1932

Abstract

Ant physiology has been fashioned by 100 million years of social evolution. Ants perform many sophisticated social and collective behaviors yet possess nervous systems similar in schematic and scale to that of the fruit fly , a popular solitary model organism. Ants are thus attractive complementary subjects to investigate adaptations pertaining to complex social behaviors that are absent in flies. Despite research interest in ant behavior and the neurobiological foundations of sociality more broadly, our understanding of the ant nervous system is incomplete. Recent technical advances have enabled cutting-edge investigations of the nervous system in a fashion that is less dependent on model choice, opening the door for mechanistic social insect neuroscience. In this review, we revisit important aspects of what is known about the ant nervous system and behavior, and we look forward to how functional circuit neuroscience in ants will help us understand what distinguishes solitary animals from highly social ones.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-083023-102101
2024-08-08
2025-01-08
The full text of this item is not currently available.

Literature Cited

  1. Alaux C, Robinson GE. 2007.. Alarm pheromone induces immediate-early gene expression and slow behavioral response in honey bees. . J. Chem. Ecol. 33::134650
    [Crossref] [Google Scholar]
  2. Anderson P, Hansson BS, Nilsson U, Han Q, Sjöholm M, et al. 2007.. Increased behavioral and neuronal sensitivity to sex pheromone after brief odor experience in a moth. . Chem. Senses 32::48391
    [Crossref] [Google Scholar]
  3. Ardin P, Peng F, Mangan M, Lagogiannis K, Webb B. 2016.. Using an insect mushroom body circuit to encode route memory in complex natural environments. . PLOS Comput. Biol. 12::e1004683
    [Crossref] [Google Scholar]
  4. Bates AS, Schlegel P, Roberts RJV, Drummond N, Tamimi IFM, et al. 2020.. Complete connectomic reconstruction of olfactory projection neurons in the fly brain. . Curr. Biol. 30::318399.e6
    [Crossref] [Google Scholar]
  5. Beshers SN, Fewell JH. 2001.. Models of division of labor in social insects. . Annu. Rev. Entomol. 46::41340
    [Crossref] [Google Scholar]
  6. Billen J, Morgan ED. 1998.. Pheromone communication in social insects: sources and secretions. . In Pheromone Communication in Social Insects, ed. RK Vander Meer, MD Breed, KE Espelie, ML Winston , pp. 333. Boulder, CO:: Westview Press
    [Google Scholar]
  7. Billen J, Šobotník J. 2015.. Insect exocrine glands. . Arthropod Struct. Dev. 44::399400
    [Crossref] [Google Scholar]
  8. Boillat M, Challet L, Rossier D, Kan C, Carleton A, Rodriguez I. 2015.. The vomeronasal system mediates sick conspecific avoidance. . Curr. Biol. 25::25155
    [Crossref] [Google Scholar]
  9. Buehlmann C, Wozniak B, Goulard R, Webb B, Graham P, Niven JE. 2020.. Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. . Curr. Biol. 30::343843.e2
    [Crossref] [Google Scholar]
  10. Caminer MA, Libbrecht R, Majoe M, Ho DV, Baumann P, Foitzik S. 2023.. Task-specific odorant receptor expression in worker antennae indicates that sensory filters regulate division of labor in ants. . Commun. Biol. 6::1004
    [Crossref] [Google Scholar]
  11. Caron S, Abbott LF. 2017.. Neuroscience: intelligence in the honeybee mushroom body. . Curr. Biol. 27::R22023
    [Crossref] [Google Scholar]
  12. Cartwright BA, Collett TS. 1983.. Landmark learning in bees. . J. Comp. Physiol. 151::52143
    [Crossref] [Google Scholar]
  13. Chandra V, Fetter-Pruneda I, Oxley PR, Ritger AL, McKenzie SK, et al. 2018.. Social regulation of insulin signaling and the evolution of eusociality in ants. . Science 361::398402
    [Crossref] [Google Scholar]
  14. Chandra V, Gal A, Kronauer DJC. 2021.. Colony expansions underlie the evolution of army ant mass raiding. . PNAS 118::e2026534118
    [Crossref] [Google Scholar]
  15. Chandra V, Kronauer DJC. 2021.. Foraging and feeding are independently regulated by social and personal hunger in the clonal raider ant. . Behav. Ecol. Sociobiol. 75::41
