1932

Abstract

Interest in inorganic ternary nitride materials has grown rapidly over the past few decades, as their diverse chemistries and structures make them appealing for a variety of applications. Due to synthetic challenges posed by the stability of N, the number of predicted nitride compounds dwarfs the number that has been synthesized, offering a breadth of opportunity for exploration. This review summarizes the fundamental properties and structural chemistry of ternary nitrides, leveraging metastability and the impact of nitrogen chemical potential. A discussion of prevalent defects, both detrimental and beneficial, is followed by a survey of synthesis techniques and their interplay with metastability. Throughout the review, we highlight applications (such as solid-state lighting, electrochemical energy storage, and electronic devices) in which ternary nitrides show particular promise.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-012444
2021-07-26
2025-01-08
The full text of this item is not currently available.

Literature Cited

  1. 1. 
    Zhang Y, Zindler A. 1993. Distribution and evolution of carbon and nitrogen in Earth. Earth Planet. Sci. Lett. 117:331–45
    [Google Scholar]
  2. 2. 
    Zakutayev A. 2016. Design of nitride semiconductors for solar energy conversion. J. Mater. Chem. A 4:6742–54
    [Google Scholar]
  3. 3. 
    Sun W, Bartel CJ, Arca E, Bauers SR, Matthews B et al. 2019. A map of the inorganic ternary metal nitrides. Nat. Mater. 18:732–39
    [Google Scholar]
  4. 4. 
    Juza R, Hund F. 1946. Die Kristallstrukturen LiMgN, LiZnN, Li3AlN2 und Li3GaN2. Naturwissenschaften 33:121–22
    [Google Scholar]
  5. 5. 
    Wintenberger M, Maunaye M, Laurent Y. 1973. Groupe spatial et ordre des atomes de zinc et de germanium dans ZnGeN2. Mater. Res. Bull. 8:1049–53
    [Google Scholar]
  6. 6. 
    Patterson FK, Ward R. 1966. The preparation and properties of some ternary nitrides of strontium and barium with rhenium and osmium. Inorg. Chem. 5:1312–16
    [Google Scholar]
  7. 7. 
    DiSalvo FJ, Clarke SJ. 1996. Ternary nitrides: a rapidly growing class of new materials. Curr. Opin. Solid State Mater. Sci. 1:241–49
    [Google Scholar]
  8. 8. 
    Brese NE, O'Keeffe M. 1992. Crystal structure of inorganic nitrides. Complexes, Clusters, and Crystal Chemistry307–78 Berlin/Heidelberg: Springer. Struct. Bond. Vol. 79
    [Google Scholar]
  9. 9. 
    Fitzmaurice JC, Hector AL, Parkin IP. 1993. Low-temperature routes to early transition-metal nitrides. J. Chem. Soc. Dalton Trans. 1993:2435–38
    [Google Scholar]
  10. 10. 
    Wiley JB, Kaner RB. 1992. Rapid solid-state precursor synthesis of materials. Science 255:1093–97
    [Google Scholar]
  11. 11. 
    Miki M, Yamasaki T, Ogino Y. 1992. Preparation of nanocrystalline NbN and (Nb,Al)N powders by mechanical alloying under nitrogen atmosphere. Mater. Trans. Jpn. Inst. Metals 33:839–44
    [Google Scholar]
  12. 12. 
    Houmes JD, zur Loye HC. 1997. Microwave synthesis of ternary nitride materials. J. Solid State Chem. 130:266–71
    [Google Scholar]
  13. 13. 
    Elder SH, Doerrer LH, DiSalvo FJ, Parise JB, Guyomard D, Tarascon JM. 1992. Lithium molybdenum nitride (LiMoN2): the first metallic layered nitride. Chem. Mater. 4:928–37
    [Google Scholar]
  14. 14. 
    Schnick W, Huppertz H. 1997. Nitridosilicates—a significant extension of silicate chemistry. Chem. Eur. J. 3:679–83
    [Google Scholar]
  15. 15. 
    Langmi HW, McGrady GS. 2008. Ternary nitrides for hydrogen storage: Li–B–N, Li–Al–N and Li–Ga–N systems. J. Alloys Compd. 466:287–92
    [Google Scholar]
  16. 16. 
    Javaid K, Yu J, Wu W, Wang J, Zhang H et al. 2018. Thin film solar cell based on ZnSnN2/SnO heterojunction. Phys. Status Solidi 12:1700332
    [Google Scholar]
  17. 17. 
    Tellekamp MB, Melamed CL, Norman AG, Tamboli A. 2020. Heteroepitaxial integration of ZnGeN2 on GaN buffers using molecular beam epitaxy. Cryst. Growth Des. 20:1868–75
    [Google Scholar]
  18. 18. 
    Hinuma Y, Hatakeyama T, Kumagai Y, Burton LA, Sato H et al. 2016. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 7:11962
    [Google Scholar]
  19. 19. 
