Skewed T cell receptor Vα repertoire among superantigen reactive murine T cells. Int. Immunol. 5:55–61
    [Google Scholar]
  62. 62. 
    Keller AN, Corbett AJ, Wubben JM, McCluskey J, Rossjohn J 2017. MAIT cells and MR1-antigen recognition. Curr. Opin. Immunol. 46:66–74
    [Google Scholar]
  63. 63. 
    Chancellor A, Tocheva AS, Cave-Ayland C, Tezera L, White A et al. 2017. CD1b-restricted GEM T cell responses are modulated by Mycobacterium tuberculosis mycolic acid meromycolate chains. PNAS 114:E10956–64
    [Google Scholar]
  64. 64. 
    Gras S, Van Rhijn I, Shahine A, Cheng TY, Bhati M et al. 2016. T cell receptor recognition of CD1b presenting a mycobacterial glycolipid. Nat. Commun. 7:13257
    [Google Scholar]
  65. 65. 
    Van Rhijn I, Kasmar A, de Jong A, Gras S, Bhati M et al. 2013. A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat. Immunol. 14:706–13
    [Google Scholar]
  66. 66. 
    Lafon M, Lafage M, Martinez-Arends A, Ramirez R, Vuillier F et al. 1992. Evidence for a viral superantigen in humans. Nature 358:507–10
    [Google Scholar]
  67. 67. 
    Leroy EM, Becquart P, Wauquier N, Baize S 2011. Evidence for Ebola virus superantigen activity. J. Virol. 85:4041–42
    [Google Scholar]
  68. 68. 
    Hugin AW, Vacchio MS, Morse HC 3rd 1991. A virus-encoded “superantigen” in retrovirus-induced immunodeficiency syndrome of mice. Science 252:424–27
    [Google Scholar]
  69. 69. 
    Hodara VL, Jeddi-Tehrani M, Grunewald J, Andersson R, Scarlatti G et al. 1993. HIV infection leads to differential expression of T-cell receptor V beta genes in CD4+ and CD8+ T cells. AIDS 7:633–38
    [Google Scholar]
  70. 70. 
    Imberti L, Sottini A, Bettinardi A, Puoti M, Primi D 1991. Selective depletion in HIV infection of T cells that bear specific T cell receptor V beta sequences. Science 254:860–62
    [Google Scholar]
  71. 71. 
    Boyer V, Smith LR, Ferre F, Pezzoli P, Trauger RJ et al. 1993. T cell receptor Vβ repertoire in HIV-infection individuals: lack of evidence for selective Vβ deletion. Clin. Exp. Immunol. 92:437–41
    [Google Scholar]
  72. 72. 
    Posnett DN, Kabak S, Hodtsev AS, Goldberg EA, Asch A 1993. T-cell antigen receptor Vβ subsets are not preferentially deleted in AIDS. AIDS 7:625–31
    [Google Scholar]
  73. 73. 
    Sundberg EJ, Deng L, Mariuzza RA 2007. TCR recognition of peptide/MHC class II complexes and superantigens. Semin. Immunol. 19:262–71
    [Google Scholar]
  74. 74. 
    Fields BA, Malchiodi EL, Li H, Ysern X, Stauffacher CV et al. 1996. Crystal structure of a T-cell receptor β-chain complexed with a superantigen. Nature 384:188–92
    [Google Scholar]
  75. 75. 
    Li H, Llera A, Malchiodi EL, Mariuzza RA 1999. The structural basis of T cell activation by superantigens. Annu. Rev. Immunol. 17:435–66
    [Google Scholar]
  76. 76. 
    Riano F, Karunakaran MM, Starick L, Li J, Scholz CJ et al. 2014. Vγ9Vδ2 TCR-activation by phosphorylated antigens requires butyrophilin 3 A1 (BTN3A1) and additional genes on human chromosome 6. Eur. J. Immunol. 44:2571–76
    [Google Scholar]
  77. 77. 
    Sandstrom A, Peigne CM, Leger A, Crooks JE, Konczak F et al. 2014. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity 40:490–500
    [Google Scholar]
  78. 78. 
