1932

Abstract

Marine invertebrate mass mortality events (MMEs) threaten biodiversity and have the potential to catastrophically alter ecosystem structure. A proximal question around acute MMEs is their etiologies and/or environmental drivers. Establishing a robust cause of mortality is challenging in marine habitats due to the complexity of the interactions among species and the free dispersal of microorganisms from surrounding waters to metazoan microbiomes. The 2013–2014 sea star wasting disease (SSWD) MME in the northeast Pacific Ocean highlights the difficulty in establishing responsible agents. In less than a year of scientific investigation, investigators identified a candidate agent and provided at the time convincing data of pathogenic and transmissible disease. However, later investigation failed to support the initial results, and critical retrospective analyses of experimental procedures and reinterpretation of early findings disbanded any candidate agent. Despite the circuitous path that the investigation and understanding of SSWD have taken, lessons learned from the initial investigation—improving on approaches that led to misinterpretation—have been successfully applied to the 2022 investigation. In this review, we outline the history of the initial SSWD investigation, examine how early exploration led to spurious interpretations, summarize the lessons learned, provide recommendations for future work in other systems, and examine potential links between the SSWD event and the MME.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040623-082617
2025-01-16
2025-04-06
The full text of this item is not currently available.

Literature Cited

  1. Alvarez-Filip L, Estrada-Saldívar N, Pérez-Cervantes E, Molina-Hernández A, González-Barrios FJ. 2019.. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. . PeerJ 7::e8069
    [Crossref] [Google Scholar]
  2. Aquino CA, Besemer RM, DeRito CM, Kocian J, Porter IR, et al. 2021.. Evidence that microorganisms at the animal-water interface drive sea star wasting disease. . Front. Microbiol. 11::610009
    [Crossref] [Google Scholar]
  3. Barel CDN, Kramers PGN. 1977.. A survey of the echinoderm associates of the north-east Atlantic area. . Zool. Verh. 156::1159
    [Google Scholar]
  4. Bates AE, Hilton BJ, Harley CDG. 2009.. Effects of temperature, season and locality on wasting disease in the keystone predatory sea star Pisaster ochraceus. . Dis. Aquat. Org. 86::24551
    [Crossref] [Google Scholar]
  5. Bouland C, Jangoux M. 1988.. Infestation of Asterias rubens (Echinodermata) by the ciliate Orchitophrya stellarum: effect on gonads and host reaction. . Dis. Aquat. Org. 5::23942
    [Crossref] [Google Scholar]
  6. Bozec L, Odlyha M. 2011.. Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy. . Biophys. J. 101::22836
    [Crossref] [Google Scholar]
  7. Breitbart M, Salamon P, Andresen B, Mahaffy J, Segall A, et al. 2002.. Genomic analysis of uncultured marine viral communities. . PNAS 99::1425055
    [Crossref] [Google Scholar]
  8. Bucci C, Francoeur M, McGreal J, Smolowitz R, Zazueta-Novoa V, et al. 2017.. Sea Star Wasting Disease in Asterias forbesi along the Atlantic coast of North America. . PLOS ONE 12::e0188523
    [Crossref] [Google Scholar]
  9. Burge CA, Eakin CM, Friedman CS, Froelich B, Hershberger PK, et al. 2014.. Climate change influences on marine infectious diseases: implications for management and society. . Annu. Rev. Mar. Sci. 6::24977
    [Crossref] [Google Scholar]
  10. Chalifour BN, Elder LE, Li J. 2022.. Gut microbiome of century-old snail specimens stable across time in preservation. . Microbiome 10::99
    [Crossref] [Google Scholar]
  11. Christensen AM. 1970.. Feeding biology of the sea star Astropecten irregularis Pennant. . Ophelia 8::1134
    [Crossref] [Google Scholar]
  12. Dawson MN, Duffin PJ, Giakoumis M, Schiebelhut LM, Beas-Luna R, et al. 2024.. A decade of death and other dynamics: deepening perspectives on the diversity and distribution of sea stars and wasting. . Biol. Bull. 244::14363
    [Crossref] [Google Scholar]
  13. Del Campo J, Pons MJ, Herranz M, Wakeman KC, Del Valle J, et al. 2019.. Validation of a universal set of primers to study animal-associated microeukaryotic communities. . Environ. Microbiol. 21::385561
    [Crossref] [Google Scholar]
  14. Delroisse J, Van Wayneberghe K, Flammang P, Gillan D, Gerbaux P, et al. 2020.. Epidemiology of a SKin Ulceration Disease (SKUD) in the sea cucumber Holothuria scabra with a review on the SKUDs in Holothuroidea (Echinodermata). . Sci. Rep. 10::22150
    [Crossref] [Google Scholar]
  15. Eckert G, Engle JM, Kushner D. 2002.. Sea star disease and population declines at the Channel Islands. . In Proceedings of the Fifth California Islands Symposium, Vol. 2, ed. DR Browne, KL Mitchell, HW Chaney , pp. 43541. Santa Barbara, CA:: Santa Barbara Mus. Nat. Hist.