    Allen LC. 1989. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. J. Am. Chem. Soc. 111:9003–14
    [Google Scholar]
  20. 20. 
    Parr RG, Pearson RG. 1983. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105:7512–16
    [Google Scholar]
  21. 21. 
    King R. 1995. The chemical bonding topology of ternary and quaternary transition metal nitrides containing low-coordinate metal atoms. Can. J. Chem. 73:963–71
    [Google Scholar]
  22. 22. 
    Niewa R, DiSalvo FJ. 1998. Recent developments in nitride chemistry. Chem. Mater. 10:2733–52
    [Google Scholar]
  23. 23. 
    Häglund J, Fernández Guillermet A, Grimvall G, Körling M 1993. Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B 48:685–91
    [Google Scholar]
  24. 24. 
    Marchand R, Laurent Y, Guyader J, L'Haridon P, Verdier P 1991. Nitrides and oxynitrides: preparation, crystal chemistry and properties. J. Eur. Ceram. Soc. 8:197–213
    [Google Scholar]
  25. 25. 
    Kniep R. 1997. Ternary and quaternary metal nitrides: a new challenge for solid state chemistry. Pure Appl. Chem. 69:185–92
    [Google Scholar]
  26. 26. 
    Gregory DH. 1999. Structural families in nitride chemistry. J. Chem. Soc. Dalton Trans. 1999:259–70
    [Google Scholar]
  27. 27. 
    Sun W, Holder A, Orvañanos B, Arca E, Zakutayev A et al. 2017. Thermodynamic routes to novel metastable nitrogen-rich nitrides. Chem. Mater. 29:6936–46
    [Google Scholar]
  28. 28. 
    Arca E, Lany S, Perkins JD, Bartel C, Mangum J et al. 2018. Redox-mediated stabilization in zinc molybdenum nitrides. J. Am. Chem. Soc. 140:4293–301
    [Google Scholar]
  29. 29. 
    Pamplin R. 1964. A systematic method of deriving new semiconducting compounds by structural analogy. J. Phys. Chem. Solids 25:675–84
    [Google Scholar]
  30. 30. 
    Xia Z, Poeppelmeier KR. 2017. Chemistry-inspired adaptable framework structures. Acc. Chem. Res. 50:1222–30
    [Google Scholar]
  31. 31. 
    Martinez AD, Fioretti AN, Toberer ES, Tamboli AC. 2017. Synthesis, structure, and optoelectronic properties of II–IV–V2 materials. J. Mater. Chem. A 5:11418–35
    [Google Scholar]
  32. 32. 
    Heinselman KN, Lany S, Perkins JD, Talley KR, Zakutayev A. 2019. Thin film synthesis of semiconductors in the Mg–Sb–N materials system. Chem. Mater. 31:8717–24
    [Google Scholar]
  33. 33. 
    Sarmiento-Pérez R, Cerqueira TFT, Körbel S, Botti S, Marques MAL. 2015. Prediction of stable nitride perovskites. Chem. Mater. 27:5957–63
    [Google Scholar]
  34. 34. 
    Talley KR, Perkins CL, Diercks DR, Brennecka GL, Zakutayev A. 2020. Synthesis of ferroelectric LaWN3—the first nitride perovskite. arXiv:2001.00633 [cond-mat]
  35. 35. 
    Szymanski NJ, Adhikari V, Willard MA, Sarin P, Gall D, Khare SV. 2019. Prediction of improved magnetization and stability in Fe16N2 through alloying. J. Appl. Phys. 126:093903
    [Google Scholar]
  36. 36. 
    George NC, Denault KA, Seshadri R. 2013. Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43:481–501
    [Google Scholar]
  37. 37. 
    Mitchell B, Dierolf V, Gregorkiewicz T, Fujiwara Y. 2018. Perspective: toward efficient GaN-based red light emitting diodes using europium doping. J. Appl. Phys. 123:160901
    [Google Scholar]
  38. 38. 
    Affleck I. 1981. Quantum-statistical metastability. Phys. Rev. Lett. 46:388–91
    [Google Scholar]
  39. 39. 
    Anelli A, Engel EA, Pickard CJ, Ceriotti M. 2018. Generalized convex hull construction for materials discovery. Phys. Rev. Mater. 2:103804
    [Google Scholar]
  40. 40. 
    Stevanović V. 2016. Sampling polymorphs of ionic solids using random superlattices. Phys. Rev. Lett. 116:075503
    [Google Scholar]
  41. 41. 
    Sun W, Dacek ST, Ong SP, Hautier G, Jain A et al. 2016. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2:e1600225
    [Google Scholar]
  42. 42. 
    Bartel CJ, Millican SL, Deml AM, Rumptz JR, Tumas W et al. 2018. Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Nat. Commun. 9:4168
    [Google Scholar]
  43. 43. 
    Jain A, Ong SP, Hautier G, Chen W, Richards WD et al. 2013. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1:011002
    [Google Scholar]
  44. 44. 
