1932

Abstract

The present-day state and future of the Antarctic Ice Sheet depend on the rate at which the ocean melts its fringing ice shelves. Ocean heat must cross many physical and dynamical barriers to melt ice shelves, with the last of these being the ice–ocean boundary layer. This review summarizes the current understanding of ice–ocean boundary-layer dynamics, focusing on recent progress from laboratory experiments, turbulence-resolving numerical simulations, novel observations, and the application to large-scale simulations. The complex interplay between buoyant meltwater and external processes such as current shear leads to the emergence of several melting regimes that we describe, as well as freezing processes. The remaining challenges include developing new parameterizations for large-scale ice–ocean models based on recent advances and understanding the coevolution of melt and basal topography.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040323-074354
2025-01-16
2025-04-06
The full text of this item is not currently available.

Literature Cited

  1. Adusumilli S, Fricker HA, Medley B, Padman L, Siegfried MR. 2020.. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. . Nat. Geosci. 13:(9):61620
    [Crossref] [Google Scholar]
  2. Anselin J, Reed BC, Jenkins A, Green JAM. 2023.. Ice shelf basal melt sensitivity to tide-induced mixing based on the theory of subglacial plumes. . J. Geophys. Res. Oceans 128:(4):e2022JC019156
    [Crossref] [Google Scholar]
  3. Årthun M, Holland PR, Nicholls KW, Feltham DL. 2013.. Eddy-driven exchange between the open ocean and a sub–ice shelf cavity. . J. Phys. Oceanogr. 43:(11):237287
    [Crossref] [Google Scholar]
  4. Asay-Davis XS, Cornford SL, Durand G, Galton-Fenzi BK, Gladstone RM, et al. 2016.. Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) and MISOMIP v. 1 (MISOMIP1). . Geosci. Model Dev. 9:(7):247197
    [Crossref] [Google Scholar]
  5. Barrette PD. 2021.. Understanding frazil ice: the contribution of laboratory studies. . Cold Reg. Sci. Technol. 189::103334
    [Crossref] [Google Scholar]
  6. Begeman CB, Asay-Davis X, Van Roekel L. 2022.. Ice-shelf ocean boundary layer dynamics from large-eddy simulations. . Cryosphere 16:(1):27795
    [Crossref] [Google Scholar]
  7. Burgard C, Jourdain NC, Reese R, Jenkins A, Mathiot P. 2022.. An assessment of basal melt parameterisations for Antarctic ice shelves. . Cryosphere 16:(12):493175
    [Crossref] [Google Scholar]
  8. Bushuk M, Holland DM, Stanton TP, Stern A, Gray C. 2019.. Ice scallops: a laboratory investigation of the ice–water interface. . J. Fluid Mech. 873::94276
    [Crossref] [Google Scholar]
  9. Cenedese C, Straneo F. 2023.. Icebergs melting. . Annu. Rev. Fluid Mech. 55::377402
    [Crossref] [Google Scholar]
  10. Cook S, Nicholls KW, Vaňková I, Thompson SS, Galton-Fenzi BK. 2022.. Data initiatives for ocean-driven melt of Antarctic ice shelves. . Ann. Glaciol. 63:(87–89):2732
    [Crossref] [Google Scholar]
  11. Couston LA, Hester E, Favier B, Taylor JR, Holland PR, Jenkins A. 2021.. Topography generation by melting and freezing in a turbulent shear flow. . J. Fluid Mech. 911::A44
    [Crossref] [Google Scholar]
  12. Craven M, Warner R, Galton-Fenzi B, Herraiz-Borreguero L, Vogel S, Allison I. 2014.. Platelet ice attachment to instrument strings beneath the Amery Ice Shelf, East Antarctica. . J. Glaciol. 60:(220):38393
    [Crossref] [Google Scholar]
  13. Cusack JM, Jackson RH, Nash JD, Skyllingstad E, Pettit EC, et al. 2023.. Internal gravity waves generated by subglacial discharge: implications for tidewater glacier melt. . Geophys. Res. Lett. 50:(12):e2022GL102426
    [Crossref] [Google Scholar]
  14. Davis PED, Nicholls KW. 2019.. Turbulence observations beneath Larsen C ice shelf, Antarctica. . J. Geophys. Res. Oceans 124:(8):552950
    [Crossref] [Google Scholar]