    [Google Scholar]
  16. Edgar RC. 2004.. MUSCLE: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res. 32::179297
    [Crossref] [Google Scholar]
  17. Eisenlord ME, Groner ML, Yoshioka RM, Elliott J, Maynard J, et al. 2016.. Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature. . Philos. Trans. R. Soc. B 371::20150212
    [Crossref] [Google Scholar]
  18. Feehan CJ, Johnson-Mackinnon J, Scheibling RE, Lauzon-Guay JS, Simpson AGB. 2013.. Validating the identity of Paramoeba invadens, the causative agent of recurrent mass mortality of sea urchins in Nova Scotia, Canada. . Dis. Aquat. Org. 103::20927
    [Crossref] [Google Scholar]
  19. FioRito R, Leander C, Leander B. 2016.. Characterization of three novel species of Labyrinthulomycota isolated from ochre sea stars (Pisaster ochraceus). . Mar. Biol. 163::170
    [Crossref] [Google Scholar]
  20. Fisher MM, Triplett EW. 1999.. Automated approach for ribsomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. . Appl. Environ. Microbiol. 65::463036
    [Crossref] [Google Scholar]
  21. Fuess LE, Eisenlord ME, Closek CJ, Tracy AM, Mauntz R, et al. 2015.. Up in arms: immune and nervous system response to sea star wasting disease. . PLOS ONE 10::e0133053
    [Crossref] [Google Scholar]
  22. Gudenkauf BM, Eaglesham JB, Aragundi WM, Hewson I. 2014.. Discovery of urchin-associated densoviruses (Parvoviridae) in coastal waters of the Big Island, Hawaii. . J. Gen. Virol. 95::65258
    [Crossref] [Google Scholar]
  23. Gudenkauf BM, Hewson I. 2015.. Metatranscriptomic analysis of Pycnopodia helianthoides (Asteroidea) affected by sea star wasting disease. . PLOS ONE 10::e0128150
    [Crossref] [Google Scholar]
  24. Haas AF, Fairoz MF, Kelly LW, Nelson CE, Dinsdale EA, et al. 2016.. Global microbialization of coral reefs. . Nat. Microbiol. 1::16042
    [Crossref] [Google Scholar]
  25. Hewson I, Aquino CA, DeRito CM. 2020.. Virome variation during sea star wasting disease progression in Pisaster ochraceus (Asteroidea, Echinodermata). . Viruses 12::1332
    [Crossref] [Google Scholar]
  26. Hewson I, Bistolas KSI, Carde EMQ, Button JB, Foster PJ, et al. 2018.. Investigating the complex association between viral ecology, environment, and Northeast Pacific sea star wasting. . Front. Mar. Sci. 5::77
    [Crossref] [Google Scholar]
  27. Hewson I, Button JB, Gudenkauf BM, Miner B, Newton AL, et al. 2014.. Densovirus associated with sea-star wasting disease and mass mortality. . PNAS 111::1727683
    [Crossref] [Google Scholar]
  28. Hewson I, Fuhrman JA. 2006.. Viral impacts upon marine bacterioplankton assemblage composition. . J. Mar. Biol. Assoc. UK 86::57789
    [Crossref] [Google Scholar]
  29. Hewson I, Ritchie IT, Evans JS, Altera A, Behringer D, et al. 2023.. A scuticociliate causes mass mortality of Diadema antillarum in the Caribbean Sea. . Sci. Adv. 9::eadg3200
    [Crossref] [Google Scholar]
  30. Hewson I, Sewell MA. 2021.. Surveillance of densoviruses and mesomycetozoans inhabiting grossly normal tissues of three Aotearoa New Zealand asteroid species. . PLOS ONE 16::e0241026
    [Crossref] [Google Scholar]
  31. Hewson I, Sullivan B, Jackson EW, Xu Q, Long H, et al. 2019.. Perspective: something old, something new? Review of wasting and other mortality in Asteroidea (Echinodermata). . Front. Mar. Sci. 6::406