    Kroll P. 2003. Pathways to metastable nitride structures. J. Solid State Chem. 176:530–37
    [Google Scholar]
  45. 45. 
    Aykol M, Dwaraknath SS, Sun W, Persson KA. 2018. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4:eaaq0148
    [Google Scholar]
  46. 46. 
    Greenaway AL, Loutris AL, Heinselman KN, Melamed CL, Schnepf RR et al. 2020. Combinatorial synthesis of magnesium tin nitride semiconductors. J. Am. Chem. Soc. 142:8421–30
    [Google Scholar]
  47. 47. 
    Singh AK, Zhou L, Shinde A, Suram SK, Montoya JH et al. 2017. Electrochemical stability of metastable materials. Chem. Mater. 29:10159–67
    [Google Scholar]
  48. 48. 
    Woods-Robinson R, Broberg D, Faghaninia A, Jain A, Dwaraknath SS, Persson KA. 2018. Assessing high-throughput descriptors for prediction of transparent conductors. Chem. Mater. 30:8375–89
    [Google Scholar]
  49. 49. 
    Caskey C, Richards R, Ginley D, Zakutayev A. 2014. Thin film synthesis and properties of copper nitride, a metastable semiconductor. Mater. Horiz. 1:424–30
    [Google Scholar]
  50. 50. 
    Siol S. 2019. Accessing metastability in heterostructural semiconductor alloys. Phys. Status Solidi A 216:1800858
    [Google Scholar]
  51. 51. 
    von Alpen U, Rabenau A, Talat GH. 1977. Ionic conductivity in Li3N single crystals. Appl. Phys. Lett. 30:621–23
    [Google Scholar]
  52. 52. 
    Gregory DH. 2008. Lithium nitrides as sustainable energy materials. Chem. Rec. 8:229–39
    [Google Scholar]
  53. 53. 
    Liu Y, Matsumura T, Imanishi N, Ichikawa T, Hirano A, Takeda Y. 2004. Lithium transition metal nitrides with the modified morphology characteristics as advanced anode materials for lithium ion batteries. Electrochem. Commun. 6:632–36
    [Google Scholar]
  54. 54. 
    Cabana J, Stoeva Z, Titman JJ, Gregory DH, Palacín MR. 2008. Towards new negative electrode materials for Li-ion batteries: electrochemical properties of LiNiN. Chem. Mater. 20:1676–78
    [Google Scholar]
  55. 55. 
    Zhu Y, He X, Mo Y. 2017. Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv. Sci. 4:1600517
    [Google Scholar]
  56. 56. 
    Verrelli R, Arroyo-de Dompablo ME, Tchitchekova D, Black AP, Frontera C et al. 2017. On the viability of Mg extraction in MgMoN2: a combined experimental and theoretical approach. Phys. Chem. Chem. Phys. 19:26435–41
    [Google Scholar]
  57. 57. 
    Verrelli R, Black AP, Frontera C, Oró-Solé J, Arroyo-de Dompablo ME et al. 2019. On the study of Ca and Mg deintercalation from ternary tantalum nitrides. ACS Omega 4:8943–52
    [Google Scholar]
  58. 58. 
    Balogun MS, Qiu W, Wang W, Fang P, Lu X, Tong Y. 2015. Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. A 3:1364–87
    [Google Scholar]
  59. 59. 
    Yamane H, Okabe TH, Ishiyama O, Waseda Y, Shimada M. 2001. Ternary nitrides prepared in the Li3N–Mg3N2 system at 900–1000 K. J. Alloys Compd. 319:124–30
    [Google Scholar]
  60. 60. 
    Ischenko V, Kienle L, Jansen M. 2002. Formation and structure of LiSi2N3-AlN solid solutions. J. Mater. Sci. 37:5305–17
    [Google Scholar]
  61. 61. 
    Hanghofer I, Brinek M, Eisbacher SL, Bitschnau B, Volck M et al. 2019. Substitutional disorder: structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5 Br and Li6PS5I. Phys. Chem. Chem. Phys. 21:8489–507
    [Google Scholar]
  62. 62. 
    Saha S, Rousse G, Fauth F, Pomjakushin V, Tarascon JM. 2019. Influence of temperature-driven polymorphism and disorder on ionic conductivity in Li6Zn(P2O7)2. Inorg. Chem. 58:1774–81
    [Google Scholar]
  63. 63. 
    Anasori B, Lukatskaya MR, Gogotsi Y. 2017. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2:16098
    [Google Scholar]
  64. 64. 
    Van de Walle C, Neugebauer J, Stampfl C, McCluskey M, Johnson N 1999. Defects and defect reactions in semiconductor nitrides. Acta Phys. Polon. A 96:613–27
    [Google Scholar]
  65. 65. 
    Melamed CL, Pan J, Mis A, Heinselman K, Schnepf RR et al. 2020. Combinatorial investigation of structural and optical properties of cation-disordered ZnGeN2. J. Mater. Chem. C 8:8736–46
    [Google Scholar]
  66. 66. 