    Vavassori S, Kumar A, Wan GS, Ramanjaneyulu GS, Cavallari M et al. 2013. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells. Nat. Immunol. 14:908–16
    [Google Scholar]
  79. 79. 
    Jupin C, Anderson S, Damais C, Alouf JE, Parant M 1988. Toxic shock syndrome toxin 1 as an inducer of human tumor necrosis factors and γ interferon. J. Exp. Med. 167:752–61
    [Google Scholar]
  80. 80. 
    Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC et al. 2015. Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 17:1721–41
    [Google Scholar]
  81. 81. 
    Hayworth JL, Mazzuca DM, Maleki Vareki S, Welch I, McCormick JK, Haeryfar SM 2012. CD1d-independent activation of mouse and human iNKT cells by bacterial superantigens. Immunol. Cell Biol. 90:699–709
    [Google Scholar]
  82. 82. 
    Shaler CR, Choi J, Rudak PT, Memarnejadian A, Szabo PA et al. 2017. MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: defining a novel mechanism of superantigen-induced immunopathology and immunosuppression. PLOS Biol 15:e2001930
    [Google Scholar]
  83. 83. 
    Ikejima T, Dinarello CA, Gill DM, Wolff SM 1984. Induction of human interleukin-1 by a product of Staphylococcus aureus associated with toxic shock syndrome. J. Clin. Investig. 73:1312–20
    [Google Scholar]
  84. 84. 
    Watson AR, Janik DK, Lee WT 2012. Superantigen-induced CD4 memory T cell anergy. I. Staphylococcal enterotoxin B induces Fyn-mediated negative signaling. Cell Immunol 276:16–25
    [Google Scholar]
  85. 85. 
    Gaugler B, Langlet C, Martin JM, Schmitt-Verhulst AM, Guimezanes A 1991. Evidence for quantitative and qualitative differences in functional activation of Mls-reactive T cell clones and hybridomas by antigen or TcR/CD3 antibodies. Eur. J. Immunol. 21:2581–89
    [Google Scholar]
  86. 86. 
    O'Rourke AM, Mescher MF, Webb SR 1990. Activation of polyphosphoinositide hydrolysis in T cells by H-2 alloantigen but not MLS determinants. Science 249:171–74
    [Google Scholar]
  87. 87. 
    Bueno C, Lemke CD, Criado G, Baroja ML, Ferguson SS et al. 2006. Bacterial superantigens bypass Lck-dependent T cell receptor signaling by activating a Gα11-dependent, PLC-β-mediated pathway. Immunity 25:67–78
    [Google Scholar]
  88. 88. 
    Verhaar AP, Wildenberg ME, Duijvestein M, Vos AC, Peppelenbosch MP et al. 2013. Superantigen-induced steroid resistance depends on activation of phospholipase Cβ2. J. Immunol. 190:6589–95
    [Google Scholar]
  89. 89. 
    Yamasaki S, Tachibana M, Shinohara N, Iwashima M 1997. Lck-independent triggering of T-cell antigen receptor signal transduction by staphylococcal enterotoxins. J. Biol. Chem. 272:14787–91
    [Google Scholar]
  90. 90. 
    Criado G, Madrenas J. 2004. Superantigen stimulation reveals the contribution of Lck to negative regulation of T cell activation. J. Immunol. 172:222–30
    [Google Scholar]
  91. 91. 
    Li Z, Zeppa JJ, Hancock MA, McCormick JK, Doherty TM et al. 2018. Staphylococcal superantigens use LAMA2 as a coreceptor to activate T cells. J. Immunol. 200:1471–79
    [Google Scholar]
  92. 92. 
    Watson AR, Lee WT. 2006. Defective T cell receptor-mediated signal transduction in memory CD4 T lymphocytes exposed to superantigen or anti-T cell receptor antibodies. Cell Immunol 242:80–90
    [Google Scholar]
  93. 93. 
    Farber DL, Acuto O, Bottomly K 1997. Differential T cell receptor-mediated signaling in naive and memory CD4 T cells. Eur. J. Immunol. 27:2094–101
    [Google Scholar]
  94. 94. 
    Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA et al. 2004. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and downstream signaling to PKCθ. FEBS Lett 574:37–41
    [Google Scholar]
  95. 95. 