    [Crossref] [Google Scholar]
  32. Hewson I, Vargo GA, Fuhrman JA. 2003.. Bacterial diversity in shallow oligotrophic marine benthos and overlying waters: effects of virus infection, containment and nutrient enrichment. . Microb. Ecol. 46::32236
    [Crossref] [Google Scholar]
  33. Holland ND, Nealson KH. 1978.. The fine structure of the echinoderm cuticle and the subcuticular bacteria of echinoderms. . Acta Zool. 59::16985
    [Crossref] [Google Scholar]
  34. Jackson EW, Bistolas KS, Button JB, Hewson I. 2016.. Novel circular single-stranded DNA viruses among an asteroid, echinoid and holothurian (Phylum: Echinodermata). . PLOS ONE 11::e0166093
    [Crossref] [Google Scholar]
  35. Jackson EW, Pepe-Ranney C, Debenport SJ, Buckley DH, Hewson I. 2018.. The microbial landscape of sea stars and the anatomical and interspecies variability of their microbiome. . Front. Microbiol. 9::1829
    [Crossref] [Google Scholar]
  36. Jackson EW, Pepe-Ranney C, Johnson MR, Dietel DL, Hewson I. 2020.. A highly prevalent and pervasive densovirus discovered among sea stars from the North American Atlantic Coast. . Appl. Environ. Microbiol. 86::e02723-19
    [Crossref] [Google Scholar]
  37. Jaffe N, Eberl R, Bucholz J, Cohen CS. 2019.. Sea star wasting disease demography and etiology in the brooding sea star Leptasterias spp. . PLOS ONE 14::e0225248
    [Crossref] [Google Scholar]
  38. Jangoux M. 1987.. Diseases of Echinodermata. 1. Agents microorganisms and protistans. . Dis. Aquat. Org. 2::14762
    [Crossref] [Google Scholar]
  39. Jones MRL, Sewell MA. 2023.. An ephemeral sea star (Coscinasterias muricata) wasting event at Tauranga, New Zealand. . N. Z. J. Zool. https://doi.org/10.1080/03014223.2023.2256682
    [Google Scholar]
  40. Kelly MS, Barker MF, McKenzie JD, Powell J. 1995.. The incidence and morphology of subcuticular bacteria in the echinoderm fauna of New Zealand. . Biol. Bull. 189::91105
    [Crossref] [Google Scholar]
  41. Kelly MS, McKenzie JD. 1995.. Survey of the occurrence and morphology of sub-cuticular bacteria in shelf echinoderms from the north-east Atlantic Ocean. . Mar. Biol. 123::74156
    [Crossref] [Google Scholar]
  42. Koch R. 1893.. Koch's postulates. . Hyg. Infect. 14::31933
    [Google Scholar]
  43. Konar B, Mitchell TJ, Iken K, Coletti H, Dean T, et al. 2019.. Wasting disease and static environmental variables drive sea star assemblages in the Northern Gulf of Alaska. . J. Exp. Mar. Biol. Ecol. 520::151209
    [Crossref] [Google Scholar]
  44. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018.. MEGA X: molecular evolutionary genetics analysis across computing platforms. . Mol. Biol. Evol. 35::154749
    [Crossref] [Google Scholar]
  45. Lloyd MM, Pespeni MH. 2018.. Microbiome shifts with onset and progression of sea star wasting disease revealed through time course sampling. . Sci. Rep. 8::16476
    [Crossref] [Google Scholar]
  46. Loudon AH, Park J, Parfrey LW. 2023.. Identifying the core microbiome of the sea star Pisaster ochraceus in the context of sea star wasting disease. . FEMS Microbiol. Ecol. 99::fiad005
    [Crossref] [Google Scholar]
  47. McCracken AR, Christensen BM, Munteanu D, Case BKM, Lloyd M, et al. 2023.. Microbial dysbiosis precedes signs of sea star wasting disease in wild populations of Pycnopodia helianthoides. . Front. Mar. Sci. 10::1130912