  15. Davis PED, Nicholls KW, Holland DM, Schmidt BE, Washam P, et al. 2023.. Suppressed basal melting in the eastern Thwaites Glacier grounding zone. . Nature 614:(7948):47985
    [Crossref] [Google Scholar]
  16. De Rydt J, Gudmundsson GH. 2016.. Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge. . J. Geophys. Res. Earth Surf. 121:(5):86580
    [Crossref] [Google Scholar]
  17. De Rydt J, Jourdain NC, Nakayama Y, van Caspel M, Timmermann R, et al. 2024.. Experimental design for the Marine Ice Sheet and Ocean Model Intercomparison Project – phase 2 (MISOMIP2). EGUsphere 2024-95. . https://doi.org/10.5194/egusphere-2024-95
  18. Depoorter M, Bamber J, Griggs J, et al. 2013.. Calving fluxes and basal melt rates of Antarctic ice shelves. . Nature 502::8992
    [Crossref] [Google Scholar]
  19. Dinniman MS, Asay-Davis XS, Galton-Fenzi BK, Holland PR, Jenkins A, Timmermann R. 2016.. Modeling ice shelf/ocean interaction in Antarctica: a review. . Oceanography 29:(4):14453
    [Crossref] [Google Scholar]
  20. Dinniman MS, Klinck JM, Smith WO Jr. 2007.. Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica. . J. Geophys. Res. Oceans 112:(C11):C11013
    [Crossref] [Google Scholar]
  21. Dinniman MS, St-Laurent P, Arrigo KR, Hofmann EE, van Dijken GL. 2023.. Sensitivity of the relationship between Antarctic ice shelves and iron supply to projected changes in the atmospheric forcing. . J. Geophys. Res. Oceans 128:(2):e2022JC019210
    [Crossref] [Google Scholar]
  22. Donat-Magnin M, Jourdain NC, Spence P, Le Sommer J, Gallée H, Durand G. 2017.. Ice-shelf melt response to changing winds and glacier dynamics in the Amundsen Sea sector, Antarctica. . J. Geophys. Res. Oceans 122:(12):1020624
    [Crossref] [Google Scholar]
  23. Dutrieux P, Rydt JD, Jenkins A, Holland PR, Ha HK, et al. 2014.. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. . Science 343:(6167):17478
    [Crossref] [Google Scholar]
  24. Edwards TL, Nowicki S, Marzeion B, Hock R, Goelzer H, et al. 2021.. Projected land ice contributions to twenty-first-century sea level rise. . Nature 593:(7857):7482
    [Crossref] [Google Scholar]
  25. Eicken H, Oerter H, Miller H, Graf W, Kipfstuhl J. 1994.. Textural characteristics and impurity content of meteoric and marine ice in the Ronne Ice Shelf, Antarctica. . J. Glaciol. 40:(135):38698
    [Crossref] [Google Scholar]
  26. Ellison TH, Turner JS. 1959.. Turbulent entrainment in stratified flows. . J. Fluid Mech. 6::42348
    [Crossref] [Google Scholar]
  27. Favier L, Jourdain NC, Jenkins A, Merino N, Durand G, et al. 2019.. Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3). . Geosci. Model Dev. 12:(6):225583
    [Crossref] [Google Scholar]
  28. Frazer EK, Langhorne PJ, Leonard GH, Robinson NJ, Schumayer D. 2020.. Observations of the size distribution of frazil ice in an ice shelf water plume. . Geophys. Res. Lett. 47:(21):e2020GL090498
    [Crossref] [Google Scholar]
  29. Friedrichs DM, McInerney JBT, Oldroyd HJ, Lee WS, Yun S, et al. 2022.. Observations of submesoscale eddy-driven heat transport at an ice shelf calving front. . Commun. Earth Environ. 3:(1):140
    [Crossref] [Google Scholar]
  30. Galton-Fenzi B, Hunter J, Coleman R, Marsland S, Warner R. 2012.. Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. . J. Geophys. Res. Oceans 117:(C9):C09031
    [Crossref] [Google Scholar]
  31. Garabato ACN, Forryan A, Dutrieux P, Brannigan L, Biddle LC, et al. 2017.. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. . Nature 542:(7640):21922
    [Crossref] [Google Scholar]
  32. Gayen B, Griffiths RW, Kerr RC. 2016.. Simulation of convection at a vertical ice face dissolving into saline water. . J. Fluid Mech. 798::28498
    [Crossref] [Google Scholar]
  33. Goldberg DN, Gourmelen N, Kimura S, Millan R, Snow K. 2019.. How accurately should we model ice shelf melt rates?. Geophys. Res. Lett. 46:(1):18999
    [Crossref] [Google Scholar]