    [Crossref] [Google Scholar]
  16. Collett M, Chittka L, Collett TS. 2013.. Spatial memory in insect navigation. . Curr. Biol. 23::R789800
    [Crossref] [Google Scholar]
  17. Cremer S, Armitage SA, Schmid-Hempel P. 2007.. Social immunity. . Curr. Biol. 17::R693702
    [Crossref] [Google Scholar]
  18. Cremer S, Pull CD, Fürst MA. 2018.. Social immunity: emergence and evolution of colony-level disease protection. . Annu. Rev. Entomol. 63::10523
    [Crossref] [Google Scholar]
  19. Dahmen H, Wahl VL, Pfeffer SE, Mallot HA, Wittlinger M. 2017.. Naturalistic path integration of Cataglyphis desert ants on an air-cushioned lightweight spherical treadmill. . J. Exp. Biol. 220::63444
    [Crossref] [Google Scholar]
  20. Das Chakraborty S, Chang H, Hansson BS, Sachse S. 2022.. Higher-order olfactory neurons in the lateral horn support odor valence and odor identity coding in Drosophila. . eLife 11::e74637
    [Crossref] [Google Scholar]
  21. Das Chakraborty S, Sachse S. 2021.. Olfactory processing in the lateral horn of Drosophila. . Cell Tissue Res. 383::11323
    [Crossref] [Google Scholar]
  22. de Bivort B, Buchanan S, Skutt-Kakaria K, Gajda E, Ayroles J, et al. 2022.. Precise quantification of behavioral individuality from 80 million decisions across 183,000 flies. . Front. Behav. Neurosci. 16::836626
    [Crossref] [Google Scholar]
  23. Dickinson MH. 2014.. Death Valley, Drosophila, and the Devonian toolkit. . Annu. Rev. Entomol. 59::5172
    [Crossref] [Google Scholar]
  24. Draft RW, McGill MR, Kapoor V, Murthy VN. 2018.. Carpenter ants use diverse antennae sampling strategies to track odor trails. . J. Exp. Biol. 221::jeb185124
    [Crossref] [Google Scholar]
  25. Dulac C, O'Connell LA, Wu Z. 2014.. Neural control of maternal and paternal behaviors. . Science 345::76570
    [Crossref] [Google Scholar]
  26. Ehmer B, Gronenberg W. 2004.. Mushroom body volumes and visual interneurons in ants: comparison between sexes and castes. . J. Comp. Neurol. 469::198213
    [Crossref] [Google Scholar]
  27. Engsontia P, Sangket U, Robertson HM, Satasook C. 2015.. Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors. . BMC Res. Notes 8::380
    [Crossref] [Google Scholar]
  28. Farris SM. 2011.. Are mushroom bodies cerebellum-like structures?. Arthropod Struct. Dev. 40::36879
    [Crossref] [Google Scholar]
  29. Ferguson ST, Bakis I, Edwards ND, Zwiebel LJ. 2023.. Olfactory sensitivity differentiates morphologically distinct worker castes in Camponotus floridanus. . BMC Biol. 21::3
    [Crossref] [Google Scholar]
  30. Fetter-Pruneda I, Hart T, Ulrich Y, Gal A, Oxley PR, et al. 2021.. An oxytocin/vasopressin-related neuropeptide modulates social foraging behavior in the clonal raider ant. . PLOS Biol. 19::e3001305
    [Crossref] [Google Scholar]
  31. Frank ET, Kesner L, Liberti J, Helleu Q, LeBoeuf AC, et al. 2023.. Targeted treatment of injured nestmates with antimicrobial compounds in an ant society. . Nat. Commun. 14::8446
    [Crossref] [Google Scholar]
  32. Frank ET, Schmitt T, Hovestadt T, Mitesser O, Stiegler J, Linsenmair KE. 2017.. Saving the injured: rescue behavior in the termite-hunting ant Megaponera analis. . Sci. Adv. 3::e1602187
    [Crossref] [Google Scholar]
  33. Frechter S, Bates AS, Tootoonian S, Dolan M-J, Manton J, et al. 2019.. Functional and anatomical specificity in a higher olfactory centre. . eLife 8::e44590
    [Crossref] [Google Scholar]
  34. Gal A, Saragosti J, Kronauer DJ. 2020.. anTraX, a software package for high-throughput video tracking of color-tagged insects. . eLife 9::e58145
    [Crossref] [Google Scholar]
  35. Gospocic J, Glastad KM, Sheng L, Shields EJ, Berger SL, Bonasio R. 2021.. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. . Cell 184::580723.e14
    [Crossref] [Google Scholar]
  36. Gospocic J, Shields EJ, Glastad KM, Lin Y, Penick CA, et al. 2017.. The neuropeptide corazonin controls social behavior and caste identity in ants. . Cell 170::74859.e12
    [Crossref] [Google Scholar]