    Pan J, Cordell J, Tucker GJ, Tamboli AC, Zakutayev A, Lany S. 2019. Interplay between composition, electronic structure, disorder, and doping due to dual sublattice mixing in nonequilibrium synthesis of ZnSnN2:O. Adv. Mater. 31:1807406
    [Google Scholar]
  67. 67. 
    He X, Xiao Z, Katase T, Ide K, Hosono H, Kamiya T. 2019. Intrinsic and extrinsic defects in layered nitride semiconductor SrTiN2. J. Phys. Chem. C 123:19307–14
    [Google Scholar]
  68. 68. 
    Toyoura K, Oba F, Ninomiya T, Kuwabara A, Tanaka I. 2007. First-principles study of defect equilibria in lithium zinc nitride. J. Phys. Condens. Matter 19:046201
    [Google Scholar]
  69. 69. 
    Yan Y, Wei SH. 2008. Doping asymmetry in wide-bandgap semiconductors: origins and solutions. Phys. Status Solidi B 245:641–52
    [Google Scholar]
  70. 70. 
    Adamski NL, Zhu Z, Wickramaratne D, Van de Walle CG. 2019. Optimizing n-type doping of ZnGeN2 and ZnSiN2. Phys. Rev. B 100:155206
    [Google Scholar]
  71. 71. 
    Adamski NL, Zhu Z, Wickramaratne D, Van de Walle CG. 2019. Strategies for p-type doping of ZnGeN2. Appl. Phys. Lett. 114:032101
    [Google Scholar]
  72. 72. 
    Fioretti AN, Zakutayev A, Moutinho H, Melamed C, Perkins JD et al. 2015. Combinatorial insights into doping control and transport properties of zinc tin nitride. J. Mater. Chem. C 3:11017–28
    [Google Scholar]
  73. 73. 
    Tsunoda N, Kumagai Y, Takahashi A, Oba F. 2018. Electrically benign defect behavior in zinc tin nitride revealed from first principles. Phys. Rev. Appl. 10:011001
    [Google Scholar]
  74. 74. 
    Nakatsuka S, Nose Y. 2017. Order–disorder phenomena and their effects on bandgap in ZnSnP2. J. Phys. Chem. C 121:1040–46
    [Google Scholar]
  75. 75. 
    Schnepf RR, Levy-Wendt BL, Tellekamp MB, Ortiz BR, Melamed CL et al. 2020. Using resonant energy X-ray diffraction to extract chemical order parameters in ternary semiconductors. J. Mater. Chem. C 8:4350–56
    [Google Scholar]
  76. 76. 
    Bauers SR, Holder A, Sun W, Melamed CL, Woods-Robinson R et al. 2019. Ternary nitride semiconductors in the rocksalt crystal structure. PNAS 116:14829–34
    [Google Scholar]
  77. 77. 
    Haseman MS, Karim MR, Ramdin D, Noesges BA, Feinberg E et al. 2020. Deep level defects and cation sublattice disorder in ZnGeN2. J. Appl. Phys. 127:135703
    [Google Scholar]
  78. 78. 
    Lany S, Fioretti AN, Zawadzki PP, Schelhas LT, Toberer ES et al. 2017. Monte Carlo simulations of disorder in ZnSnN2 and the effects on the electronic structure. Phys. Rev. Mater. 1:035401
    [Google Scholar]
  79. 79. 
    Schnepf RR, Cordell JJ, Tellekamp MB, Melamed CL, Greenaway AL et al. 2020. Utilizing site disorder in the development of new energy-relevant semiconductors. ACS Energy Lett. 5:2027–41
    [Google Scholar]
  80. 80. 
    Hyot B, Rollès M, Miska P. 2019. Design of efficient type-II ZnGeN2/In0.16Ga0.84N quantum well-based red LEDs. Phys. Status Solidi Rapid Res. Lett. 13:1900170
    [Google Scholar]
  81. 81. 
    Han L, Kash K, Zhao H. 2016. Designs of blue and green light-emitting diodes based on type-II InGaN-ZnGeN2 quantum wells. J. Appl. Phys. 120:103102
    [Google Scholar]
  82. 82. 
    Das B, Aguilera I, Rau U, Kirchartz T. 2020. What is a deep defect? Combining Shockley-Read-Hall statistics with multiphonon recombination theory. Phys. Rev. Mater. 4:024602
    [Google Scholar]
  83. 83. 
    Luque A, Martí A, Stanley C. 2012. Understanding intermediate-band solar cells. Nat. Photonics 6:146–52
    [Google Scholar]
  84. 84. 
    Luque A, Martí A, Antolín E, Tablero C. 2006. Intermediate bands versus levels in non-radiative recombination. Physica B 382:320–27
    [Google Scholar]
  85. 85. 
    Gunning B, Lowder J, Moseley M, Doolittle WA. 2012. Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN. Appl. Phys. Lett. 101:082106
    [Google Scholar]
  86. 86. 