  34. Gough AJ, Mahoney AR, Langhorne PJ, Williams MJ, Robinson NJ, Haskell TG. 2012.. Signatures of supercooling: McMurdo Sound platelet ice. . J. Glaciol. 58:(207):3850
    [Crossref] [Google Scholar]
  35. Gourmelen N, Goldberg DN, Snow K, Henley SF, Bingham RG, et al. 2017.. Channelized melting drives thinning under a rapidly melting Antarctic ice shelf. . Geophys. Res. Lett. 44:(19):9796804
    [Crossref] [Google Scholar]
  36. Greene CA, Gardner AS, Schlegel NJ, Fraser AD. 2022.. Antarctic calving loss rivals ice-shelf thinning. . Nature 609:(7929):94853
    [Crossref] [Google Scholar]
  37. Grosfeld K, Sandhäger H. 2004.. The evolution of a coupled ice shelf–ocean system under different climate states. . Glob. Planet. Change 42:(1–4):10732
    [Crossref] [Google Scholar]
  38. Gunn KL, Rintoul SR, England MH, Bowen MM. 2023.. Recent reduced abyssal overturning and ventilation in the Australian Antarctic Basin. . Nat. Clim. Change 13::53744
    [Crossref] [Google Scholar]
  39. Gwyther DE, Cougnon EA, Galton-Fenzi BK, Roberts JL, Hunter JR, Dinniman MS. 2016.. Modelling the response of ice shelf basal melting to different ocean cavity environmental regimes. . Ann. Glaciol. 57:(73):13141
    [Crossref] [Google Scholar]
  40. Gwyther DE, Dow CF, Jendersie S, Gourmelen N, Galton-Fenzi BK. 2023.. Subglacial freshwater drainage increases simulated basal melt of the Totten Ice Shelf. . Geophys. Res. Lett. 50:(12):e2023GL103765
    [Crossref] [Google Scholar]
  41. Gwyther DE, Galton-Fenzi BK, Dinniman MS, Roberts JL, Hunter JR. 2015.. The effect of basal friction on melting and freezing in ice shelf-ocean models. . Ocean Model. 95::3852
    [Crossref] [Google Scholar]
  42. Gwyther DE, Kusahara K, Asay-Davis XS, Dinniman MS, Galton-Fenzi BK. 2020.. Vertical processes and resolution impact ice shelf basal melting: a multi-model study. . Ocean Model. 147::101569
    [Crossref] [Google Scholar]
  43. Hattermann T, Nøst OA, Lilly JM, Smedsrud LH. 2012.. Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica. . Geophys. Res. Lett. 39:(12):L12605
    [Crossref] [Google Scholar]
  44. Hattermann T, Smedsrud LH, Nøst OA, Lilly JM, Galton-Fenzi BK. 2014.. Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: basal melting and exchange with open ocean. . Ocean Model. 82::2844
    [Crossref] [Google Scholar]
  45. Haumann FA, Moorman R, Riser SC, Smedsrud LH, Maksym T, et al. 2020.. Supercooled Southern Ocean waters. . Geophys. Res. Lett. 47:(20):e2020GL090242
    [Crossref] [Google Scholar]
  46. Hedström KS. 1994.. Technical manual for a coupled sea-ice/ocean circulation model (version 1). OCS Stud. MMS 94-0020, Miner. Manag. Serv., Alsk. Outer Cont. Shelf Reg., Anchorage:
    [Google Scholar]
  47. Hellmer H, Kauker F, Timmermann R, Determann J, Rae J. 2012.. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. . Nature 13::22528
    [Crossref] [Google Scholar]
  48. Hellmer H, Olbers D. 1989.. A two-dimensional model for the thermohaline circulation under an ice shelf. . Antarct. Sci. 1:(4):32536
    [Crossref] [Google Scholar]
  49. Herraiz-Borreguero L, Allison I, Craven M, Nicholls KW, Rosenberg MA. 2013.. Ice shelf/ocean interactions under the Amery Ice Shelf: seasonal variability and its effect on marine ice formation. . J. Geophys. Res. Oceans 118:(12):711731
    [Crossref] [Google Scholar]
  50. Hewitt IJ. 2020.. Subglacial plumes. . Annu. Rev. Fluid Mech. 52:(1):14569
    [Crossref] [Google Scholar]
  51. Hill EA, Rosier SHR, Gudmundsson GH, Collins M. 2021.. Quantifying the potential future contribution to global mean sea level from the Filchner–Ronne basin, Antarctica. . Cryosphere 15:(10):4675702
    [Crossref] [Google Scholar]
  52. Holland DM, Jenkins A. 1999.. Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. . J. Phys. Oceanogr. 29:(8):1787800
    [Crossref] [Google Scholar]