  37. Goulard R, Buehlmann C, Niven J, Graham P, Webb B. 2020.. A motion compensation treadmill for untethered wood ants (Formica rufa): evidence for transfer of orientation memories from free-walking training. . J. Exp. Biol. 223::jeb228601
    [Crossref] [Google Scholar]
  38. Grob R, Fleischmann PN, Grübel K, Wehner R, Rössler W. 2017.. The role of celestial compass information in Cataglyphis ants during learning walks and for neuroplasticity in the central complex and mushroom bodies. . Front. Behav. Neurosci. 11::226
    [Crossref] [Google Scholar]
  39. Gronenberg W. 2008.. Structure and function of ant (Hymenoptera: Formicidae) brains: strength in numbers. . Myrmecol. News 11::2536
    [Google Scholar]
  40. Gronenberg W, Liebig J. 1999.. Smaller brains and optic lobes in reproductive workers of the ant Harpegnathos. . Naturwissenschaften 86::34345
    [Crossref] [Google Scholar]
  41. Habenstein J, Amini E, Grübel K, el Jundi B, Rössler W. 2020.. The brain of Cataglyphis ants: neuronal organization and visual projections. . J. Comp. Neurol. 528::3479506
    [Crossref] [Google Scholar]
  42. Hampel S, McKellar CE, Simpson JH, Seeds AM. 2017.. Simultaneous activation of parallel sensory pathways promotes a grooming sequence in Drosophila. . eLife 6::e28804
    [Crossref] [Google Scholar]
  43. Hart T, Frank DD, Lopes LE, Olivos-Cisneros L, Lacy KD, et al. 2023.. Sparse and stereotyped encoding implicates a core glomerulus for ant alarm behavior. . Cell 186::307994.e17
    [Crossref] [Google Scholar]
  44. Hölldobler B, Wilson EO. 1990.. The Ants. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  45. Holze H, Schrader L, Buellesbach J. 2021.. Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. . Heredity 126::21934
    [Crossref] [Google Scholar]
  46. Honegger KS, Smith MA-Y, Churgin MA, Turner GC, de Bivort BL. 2020.. Idiosyncratic neural coding and neuromodulation of olfactory individuality in Drosophila. . PNAS 117::2329297
    [Crossref] [Google Scholar]
  47. Honkanen A, Adden A, da Silva Freitas J, Heinze S. 2019.. The insect central complex and the neural basis of navigational strategies. . J. Exp. Biol. 222::jeb188854
    [Crossref] [Google Scholar]
  48. Hulse BK, Jayaraman V. 2020.. Mechanisms underlying the neural computation of head direction. . Annu. Rev. Neurosci. 43::3154
    [Crossref] [Google Scholar]
  49. Jayatilaka P, Murray T, Narendra A, Zeil J. 2018.. The choreography of learning walks in the Australian jack jumper ant Myrmecia croslandi. . J. Exp. Biol. 221::jeb185306
    [Crossref] [Google Scholar]
  50. Jeanne JM, Fişek M, Wilson RI. 2018.. The organization of projections from olfactory glomeruli onto higher-order neurons. . Neuron 98::1198213.e6
    [Crossref] [Google Scholar]
  51. Ju L, Glastad KM, Sheng L, Gospocic J, Kingwell CJ, et al. 2022.. Hormonal gatekeeping via the blood brain barrier governs caste-specific behavior in ants. . Cell 186::4289309
    [Crossref] [Google Scholar]
  52. Julian GE, Gronenberg W. 2002.. Reduction of brain volume correlates with behavioral changes in queen ants. . Brain Behav. Evol. 60::15264
    [Crossref] [Google Scholar]
  53. Kamhi JF, Barron AB, Narendra A. 2020.. Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian Myrmecia ants. . Curr. Biol. 30::343237.e3
    [Crossref] [Google Scholar]
  54. Kamhi JF, Traniello JFA. 2013.. Biogenic amines and collective organization in a superorganism: neuromodulation of social behavior in ants. . Brain Behav. Evol. 82::22036
    [Crossref] [Google Scholar]
  55. Keesey IW, Koerte S, Khallaf MA, Retzke T, Guillou A, et al. 2017.. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. . Nat. Commun. 8::265
    [Crossref] [Google Scholar]
  56. Kelber C, Rössler W, Kleineidam CJ. 2010.. Phenotypic plasticity in number of glomeruli and sensory innervation of the antennal lobe in leaf-cutting ant workers (A. vollenweideri). . Dev. Neurobiol. 70::22234
    [Crossref] [Google Scholar]
  57. Kim SM, Su C-Y, Wang JW. 2017.. Neuromodulation of innate behaviors in Drosophila. . Annu. Rev. Neurosci. 40::32748
    [Crossref] [Google Scholar]