    Javaid K, Wu W, Wang J, Fang J, Zhang H et al. 2018. Band offset engineering in ZnSnN2-based heterojunction for low-cost solar cells. ACS Photonics 5:2094–99
    [Google Scholar]
  87. 87. 
    Karim MR, Jayatunga BHD, Zhu M, Lalk RA, Licata O et al. 2020. Effects of cation stoichiometry on surface morphology and crystallinity of ZnGeN2 films grown on GaN by metalorganic chemical vapor deposition. AIP Adv. 10:065302
    [Google Scholar]
  88. 88. 
    Tsuji M, Hanzawa K, Kinjo H, Hiramatsu H, Hosono H. 2019. Heteroepitaxial thin-film growth of a ternary nitride semiconductor CaZn2N2. ACS Appl. Electron. Mater. 1:1433–38
    [Google Scholar]
  89. 89. 
    Melamed CL, Tellekamp MB, Mangum JS, Perkins JD, Dippo P et al. 2019. Blue-green emission from epitaxial yet cation-disordered ZnGeN2-xOx. Phys. Rev. Mater. 3:051602
    [Google Scholar]
  90. 90. 
    Adamski NL, Zhu Z, Wickramaratne D. 2017. Hybrid functional study of native point defects and impurities in ZnGeN2. J. Appl. Phys. 122:195701
    [Google Scholar]
  91. 91. 
    Fioretti AN, Pan J, Ortiz BR, Melamed C, Dippo PC et al. 2018. Exciton photoluminescence and benign defect complex formation in zinc tin nitride. Mater. Horiz. 5:823–30
    [Google Scholar]
  92. 92. 
    Khan IS, Heinselman KN, Zakutayev A. 2020. Review of ZnSnN2 semiconductor material. J. Phys. Energy 2:032007
    [Google Scholar]
  93. 93. 
    Pan J, Cordell JJ, Tucker GJ, Zakutayev A, Tamboli AC, Lany S. 2020. Perfect short-range ordered alloy with line-compound-like properties in the ZnSnN2:ZnO system. npj Comput. Mater. 6:63
    [Google Scholar]
  94. 94. 
    Fioretti AN, Stokes A, Young MR, Gorman B, Toberer ES et al. 2017. Effects of hydrogen on acceptor activation in ternary nitride semiconductors. Adv. Electron. Mater. 3:1600544
    [Google Scholar]
  95. 95. 
    Lei T, Ludwig KF, Moustakas TD. 1993. Heteroepitaxy, polymorphism, and faulting in GaN thin films on silicon and sapphire substrates. J. Appl. Phys. 74:4430–37
    [Google Scholar]
  96. 96. 
    Quayle PC, Blanton EW, Punya A, Junno GT, He K et al. 2015. Charge-neutral disorder and polytypes in heterovalent wurtzite-based ternary semiconductors: the importance of the octet rule. Phys. Rev. B 91:205207
    [Google Scholar]
  97. 97. 
    Kawamura F, Imura M, Murata H, Yamada N, Taniguchi T. 2020. Synthesis of a novel rocksalt-type ternary nitride semiconductor of MgSnN2 using the metathesis reaction under high pressure. Eur. J. Inorg. Chem. 2020:446–51
    [Google Scholar]
  98. 98. 
    Tareen AK, Priyanga GS, Behara S, Thomas T, Yang M 2019. Mixed ternary transition metal nitrides: a comprehensive review of synthesis, electronic structure, and properties of engineering relevance. Prog. Solid State Chem. 53:1–26
    [Google Scholar]
  99. 99. 
    Bale C, Chartrand P, Degterov S, Eriksson G, Hack K et al. 2002. FactSage thermochemical software and databases. Calphad 26:189–228
    [Google Scholar]
  100. 100. 
    Allison T. 1996. NIST-JANAF thermochemical tables Data Tables, Natl. Inst. Stand. Technol. (NIST) Stand. Ref. Database 13 NIST Washington, DC:. https://doi.org/10.18434/t42s31
    [Crossref] [Google Scholar]
  101. 101. 
    Mérel P, Tabbal M, Chaker M, Moisan M, Ricard A 1998. Influence of the field frequency on the nitrogen atom yield in the remote plasma of an N2 high frequency discharge. Plasma Sources Sci. Technol. 7:550–56
    [Google Scholar]
  102. 102. 
    Iliopoulos E, Adikimenakis A, Dimakis E, Tsagaraki K, Konstantinidis G, Georgakilas A. 2005. Active nitrogen species dependence on radiofrequency plasma source operating parameters and their role in GaN growth. J. Cryst. Growth 278:426–30
    [Google Scholar]
  103. 103. 
    Clinton EA, Vadiee E, Tellekamp MB, Doolittle WA. 2019. Observation and mitigation of RF-plasma-induced damage to III-nitrides grown by molecular beam epitaxy. J. Appl. Phys. 126:015705
    [Google Scholar]
  104. 104. 