    Chen J, Lopez-Moyado IF, Seo H, Lio CJ, Hempleman LJ et al. 2019. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567:530–34
    [Google Scholar]
  96. 96. 
    Turchinovich G, Hayday AC. 2011. Skint-1 identifies a common molecular mechanism for the development of interferon-γ-secreting versus interleukin-17-secreting γδ T cells. Immunity 35:59–68
    [Google Scholar]
  97. 97. 
    Wencker M, Turchinovich G, Di Marco Barros R, Deban L, Jandke A et al. 2014. Innate-like T cells straddle innate and adaptive immunity by altering antigen-receptor responsiveness. Nat. Immunol. 15:80–87
    [Google Scholar]
  98. 98. 
    Burnett DL, Langley DB, Schofield P, Hermes JR, Chan TD et al. 2018. Germinal center antibody mutation trajectories are determined by rapid self/foreign discrimination. Science 360:223–26
    [Google Scholar]
  99. 99. 
    Tanchot C, Lemonnier FA, Perarnau B, Freitas AA, Rocha B 1997. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276:2057–62
    [Google Scholar]
  100. 100. 
    Rodstrom KEJ, Regenthal P, Bahl C, Ford A, Baker D, Lindkvist-Petersson K 2016. Two common structural motifs for TCR recognition by staphylococcal enterotoxins. Sci. Rep. 6:25796
    [Google Scholar]
  101. 101. 
    Morita CT, Li H, Lamphear JG, Rich RR, Fraser JD et al. 2001. Superantigen recognition by γδ T cells: SEA recognition site for human Vγ2 T cell receptors. Immunity 14:331–44
    [Google Scholar]
  102. 102. 
    Aschauer CO, Ferrier P. 2016. Organization and rearrangement of TCR loci. Encyclopedia of Immunobiology, ed. MJH Ratcliffe, pp. 85–98 Amsterdam: Elsevier
    [Google Scholar]
  103. 103. 
    Domiati-Saad R, Attrep JF, Brezinschek HP, Cherrie AH, Karp DR, Lipsky PE 1996. Staphylococcal enterotoxin D functions as a human B cell superantigen by rescuing VH4-expressing B cells from apoptosis. J. Immunol. 156:3608–20
    [Google Scholar]
  104. 104. 
    Domiati-Saad R, Lipsky PE. 1998. Staphylococcal enterotoxin A induces survival of VH3-expressing human B cells by binding to the VH region with low affinity. J. Immunol. 161:1257–66
    [Google Scholar]
  105. 105. 
    Lieberman R, Potter M, Mushinski EB, Humphrey W Jr, Rudikoff S 1974. Genetics of a new IgVH (T15 idiotype) marker in the mouse regulating natural antibody to phosphorylcholine. J. Exp. Med 139:983–1001
    [Google Scholar]
  106. 106. 
    Seidl KJ, MacKenzie JD, Wang D, Kantor AB, Kabat EA et al. 1997. Frequent occurrence of identical heavy and light chain Ig rearrangements. Int. Immunol. 9:689–702
    [Google Scholar]
  107. 107. 
    Haas KM, Poe JC, Steeber DA, Tedder TF 2005. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. . Immunity 23:7–18
    [Google Scholar]
  108. 108. 
    Noviski M, Tan C, Huizar J, Vykunta V, Mueller JL, Zikherman J 2019. Optimal development of mature B cells requires recognition of endogenous antigens. J. Immunol. 203:418–28
    [Google Scholar]
  109. 109. 
    Willis JR, Briney BS, DeLuca SL, Crowe JE Jr, Meiler J 2013. Human germline antibody gene segments encode polyspecific antibodies. PLOS Comput. Biol. 9:e1003045
    [Google Scholar]
  110. 110. 
    Guo B, Rothstein TL. 2016. RasGRP1 is an essential signaling molecule for development of B1a cells with autoantigen receptors. J. Immunol. 196:2583–90
    [Google Scholar]
  111. 111. 
    Martin T, Crouzier R, Weber JC, Kipps TJ, Pasquali JL 1994. Structure-function studies on a polyreactive (natural) autoantibody: Polyreactivity is dependent on somatically generated sequences in the third complementarity-determining region of the antibody heavy chain. J. Immunol. 152:5988–96
    [Google Scholar]
  112. 112. 