  53. Holland PR, Bevan SL, Luckman AJ. 2023.. Strong ocean melting feedback during the recent retreat of Thwaites Glacier. . Geophys. Res. Lett. 50:(8):e2023GL103088
    [Crossref] [Google Scholar]
  54. Holland PR, Feltham DL. 2005.. Frazil dynamics and precipitation in a water column with depth-dependent supercooling. . J. Fluid Mech. 530::10124
    [Crossref] [Google Scholar]
  55. Holland PR, Feltham DL. 2006.. The effects of rotation and ice shelf topography on frazil-laden ice shelf water plumes. . J. Phys. Oceanogr. 36:(12):231227
    [Crossref] [Google Scholar]
  56. Hoppmann M, Richter ME, Smith IJ, Jendersie S, Langhorne PJ, et al. 2020.. Platelet ice, the Southern Ocean's hidden ice: a review. . Ann. Glaciol. 61:(83):34168
    [Crossref] [Google Scholar]
  57. Huppert HE, Turner JS. 1980.. Ice blocks melting into a salinity gradient. . J. Fluid Mech. 100:(2):36784
    [Crossref] [Google Scholar]
  58. IPCC (Intergov. Panel Clim. Change). 2021.. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan , et al. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  59. Jenkins A. 1991.. A one-dimensional model of ice shelf-ocean interaction. . J. Geophys. Res. 96::2067177
    [Crossref] [Google Scholar]
  60. Jenkins A. 2011.. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. . J. Phys. Oceanogr. 41:(12):227994
    [Crossref] [Google Scholar]
  61. Jenkins A. 2016.. A simple model of the ice shelf–ocean boundary layer and current. . J. Phys. Oceanogr. 46:(6):1785803
    [Crossref] [Google Scholar]
  62. Jenkins A. 2021.. Shear, stability, and mixing within the ice shelf–ocean boundary current. . J. Phys. Oceanogr. 51:(7):212948
    [Google Scholar]
  63. Jenkins A, Bombosch A. 1995.. Modeling the effects of frazil ice crystals on the dynamics and thermodynamics of ice shelf water plumes. . J. Geophys. Res. Oceans 100:(C4):696781
    [Crossref] [Google Scholar]
  64. Jenkins A, Dutrieux P, Jacobs SS, McPhail SD, Perrett JR, et al. 2010a.. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. . Nat. Geosci. 3:(7):46872
    [Crossref] [Google Scholar]
  65. Jenkins A, Nicholls KW, Corr HF. 2010b.. Observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica. . J. Phys. Oceanogr. 40:(10):2298312
    [Crossref] [Google Scholar]
  66. Jordan JR, Holland PR, Jenkins A, Piggott MD, Kimura S. 2014.. Modeling ice-ocean interaction in ice-shelf crevasses. . J. Geophys. Res. Oceans 119:(2):9951008
    [Crossref] [Google Scholar]
  67. Josberger E, Martin S. 1981.. A laboratory and theoretical study of the boundary layer adjacent to a vertical melting ice wall in salt water. . J. Fluid Mech. 111::43973
    [Crossref] [Google Scholar]
  68. Jourdain NC, Molines JM, Le Sommer J, Mathiot P, Chanut J, et al. 2019.. Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves. . Ocean Model. 133::4455
    [Crossref] [Google Scholar]
  69. Kader B, Yaglom A. 1972.. Heat and mass transfer laws for fully turbulent wall flows. . Int. J. Heat Mass Transf. 15:(12):232951
    [Crossref] [Google Scholar]
  70. Kader B, Yaglom A. 1977.. Turbulent heat and mass transfer from a wall with parallel roughness ridges. . Int. J. Heat Mass Transf. 20:(4):34557
    [Crossref] [Google Scholar]
  71. Ke J, Williamson N, Armfield S, Komiya A. 2023.. The turbulence development of a vertical natural convection boundary layer. . J. Fluid Mech. 964::A24
    [Crossref] [Google Scholar]
  72. Keitzl T, Mellado JP, Notz D. 2016.. Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface. . J. Geophys. Res. Oceans 121::106384
    [Crossref] [Google Scholar]
  73. Kerr RC, McConnochie CD. 2015.. Dissolution of a vertical solid surface by turbulent compositional convection. . J. Fluid Mech. 765::21128
    [Crossref] [Google Scholar]
  74. Kimura S, Nicholls KW, Venables E. 2015.. Estimation of ice shelf melt rate in the presence of a thermohaline staircase. . J. Phys. Oceanogr. 45:(1):13348
    [Crossref] [Google Scholar]