    Ong SP, Richards WD, Jain A, Hautier G, Kocher M et al. 2013. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68:314–19
    [Google Scholar]
  105. 105. 
    Vajenine GV. 2007. Plasma-assisted synthesis and properties of Na3N. Inorg. Chem. 46:5146–48
    [Google Scholar]
  106. 106. 
    Caskey CM, Seabold JA, Stevanović V, Ma M, Smith WA et al. 2015. Semiconducting properties of spinel tin nitride and other IV3N4 polymorphs. J. Mater. Chem. C 3:1389–96
    [Google Scholar]
  107. 107. 
    Niewa R, Jacobs H, Mayer HM. 1995. Re-evaluation of the crystal structure of lithium zirconium nitride, Li2ZrN2, by neutron powder diffraction. Z. Kristallogr. 210:474–83
    [Google Scholar]
  108. 108. 
    Hunting JL, Szymanski MM, Johnson PE, Brenhin Kellar C, DiSalvo FJ 2007. The synthesis and structural characterization of the new ternary nitrides: Ca4TiN4 and Ca5NbN5. J. Solid State Chem. 180:31–40
    [Google Scholar]
  109. 109. 
    Cabana J, Dupré N, Rousse G, Grey C, Palacín MR. 2005. Ex situ NMR and neutron diffraction study of structure and lithium motion in Li7MnN4. Solid State Ion. 176:2205–18
    [Google Scholar]
  110. 110. 
    Niewa R, Zherebtsov DA, Schnelle W, Wagner FR. 2004. Metal-metal bonding in ScTaN2. A new compound in the system ScN-TaN. Inorg. Chem. 43:6188–94
    [Google Scholar]
  111. 111. 
    Bruls RJ, Hintzen HT, Metselaar R. 1999. Preparation and characterisation of MgSiN2 powders. J. Mater. Sci. 34:4519–31
    [Google Scholar]
  112. 112. 
    Blair RG, Anderson A, Kaner RB 2005. A solid-state metathesis route to MgSiN2. Chem. Mater. 17:2155–61
    [Google Scholar]
  113. 113. 
    Maunaye M, Lang J. 1970. Preparation et propriétés de ZnGeN2. Mater. Res. Bull. 5:793–96
    [Google Scholar]
  114. 114. 
    Elder SH, DiSalvo FJ, Topor L, Navrotsky A. 1993. Thermodynamics of ternary nitride formation by ammonolysis: application to lithium molybdenum nitride (LiMoN2), sodium tungsten nitride (Na3WN3), and sodium tungsten oxide nitride (Na3WO3N). Chem. Mater. 5:1545–53
    [Google Scholar]
  115. 115. 
    Otsuka Y, Pitan C, Dornsieffer J, Takada T, Konoike T, Waser R. 2016. Synthesis of nitrogen and lanthanum codoped barium titanate with a novel thermal ammonolysis reactor. J. Eur. Ceram. Soc. 26:2719–25
    [Google Scholar]
  116. 116. 
    Tessier F, Marchand R. 1997. An original way to prepare nitride-type compounds from sulfide precursors. J. Alloys Compd. 262/263:410–15
    [Google Scholar]
  117. 117. 
    Lange H, Wötting G, Winter G. 1991. Silicon nitride—from powder synthesis to ceramic materials. Angew. Chem. Int. Ed. 30:1579–97
    [Google Scholar]
  118. 118. 
    Rauch P, DiSalvo F, Brese N, Partin D, O'Keeffe M. 1994. Synthesis and neutron diffraction study of Na3WN3 and Na3MoN3. J. Solid State Chem. 110:162–66
    [Google Scholar]
  119. 119. 
    Gillan EG, Kaner RB. 1994. Rapid solid-state synthesis of refractory nitrides. Inorg. Chem. 33:5693–700
    [Google Scholar]
  120. 120. 
    Gillan EG, Kaner RB. 1996. Synthesis of refractory ceramics via rapid metathesis reactions between solid-state precursors. Chem. Mater. 8:333–43
    [Google Scholar]
  121. 121. 
    Zakutayev A, Allen AJ, Zhang X, Vidal J, Cui Z et al. 2014. Experimental synthesis and properties of metastable CuNbN2 and theoretical extension to other ternary copper nitrides. Chem. Mater. 26:4970–77
    [Google Scholar]
  122. 122. 
    Karpiński J, Jun J, Porowski S. 1984. Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN. J. Cryst. Growth 66:1–10
    [Google Scholar]
  123. 123. 
    Aoki M, Yamane H, Shimada M, Sarayama S, DiSalvo FJ. 2001. Growth of 5 mm GaN single crystals at 750°C from an Na–Ga melt. Cryst. Growth Des. 1:119–22
    [Google Scholar]
  124. 124. 
    Addison CC, Pulham RJ, Trevillion EA. 1975. Reaction between barium and nitrogen in liquid sodium: solubility studies. J. Chem. Soc. Dalton Trans. 1975:2082–85
    [Google Scholar]
  125. 125. 