    [Crossref] [Google Scholar]
  48. Mead AD. 1898.. Twenty-Eighth Annual Report of the Commissioners of Inland Fisheries, Made to the General Assembly at Its January Session, 1898. Providence, RI:: Freeman & Sons
    [Google Scholar]
  49. Menge BA, Cerny-Chipman EB, Johnson A, Sullivan J, Gravem S, Chan F. 2016.. Sea star wasting disease in the keystone predator Pisaster ochraceus in Oregon: insights into differential population impacts, recovery, predation rate, and temperature effects from long-term research. . PLOS ONE 11::e0153994
    [Crossref] [Google Scholar]
  50. Miner CM, Burnaford JL, Ambrose RF, Antrim L, Bohlmann H, et al. 2018.. Large-scale impacts of sea star wasting disease (SSWD) on intertidal sea stars and implications for recovery. . PLOS ONE 13::e0192870
    [Crossref] [Google Scholar]
  51. Montecino-Latorre D, Eisenlord ME, Turner M, Yoshioka R, Harvell CD, et al. 2016.. Devastating transboundary impacts of sea star wasting disease on subtidal asteroids. . PLOS ONE 11::e0163190
    [Crossref] [Google Scholar]
  52. Moran AL, McLachlan RH, Thurber AR. 2023.. Sea star wasting syndrome reaches the high Antarctic: two recent outbreaks in McMurdo Sound. . PLOS ONE 18::e0282550
    [Crossref] [Google Scholar]
  53. Newton AL, Dennis MM. 2021.. Echinodermata. . In Invertebrate Histology, ed. EEB LaDouceur , pp. 118. Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  54. Núñez-Pons L, Work TM, Angulo-Preckler C, Moles J, Avila C. 2018.. Exploring the pathology of an epidermal disease affecting a circum-Antarctic sea star. . Sci. Rep. 8::11353
    [Crossref] [Google Scholar]
  55. O'Neill P. 1989.. Structure and mechanics of starfish body wall. . J. Exp. Biol. 147::5389
    [Crossref] [Google Scholar]
  56. Oulhen N, Byrne M, Duffin P, Gomez-Chiarri M, Hewson I, et al. 2022.. A review of asteroid biology in the context of sea star wasting: possible causes and consequences. . Biol. Bull. 243::5075
    [Crossref] [Google Scholar]
  57. Paine RT. 1966.. Food web complexity and species diversity. . Am. Nat. 100::6575
    [Crossref] [Google Scholar]
  58. Patin NV, Pratte ZA, Regensburger M, Hall E, Gilde K, et al. 2018.. Microbiome dynamics in a large artificial seawater aquarium. . Appl. Environ. Microbiol. 84::e00179-18
    [Crossref] [Google Scholar]
  59. Pespeni MH, Lloyd MM. 2023.. Sea stars resist wasting through active immune and collagen systems. . Proc. R. Soc. B 290::20230347
    [Crossref] [Google Scholar]
  60. Richard JC, Leis E, Dunn CD, Agbalog R, Waller D, et al. 2020.. Mass mortality in freshwater mussels (Actinonaias pectorosa) in the Clinch River, USA, linked to a novel densovirus. . Sci. Rep. 10::14498
    [Crossref] [Google Scholar]
  61. Robinson S, Milner-Gulland EJ, Grachev Y, Salemgareyev A, Orynbayev M, et al. 2019.. Opportunistic bacteria and mass mortality in ungulates: lessons from an extreme event. . Ecosphere 10::e02671
    [Crossref] [Google Scholar]
  62. Ruiz-Ramos DV, Schiebelhut LM, Hoff KJ, Wares JP, Dawson MN. 2020.. An initial comparative genomic autopsy of wasting disease in sea stars. . Mol. Ecol. 29::1087102
    [Crossref] [Google Scholar]
  63. Schiebelhut LM, Giakoumis M, Castilho R, Duffin PJ, Puritz JB, et al. 2022a.. Minor genetic consequences of a major mass mortality: short-term effects in Pisaster ochraceus. . Biol. Bull. 243::32838