  75. Lambert E, Jüling A, van de Wal RSW, Holland PR. 2023.. Modelling Antarctic ice shelf basal melt patterns using the one-layer Antarctic model for dynamical downscaling of ice–ocean exchanges (LADDIE v1.0). . Cryosphere 17:(8):320328
    [Crossref] [Google Scholar]
  76. Lewis E, Perkin R. 1986.. Ice pumps and their rates. . J. Geophys. Res. Oceans 91:(C10):1175662
    [Crossref] [Google Scholar]
  77. Li Q, England M, Hogg A, Rintoul S, Morrison A. 2023.. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. . Nature 615::84147
    [Crossref] [Google Scholar]
  78. MacAyeal DR. 1985.. Evolution of tidally triggered meltwater plumes below ice shelves. . In Oceanology of the Antarctic Continental Shelf, ed. SS Jacobs , pp. 13343. Antarct. Res. Ser. 43 . Washington, DC:: Am. Geophys. Union
    [Google Scholar]
  79. Magorrian SJ, Wells AJ. 2016.. Turbulent plumes from a glacier terminus melting in a stratified ocean. . J. Geophys. Res. Oceans 121:(7):467096
    [Crossref] [Google Scholar]
  80. Makinson K. 2002.. Modeling tidal current profiles and vertical mixing beneath Filchner–Ronne Ice Shelf, Antarctica. . J. Phys. Oceanogr. 32:(1):20215
    [Crossref] [Google Scholar]
  81. Malyarenko A, Wells AJ, Langhorne PJ, Robinson NJ, Williams MJ, Nicholls KW. 2020.. A synthesis of thermodynamic ablation at ice-ocean interfaces from theory, observations and models. . Ocean Model. 154::101692
    [Crossref] [Google Scholar]
  82. Martin S, Kauffman P. 1977.. An experimental and theoretical study of the turbulent and laminar convection generated under a horizontal ice sheet floating on warm salty water. . J. Phys. Oceanogr. 7:(2):27283
    [Crossref] [Google Scholar]
  83. Matsumura Y, Ohshima KI. 2015.. Lagrangian modelling of frazil ice in the ocean. . Ann. Glaciol. 56:(69):37382
    [Crossref] [Google Scholar]
  84. McConnochie CD, Kerr RC. 2016a.. The effect of a salinity gradient on the dissolution of a vertical ice face. . J. Fluid Mech. 791::589607
    [Crossref] [Google Scholar]
  85. McConnochie CD, Kerr RC. 2016b.. The turbulent wall plume from a vertically distributed source of buoyancy. . J. Fluid Mech. 787::23753
    [Crossref] [Google Scholar]
  86. McConnochie CD, Kerr RC. 2017a.. Enhanced ablation of a vertical ice wall due to an external freshwater plume. . J. Fluid Mech. 810::42947
    [Crossref] [Google Scholar]
  87. McConnochie CD, Kerr RC. 2017b.. Testing a common ice-ocean parameterization with laboratory experiments. . J. Geophys. Res. Oceans 122:(7):590515
    [Crossref] [Google Scholar]
  88. McConnochie CD, Kerr RC. 2018.. Dissolution of a sloping solid surface by turbulent compositional convection. . J. Fluid Mech. 846::56377
    [Crossref] [Google Scholar]
  89. McDougall TJ, Barker PM, Feistel R, Galton-Fenzi BK. 2014.. Melting of ice and sea ice into seawater and frazil ice formation. . J. Phys. Oceanogr. 44:(7):175175
    [Crossref] [Google Scholar]
  90. McPhee MG. 1994.. On the turbulent mixing length in the oceanic boundary layer. . J. Phys. Oceanogr. 24:(9):201431
    [Crossref] [Google Scholar]
  91. McPhee MG, Maykut GA, Morison JH. 1987.. Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. . J. Geophys. Res. Oceans 92:(C7):701731
    [Crossref] [Google Scholar]
  92. McPhee MG, Stevens CL, Smith IJ, Robinson NJ. 2016.. Turbulent heat transfer as a control of platelet ice growth in supercooled under-ice ocean boundary layers. . Ocean Sci. 12:(2):50715
    [Crossref] [Google Scholar]
  93. Middleton L, Davis PED, Taylor JR, Nicholls KW. 2022.. Double diffusion as a driver of turbulence in the stratified boundary layer beneath George VI Ice Shelf. . Geophys. Res. Lett. 49:(5):e2021GL096119
    [Crossref] [Google Scholar]
  94. Middleton L, Vreugdenhil CA, Holland PR, Taylor JR. 2021.. Numerical simulations of melt-driven double-diffusive fluxes in a turbulent boundary layer beneath an ice shelf. . J. Phys. Oceanogr. 51:(2):40318