    Yamane H, DiSalvo FJ. 2018. Sodium flux synthesis of nitrides. Prog. Solid State Chem. 51:27–40
    [Google Scholar]
  126. 126. 
    Yamane H, DiSalvo FJ. 1995. Synthesis and crystal structure of Sr2ZnN2 and Ba2ZnN2. J. Solid State Chem. 119:375–79
    [Google Scholar]
  127. 127. 
    Yamane H, DiSalvo FJ. 1996. A barium germanium nitride, Ba3Ge2N2, containing and anions. J. Alloys Compd. 241:69–74
    [Google Scholar]
  128. 128. 
    Dickman MJ, Latturner SE. 2016. Metal nitrides grown from Ca/Li flux: Ca6Te3N2 and new nitridoferrate(I) Ca6(LixFe1-x)Te2N3. J. Am. Chem. Soc. 138:10636–44
    [Google Scholar]
  129. 129. 
    Wang B, Callahan MJ. 2006. Ammonothermal synthesis of III-nitride crystals. Cryst. Growth Des. 6:1227–46
    [Google Scholar]
  130. 130. 
    Richter TM, Niewa R. 2014. Chemistry of ammonothermal synthesis. Inorganics 2:29–78
    [Google Scholar]
  131. 131. 
    Häusler J, Schnick W. 2018. Ammonothermal synthesis of nitrides: recent developments and future perspectives. Chem. Eur. J. 24:11864–79
    [Google Scholar]
  132. 132. 
    Häusler J, Niklaus R, Minár J, Schnick W. 2018. Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N2 (IV=Si,Ge). Chem. Eur. J. 24:1686–93
    [Google Scholar]
  133. 133. 
    Borg RJ, Dienes GJ. 1988. An Introduction to Solid State Diffusion San Diego, CA: Academic
    [Google Scholar]
  134. 134. 
    Endo T, Sato Y, Takizawa H, Shimada M. 1992. High-pressure synthesis of new compounds, ZnSiN2 and ZnGeN2 with distorted wurtzite structure. J. Mater. Sci. Lett. 11:424–26
    [Google Scholar]
  135. 135. 
    Kawamura F, Yamada N, Imai M, Taniguchi T. 2016. Synthesis of ZnSnN2 crystals via a high-pressure metathesis reaction. Cryst. Res. Technol. 51:220–24
    [Google Scholar]
  136. 136. 
    Du K, Bekele C, Hayman C, Angus J, Pirouz P, Kash K. 2008. Synthesis and characterization of ZnGeN2 grown from elemental Zn and Ge sources. J. Cryst. Growth 310:1057–61
    [Google Scholar]
  137. 137. 
    Quayle PC, He K, Shan J, Kash K. 2013. Synthesis, lattice structure, and band gap of ZnSnN2. MRS Commun. 3:135–38
    [Google Scholar]
  138. 138. 
    Quayle PC, Junno GT, He K, Blanton EW, Shan J, Kash K. 2017. Vapor-liquid-solid synthesis of ZnSnN2. Phys. Status Solidi B 254:1600718
    [Google Scholar]
  139. 139. 
    Grekov FF, Chernovets BV. 2004. Methods for MgSiN2 synthesis. Russ. J. Appl. Chem. 77:1223–26
    [Google Scholar]
  140. 140. 
    Ptak AJ, Millecchia MR, Myers TH, Ziemer KS, Stinespring CD. 1999. The relation of active nitrogen species to high-temperature limitations for () GaN growth by radio-frequency-plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 74:3836–38
    [Google Scholar]
  141. 141. 
    Blant AV, Hughes OH, Cheng TS, Novikov SV, Foxon CT. 2000. Nitrogen species from radio frequency plasma sources used for molecular beam epitaxy growth of GaN. Plasma Sources Sci. Technol. 9:12–17
    [Google Scholar]
  142. 142. 
    Thornton JA. 1974. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11:666–70
    [Google Scholar]
  143. 143. 
    Arakawa Y, Ueno K, Kobayashi A, Ohta J, Fujioka H. 2016. High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering. APL Mater. 4:086103
    [Google Scholar]
  144. 144. 
    Umeda K, Takeuchi M, Yamada H, Kubo R, Yoshino Y. 2006. Improvement of thickness uniformity and crystallinity of AlN films prepared by off-axis sputtering. Vacuum 80:658–61
    [Google Scholar]
  145. 145. 
    Howson RP. 1994. The reactive sputtering of oxides and nitrides. Pure Appl. Chem. 66:1311–18
    [Google Scholar]
  146. 146. 
    McGinn PJ. 2019. Thin-film processing routes for combinatorial materials investigations—a review. ACS Comb. Sci. 21:501–15
    [Google Scholar]
  147. 147. 
    Lide DR 1993. CRC Handbook of Chemistry & Physics. Boca Raton, FL: CRC. , 74th ed..