    Sui J, Hwang WC, Perez S, Wei G, Aird D et al. 2009. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16:265–73
    [Google Scholar]
  113. 113. 
    Pappas L, Foglierini M, Piccoli L, Kallewaard NL, Turrini F et al. 2014. Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature 516:418–22
    [Google Scholar]
  114. 114. 
    Joyce MG, Wheatley AK, Thomas PV, Chuang GY, Soto C et al. 2016. Vaccine-induced antibodies that neutralize group 1 and group 2 influenza A viruses. Cell 166:609–23
    [Google Scholar]
  115. 115. 
    Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN et al. 2013. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341:1359–65
    [Google Scholar]
  116. 116. 
    Tan J, Piccoli L, Lanzavecchia A 2019. The antibody response to Plasmodium falciparum: cues for vaccine design and the discovery of receptor-based antibodies. Annu. Rev. Immunol. 37:225–46
    [Google Scholar]
  117. 117. 
    Tan J, Sack BK, Oyen D, Zenklusen I, Piccoli L et al. 2018. A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein. Nat. Med. 24:401–7
    [Google Scholar]
  118. 118. 
    Bannish G, Fuentes-Panana EM, Cambier JC, Pear WS, Monroe JG 2001. Ligand-independent signaling functions for the B lymphocyte antigen receptor and their role in positive selection during B lymphopoiesis. J. Exp. Med. 194:1583–96
    [Google Scholar]
  119. 119. 
    Irving BA, Alt FW, Killeen N 1998. Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science 280:905–8
    [Google Scholar]
  120. 120. 
    Kohler F, Hug E, Eschbach C, Meixlsperger S, Hobeika E et al. 2008. Autoreactive B cell receptors mimic autonomous pre-B cell receptor signaling and induce proliferation of early B cells. Immunity 29:912–21
    [Google Scholar]
  121. 121. 
    Hayakawa K, Asano M, Shinton SA, Gui M, Allman D et al. 1999. Positive selection of natural autoreactive B cells. Science 285:113–16
    [Google Scholar]
  122. 122. 
    Rosado MM, Freitas AA. 1998. The role of the B cell receptor V region in peripheral B cell survival. Eur. J. Immunol. 28:2685–93
    [Google Scholar]
  123. 123. 
    Huseby E, Kappler J, Marrack P 2004. TCR-MHC/peptide interactions: kissing-cousins or a shotgun wedding. ? Eur. J. Immunol. 34:1243–50
    [Google Scholar]
  124. 124. 
    Jerne NK. 1971. The somatic generation of immune recognition. Eur. J. Immunol. 1:1–9
    [Google Scholar]
  125. 125. 
    Nyhoff LE, Clark ES, Barron BL, Bonami RH, Khan WN, Kendall PL 2018. Bruton's tyrosine kinase is not essential for B cell survival beyond early developmental stages. J. Immunol. 200:2352–61
    [Google Scholar]
  126. 126. 
    Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F et al. 2012. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 119:4467–75
    [Google Scholar]
  127. 127. 
    Young RM, Wu T, Schmitz R, Dawood M, Xiao W et al. 2015. Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. PNAS 112:13447–54
    [Google Scholar]
  128. 128. 
    Imkeller K, Scally SW, Bosch A, Marti GP, Costa G et al. 2018. Antihomotypic affinity maturation improves human B cell responses against a repetitive epitope. Science 360:1358–62
    [Google Scholar]
  129. 129. 
    Cannon JP, Haire RN, Pancer Z, Mueller MG, Skapura D et al. 2005. Variable domains and a VpreB-like molecule are present in a jawless vertebrate. Immunogenetics 56:924–29
    [Google Scholar]
  130. 130. 
    Rodstrom KE, Elbing K, Lindkvist-Petersson K 2014. Structure of the superantigen staphylococcal enterotoxin B in complex with TCR and peptide-MHC demonstrates absence of TCR-peptide contacts. J. Immunol. 193:1998–2004
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-102819-023144
Loading
/content/journals/10.1146/annurev-immunol-102819-023144
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error