    [Crossref] [Google Scholar]
  95. Mondal M, Gayen B, Griffiths RW, Kerr RC. 2019.. Ablation of sloping ice faces into polar seawater. . J. Fluid Mech. 863::54571
    [Crossref] [Google Scholar]
  96. Monin AS, Obukhov AM. 1954.. Basic laws of turbulent mixing in the surface layer of the atmosphere. . Contrib. Geophys. Inst. Acad. Sci. USSR 151::16387
    [Google Scholar]
  97. Morse B, Richard M. 2009.. A field study of suspended frazil ice particles. . Cold Reg. Sci. Technol. 55:(1):86102
    [Crossref] [Google Scholar]
  98. Morton BR, Taylor G, Turner JS. 1956.. Turbulent gravitational convection from maintained and instantaneous sources. . Proc. R. Soc. A 234::123
    [Google Scholar]
  99. Nakayama Y, Timmermann R, Hellmer HH. 2020.. Impact of West Antarctic ice shelf melting on Southern Ocean hydrography. . Cryosphere 14:(7):220516
    [Crossref] [Google Scholar]
  100. Naughten KA, Galton-Fenzi BK, Meissner KJ, England MH, Brassington GB, et al. 2017.. Spurious sea ice formation caused by oscillatory ocean tracer advection schemes. . Ocean Model. 116::10817
    [Crossref] [Google Scholar]
  101. Nilson RH. 1985.. Countercurrent convection in a double-diffusive boundary layer. . J. Fluid Mech. 160::181210
    [Crossref] [Google Scholar]
  102. Noble TL, Rohling EJ, Aitken ARA, Bostock HC, Chase Z, et al. 2020.. The sensitivity of the Antarctic ice sheet to a changing climate: past, present, and future. . Rev. Geophys. 58:(4):e2019RG000663
    [Crossref] [Google Scholar]
  103. Nowicki S, Goelzer H, Seroussi H, Payne AJ, Lipscomb WH, et al. 2020.. Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. . Cryosphere 14:(7):233168
    [Crossref] [Google Scholar]
  104. Padman L, Siegfried MR, Fricker HA. 2018.. Ocean tide influences on the Antarctic and Greenland ice sheets. . Rev. Geophys. 56:(1):14284
    [Crossref] [Google Scholar]
  105. Parker DA, Burridge HC, Partridge JL, Linden PF. 2021.. Vertically distributed wall sources of buoyancy. Part 1. Unconfined. . J. Fluid Mech. 907::A15
    [Crossref] [Google Scholar]
  106. Patmore RD, Holland PR, Vreugdenhil CA, Jenkins A, Taylor JR. 2023.. Turbulence in the ice shelf–ocean boundary current and its sensitivity to model resolution. . J. Phys. Oceanogr. 53:(2):61333
    [Crossref] [Google Scholar]
  107. Payne AJ, Holland PR, Shepherd AP, Rutt IC, Jenkins A, Joughin I. 2007.. Numerical modeling of ocean-ice interactions under Pine Island Bay's ice shelf. . J. Geophys. Res. Oceans 112:(C10):C10019
    [Crossref] [Google Scholar]
  108. Pelletier C, Fichefet T, Goosse H, Haubner K, Helsen S, et al. 2022.. PARASO, a circum-Antarctic fully coupled ice-sheet–ocean–sea-ice–atmosphere–land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5. . Geosci. Model Dev. 15:(2):55394
    [Crossref] [Google Scholar]
  109. Phillips OM. 1970.. On flows induced by diffusion in a stably stratified fluid. . Deep-Sea Res. Oceanogr. Abstr. 17:(3):43543
    [Crossref] [Google Scholar]
  110. Prend CJ, MacGilchrist GA, Manucharyan GE, Pang RQ, Moorman R, et al. 2024.. Ross Gyre variability modulates oceanic heat supply toward the West Antarctic continental shelf. . Commun. Earth Environ. 5:(1):47
    [Crossref] [Google Scholar]
  111. Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, den Broeke MR, Padman L. 2012.. Antarctic ice-sheet loss driven by basal melting of ice shelves. . Nature 484:(7395):5025
    [Crossref] [Google Scholar]
  112. Rees Jones DW, Wells AJ. 2018.. Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes. . Cryosphere 12:(1):2538
    [Crossref] [Google Scholar]
  113. Richter O, Gwyther DE, Galton-Fenzi BK, Naughten KA. 2022a.. The Whole Antarctic Ocean Model (WAOM v1.0): development and evaluation. . Geosci. Model Dev. 15:(2):61747
    [Crossref] [Google Scholar]
  114. Richter O, Gwyther DE, King MA, Galton-Fenzi BK. 2022b.. The impact of tides on Antarctic ice shelf melting. . Cryosphere 16:(4):140929