  148. 148. 
    Feldberg N, Aldous JD, Linhart WM, Phillips LJ, Durose K et al. 2013. Growth, disorder, and physical properties of ZnSnN2. Appl. Phys. Lett. 103:042109
    [Google Scholar]
  149. 149. 
    Mizuta M, Fujieda S, Matsumoto Y, Kawamura T. 1986. Low temperature growth of GaN and AlN on GaAs utilizing metalorganics and hydrazine. Jpn. J. Appl. Phys. 25:L945–48
    [Google Scholar]
  150. 150. 
    Koukitu A, Kumagai Y, Kubota N, Seki H. 1999. Thermodynamic analysis on the MOVPE growth of nitride semiconductors using hydrazine. Phys. Status Solidi B 216:707–12
    [Google Scholar]
  151. 151. 
    Zhu LD, Maruska PH, Norris PE, Yip PW, Bouthillette LP. 1999. Epitaxial growth and structural characterization of single crystalline ZnGeN2. MRS Online Proc. Libr. 537:38
    [Google Scholar]
  152. 152. 
    Misaki T, Wakahara A, Okada H, Yoshida A. 2004. Epitaxial growth and characterization of ZnGeN2 by metalorganic vapor phase epitaxy. J. Cryst. Growth 260:125–29
    [Google Scholar]
  153. 153. 
    Larson WL, Maruska HP, Stevenson DA. 1974. Synthesis and properties of ZnGeN2. J. Electrochem. Soc. 121:1673–74
    [Google Scholar]
  154. 154. 
    Lany S. 2013. Band-structure calculations for the 3d transition metal oxides in GW. Phys. Rev. B 87:085112
    [Google Scholar]
  155. 155. 
    Sands T, Palmström CJ, Harbison JP, Keramidas VG, Tabatabaie N et al. 1990. Stable and epitaxial metal/III-V semiconductor heterostructures. Mater. Sci. Rep. 5:99–170
    [Google Scholar]
  156. 156. 
    Baliga BJ. 1982. Semiconductors for high-voltage, vertical channel field-effect transistors. J. Appl. Phys. 53:1759–64
    [Google Scholar]
  157. 157. 
    Coltrin ME, Kaplar RJ. 2017. Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices. J. Appl. Phys. 121:055706
    [Google Scholar]
  158. 158. 
    Adamski NL, Wickramaratne D, Van de Walle CG. 2020. Band alignments and polarization properties of the Zn-IV-nitrides. J. Mater. Chem. C 8:7890–98
    [Google Scholar]
  159. 159. 
    Akiyama M, Kamohara T, Kano K, Teshigahara A, Takeuchi Y, Kawahara N. 2009. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. Commun. 21:593–96
    [Google Scholar]
  160. 160. 
    Fichtner S, Wolff N, Lofink F, Kienle L, Wagner B. 2019. AlScN: a III-V semiconductor based ferroelectric. Appl. Phys. 125:114103
    [Google Scholar]
  161. 161. 
    Jena D, Page R, Casamento J, Dang P, Singhal J et al. 2019. The new nitrides: layered, ferroelectric, magnetic, metallic and superconducting nitrides to boost the GaN photonics and electronics eco-system. Jpn. J. Appl. Phys. 58:SC0801
    [Google Scholar]
  162. 162. 
    Unverfehrt L, Glaser J, Stroebele M, Tragl S, Gibson K, Meyer HJ. 2009. The versatility of solid-state metathesis reactions: from rare earth fluorides to carboiimides. Z. Anorg. Allg. Chem. 635:479–83
    [Google Scholar]
  163. 163. 
    Hosono A, Stoffel RP, Masubuchi Y, Dronskowski R, Kikkawa S. 2019. Melting behavior of alkaline-earth metal carbodiimides and their thermochemistry from first principles. Inorg. Chem. 58:8938–42
    [Google Scholar]
  164. 164. 
    Odahara J, Sun W, Miura A, Rosero-Navarro NC, Nagao M et al. 2019. Self-combustion synthesis of novel metastable ternary molybdenum nitrides. ACS Mater. Lett. 1:64–70
    [Google Scholar]
  165. 165. 
    Alvarez D, Spiegelman J, Andachi K, Holmes R, Raynor M, Shimizu H 2017. Enabling low temperature metal nitride ALD using ultra-high purity hydrazine: ET/ID: enabling technologies and innovative devices. Proceedings of the 2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)426–30 Piscataway, NJ: IEEE
    [Google Scholar]
  166. 166. 
    Houmes JD, zur Loye HC. 1996. Plasma nitridation of metal oxides. Chem. Mater. 8:2551–53
    [Google Scholar]
  167. 167. 
    Saha B, Shakouri A, Sands TD. 2018. Rocksalt nitride metal/semiconductor superlattices: a new class of artificially structured materials. Appl. Phys. Rev. 5:021101
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-012444
Loading
/content/journals/10.1146/annurev-matsci-080819-012444
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error