    [Crossref] [Google Scholar]
  64. Schiebelhut LM, Giakoumis M, Castilho R, Garcia VE, Wares JP, et al. 2022b.. Is it in the stars? Exploring the relationships between species’ traits and sea star wasting disease. . Biol. Bull. 243::31527
    [Crossref] [Google Scholar]
  65. Schwalbach MS, Hewson I, Fuhrman JA. 2004.. Viral effects on bacterial community composition in marine plankton microcosms. . Aquat. Microb. Ecol. 34::11727
    [Crossref] [Google Scholar]
  66. Smith S, Hewson I, Collins P. 2022.. The first records of sea star wasting disease in Crossaster papposus in Europe. . Biol. Lett. 18::20220197
    [Crossref] [Google Scholar]
  67. Smith S, Kunc HP, Hewson I, Collins P. 2023.. Elevated temperature linked to signs associated with sea star wasting disease in a keystone European species, Asterias rubens. . Mar. Ecol. Prog. Ser. 724::97109
    [Crossref] [Google Scholar]
  68. Staehli A, Schaerer R, Hoelzle K, Ribi G. 2008.. Temperature induced disease in the starfish Astropecten jonstoni. . Mar. Biodivers. Rec. 2::e78
    [Crossref] [Google Scholar]
  69. Uthicke S, Schaffelke B, Byrne M. 2009.. A boom–bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. . Ecol. Monogr. 79::324
    [Crossref] [Google Scholar]
  70. Van Volkom KS, Harris LG, Dijkstra JA. 2021.. Not all prey are created equal: Invasive ascidian diet mediates sea star wasting in Henricia sanguinolenta. . J. Exp. Mar. Biol. Ecol. 544::151610
    [Crossref] [Google Scholar]
  71. Vergneau-Grosset C, Boudreau R, Favoretto F, Beauchamp G, Chicoine AJ, et al. 2022.. Occurrence of ulcerative lesions in sea stars (Asteroidea) of the Northern Gulf of California, USA. . J. Wildl. Dis. 58::21521
    [Crossref] [Google Scholar]
  72. Vilanova-Cuevas BY, Reyes-Chavez BR, Breitbart MA, Hewson I. 2023.. Design and validation of a PCR protocol to specifically detect the clade of Philaster sp. associated with Diadema antillarum scuticociliatosis. . bioRxiv 2023.09.11.557215. https://doi.org/10.1101/2023.09.11.557215
  73. Wahltinez SJ, Byrne M, Stacy NI. 2023.. Coelomic fluid of asteroid echinoderms: current knowledge and future perspectives on its utility for disease and mortality investigations. . Vet. Pathol. 60::54759
    [Crossref] [Google Scholar]
  74. Wahltinez SJ, Newton AL, Harms CA, Lahner LL, Stacy NI. 2020.. Coelomic fluid evaluation in Pisaster ochraceus affected by sea star wasting syndrome: evidence of osmodysregulation, calcium homeostasis derangement, and coelomocyte responses. . Front. Vet. Sci. 7::131
    [Crossref] [Google Scholar]
  75. Work TM, Weatherby TM, DeRito CM, Besemer RM, Hewson I. 2021.. Sea star wasting disease pathology in Pisaster ochraceus shows a basal-to-surface process affecting color phenotypes differently. . Dis. Aquat. Org. 145::2133
    [Crossref] [Google Scholar]
  76. Zhong KX, Cho A, Deeg CM, Chan AM, Suttle CA. 2021.. Revealing the composition of the eukaryotic microbiome of oyster spat by CRISPR-Cas selective amplicon sequencing (CCSAS). . Microbiome 9::230
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-040623-082617
Loading
/content/journals/10.1146/annurev-marine-040623-082617
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error