    [Crossref] [Google Scholar]
  115. Rignot E, Jacobs S, Mouginot J, Scheuchl B. 2013.. Ice-shelf melting around Antarctica. . Science 341:(6143):26670
    [Crossref] [Google Scholar]
  116. Robertson R. 2001.. Internal tides and baroclinicity in the southern Weddell Sea 2. Effects of the critical latitude and stratification. . J. Geophys. Res. 106:(C11):2701734
    [Crossref] [Google Scholar]
  117. Robinson NJ, Stevens CL, McPhee MG. 2017.. Observations of amplified roughness from crystal accretion in the sub-ice ocean boundary layer. . Geophys. Res. Lett. 44::181422
    [Crossref] [Google Scholar]
  118. Rosevear MG, Galton-Fenzi BK, Stevens C. 2022a.. Evaluation of basal melting parameterisations using in situ ocean and melting observations from the Amery Ice Shelf, East Antarctica. . Ocean Sci. 18:(4):110930
    [Crossref] [Google Scholar]
  119. Rosevear MG, Gayen B, Galton-Fenzi BK. 2021.. The role of double-diffusive convection in basal melting of Antarctic ice shelves. . PNAS 118:(6):e2007541118
    [Crossref] [Google Scholar]
  120. Rosevear MG, Gayen B, Galton-Fenzi BK. 2022b.. Regimes and transitions in the basal melting of Antarctic ice shelves. . J. Phys. Oceanogr. 52:(10):2589608
    [Crossref] [Google Scholar]
  121. Schmidt BE, Washam P, Davis PED, Nicholls KW, Holland DM, et al. 2023.. Heterogeneous melting near the Thwaites Glacier grounding line. . Nature 614:(7948):47178
    [Crossref] [Google Scholar]
  122. Schulz K, Nguyen AT, Pillar HR. 2022.. An improved and observationally-constrained melt rate parameterization for vertical ice fronts of marine terminating glaciers. . Geophys. Res. Lett. 49:(18):e2022GL100654
    [Crossref] [Google Scholar]
  123. Scott WI, Kramer SC, Holland PR, Nicholls KW, Siegert MJ, Piggott MD. 2023.. Towards a fully unstructured ocean model for ice shelf cavity environments: model development and verification using the Firedrake finite element framework. . Ocean Model. 182::102178
    [Crossref] [Google Scholar]
  124. Seroussi H, Nowicki S, Payne AJ, Goelzer H, Lipscomb WH, et al. 2020.. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. . Cryosphere 14:(9):303370
    [Crossref] [Google Scholar]
  125. Shrestha K, Manucharyan GE, Nakayama Y. 2024.. Submesoscale variability and basal melting in ice shelf cavities of the Amundsen Sea. . Geophys. Res. Lett. 51:(3):e2023GL107029
    [Crossref] [Google Scholar]
  126. Smedsrud LH. 2002.. A model for entrainment of sediment into sea ice by aggregation between frazil-ice crystals and sediment grains. . J. Glaciol. 48:(160):5161
    [Crossref] [Google Scholar]
  127. Smedsrud LH, Jenkins A. 2004.. Frazil ice formation in an ice shelf water plume. . J. Geophys. Res. Oceans 109:(C3):C03025
    [Crossref] [Google Scholar]
  128. Smith B, Fricker HA, Gardner AS, Medley B, Nilsson J, et al. 2020.. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. . Science 368:(6496):123942
    [Crossref] [Google Scholar]
  129. Stanton T, Shaw W, Truffer M, Corr H, Peters L, et al. 2013.. Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica. . Science 341:(6151):123639
    [Crossref] [Google Scholar]
  130. Stevens C, Hulbe C, Brewer M, Stewart C, Robinson N, et al. 2020.. Ocean mixing and heat transport processes observed under the Ross Ice Shelf control its basal melting. . PNAS 117::16799804
    [Crossref] [Google Scholar]
  131. Stewart CL. 2018.. Ice-ocean interactions beneath the north-western Ross Ice Shelf, Antarctica. PhD Thesis, Univ. Cambridge, Cambridge, UK:. https://doi.org/10.17863/CAM.21483
    [Google Scholar]
  132. Straneo F, Cenedese C. 2015.. The dynamics of Greenland's glacial fjords and their role in climate. . Annu. Rev. Mar. Sci. 7:(1):89112
    [Crossref] [Google Scholar]
  133. Sweetman JK, Shakespeare CJ, Stewart KD, McConnochie CD. 2024.. Laboratory experiments of melting ice in warm salt-stratified environments. . J. Fluid Mech. 984::A42
    [Crossref] [Google Scholar]
  134. Trowbridge JH, Lentz SJ. 2018.. The bottom boundary layer. . Annu. Rev. Mar. Sci. 10:(1):397420
    [Crossref] [Google Scholar]
  135. Ushio S, Wakatsuchi M. 1993.. A laboratory study on supercooling and frazil ice production processes in winter coastal polynyas. . J. Geophys. Res. Oceans 98:(C11):2032128
    [Crossref] [Google Scholar]
  136. Vaughan DG, Corr HFJ, Bindschadler RA, Dutrieux P, Gudmundsson GH, et al. 2012.. Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica. . J. Geophys. Res. Earth Surf. 117:(F3):F03012
    [Crossref] [Google Scholar]
  137. Vreugdenhil CA, Taylor JR. 2019.. Stratification effects in the turbulent boundary layer beneath a melting ice shelf: insights from resolved large-eddy simulations. . J. Phys. Oceanogr. 49:(7):190525
    [Crossref] [Google Scholar]
  138. Vreugdenhil CA, Taylor JR, Davis PED, Nicholls KW, Holland PR, Jenkins A. 2022.. The ocean boundary layer beneath Larsen C Ice Shelf: insights from large-eddy simulations with a near-wall model. . J. Phys. Oceanogr. 52:(8):190326
    [Crossref] [Google Scholar]
  139. Wang Z, Liu C, Cheng C, Qin Q, Yan L, et al. 2023.. On the multiscale oceanic heat transports toward the bases of the Antarctic ice shelves. . Ocean-Land-Atmos. Res. 2::0010
    [Crossref] [Google Scholar]
  140. Washam P, Lawrence JD, Stevens CL, Hulbe CL, Horgan HJ, et al. 2023.. Direct observations of melting, freezing, and ocean circulation in an ice shelf basal crevasse. . Sci. Adv. 9:(43):eadi7638
    [Crossref] [Google Scholar]
  141. Watkins RH, Bassis JN, Thouless MD. 2021.. Roughness of ice shelves is correlated with basal melt rates. . Geophys. Res. Lett. 48:(21):e2021GL094743
    [Crossref] [Google Scholar]
  142. Wells AJ, Worster MG. 2008.. A geophysical-scale model of vertical natural convection boundary layers. . J. Fluid Mech. 609::11137
    [Crossref] [Google Scholar]
  143. Wells AJ, Worster MG. 2011.. Melting and dissolving of a vertical solid surface with laminar compositional convection. . J. Fluid Mech. 687::11840
    [Crossref] [Google Scholar]
  144. Wilson NJ, Vreugdenhil CA, Gayen B, Hester EW. 2023.. Double-diffusive layer and meltwater plume effects on ice face scalloping in phase-change simulations. . Geophys. Res. Lett. 50:(17):e2023GL104396
    [Crossref] [Google Scholar]
  145. Yang R, Howland CJ, Liu HR, Verzicco R, Lohse D. 2023.. Ice melting in salty water: layering and non-monotonic dependence on the mean salinity. . J. Fluid Mech. 969::R2
    [Crossref] [Google Scholar]
  146. Zhao C, Gladstone R, Galton-Fenzi BK, Gwyther D, Hattermann T. 2022.. Evaluation of an emergent feature of sub-shelf melt oscillations from an idealized coupled ice sheet–ocean model using FISOC (v1.1) – ROMSIceShelf (v1.0) – Elmer/Ice (v9.0). . Geosci. Model Dev. 15:(13):542139
    [Crossref] [Google Scholar]
  147. Zhao KX, Skyllingstad ED, Nash JD. 2024.. Improved parameterizations of vertical ice-ocean boundary layers and melt rates. . Geophys. Res. Lett. 51:(4):e2023GL105862
    [Crossref] [Google Scholar]
  148. Zhou Q, Hattermann T. 2020.. Modeling ice shelf cavities in the unstructured-grid, finite volume community ocean model: implementation and effects of resolving small-scale topography. . Ocean Model. 146::101536
    [Crossref] [Google Scholar]
  149. Zhou S, Meijers AJS, Meredith MP, Abrahamsen EP, Holland PR, et al. 2023.. Slowdown of Antarctic Bottom Water export driven by climatic wind and sea-ice changes. . Nat. Clim. Change 13::7019
    [Crossref] [Google Scholar]
  150. Zilitinkevich S. 2011.. On the determination of the height of the Ekman boundary layer. . Bound.-Layer Meteorol. 3::14145
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-040323-074354
Loading
/content/journals/10.1146/annurev-marine-040323-074354
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error