  58. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, et al. 2014.. Independent optical excitation of distinct neural populations. . Nat. Methods 11::33846
    [Crossref] [Google Scholar]
  59. Kleineidam CJ, Obermayer M, Halbich W, Rössler W. 2005.. A macroglomerulus in the antennal lobe of leaf-cutting ant workers and its possible functional significance. . Chem. Senses 30::38392
    [Crossref] [Google Scholar]
  60. Kócsi Z, Murray T, Dahmen H, Narendra A, Zeil J. 2020.. The Antarium: a reconstructed visual reality device for ant navigation research. . Front. Behav. Neurosci. 14::599374
    [Crossref] [Google Scholar]
  61. Koto A, Motoyama N, Tahara H, McGregor S, Moriyama M, et al. 2019.. Oxytocin/vasopressin-like peptide inotocin regulates cuticular hydrocarbon synthesis and water balancing in ants. . PNAS 116::5597606
    [Crossref] [Google Scholar]
  62. Kronauer DJC, Libbrecht R. 2018.. Back to the roots: the importance of using simple insect societies to understand the molecular basis of complex social life. . Curr. Opin. Insect Sci. 28::3339
    [Crossref] [Google Scholar]
  63. Kuebler LS, Kelber C, Kleineidam CJ. 2010.. Distinct antennal lobe phenotypes in the leaf-cutting ant (Atta vollenweideri). . J. Comp. Neurol. 518::35265
    [Crossref] [Google Scholar]
  64. Kühn-Bühlmann S, Wehner R. 2006.. Age-dependent and task-related volume changes in the mushroom bodies of visually guided desert ants, Cataglyphis bicolor. . J. Neurobiol. 66::51121
    [Crossref] [Google Scholar]
  65. Li F, Lindsey J, Marin EC, Otto N, Dreher M, et al. 2020.. The connectome of the adult Drosophila mushroom body provides insights into function. . eLife 9::e62576
    [Crossref] [Google Scholar]
  66. Li J, Mahoney BD, Jacob MS, Caron SJC. 2020.. Visual input into the Drosophila melanogaster mushroom body. . Cell Rep. 32::108138
    [Crossref] [Google Scholar]
  67. Libbrecht R, Oxley PR, Kronauer DJC. 2018.. Clonal raider ant brain transcriptomics identifies candidate molecular mechanisms for reproductive division of labor. . BMC Biol. 16::89
    [Crossref] [Google Scholar]
  68. Linksvayer TA, Wade MJ. 2005.. The evolutionary origin and elaboration of sociality in the aculeate Hymenoptera: maternal effects, sib-social effects, and heterochrony. . Q. Rev. Biol. 80::31736
    [Crossref] [Google Scholar]
  69. Lopes LE, Frank ET, Kárpáti Z, Schmitt T, Kronauer DJC. 2023.. The alarm pheromone and alarm response of the clonal raider ant. . J. Chem. Ecol. 49::110
    [Crossref] [Google Scholar]
  70. Lu J, Behbahani AH, Hamburg L, Westeinde EA, Dawson PM, et al. 2022.. Transforming representations of movement from body- to world-centric space. . Nature 601::98104
    [Crossref] [Google Scholar]
  71. Lyu C, Abbott LF, Maimon G. 2022.. Building an allocentric travelling direction signal via vector computation. . Nature 601::9297
    [Crossref] [Google Scholar]
  72. Maimon G, Straw AD, Dickinson MH. 2010.. Active flight increases the gain of visual motion processing in Drosophila. . Nat. Neurosci. 13::39399
    [Crossref] [Google Scholar]
  73. Majidifar V, Psalti MN, Coulm M, Fetzer E, Teggers E-M, et al. 2023.. Ontogeny of superorganisms: social control of queen specialization in ants. . bioRxiv 2022.03.08.483434. https://doi.org/10.1101/2022.03.08.483434
  74. Mansourian S, Corcoran J, Enjin A, Löfstedt C, Dacke M, Stensmyr MC. 2016.. Fecal-derived phenol induces egg-laying aversion in Drosophila. . Curr. Biol. 26::276269
    [Crossref] [Google Scholar]
  75. Marescotti M, Lagogiannis K, Webb B, Davies RW, Armstrong JD. 2018.. Monitoring brain activity and behaviour in freely moving Drosophila larvae using bioluminescence. . Sci. Rep. 8::9246
    [Crossref] [Google Scholar]
  76. McKenzie SK, Fetter-Pruneda I, Ruta V, Kronauer DJC. 2016.. Transcriptomics and neuroanatomy of the clonal raider ant implicate an expanded clade of odorant receptors in chemical communication. . PNAS 113::1409196
    [Crossref] [Google Scholar]
  77. McKenzie SK, Kronauer DJC. 2018.. The genomic architecture and molecular evolution of ant odorant receptors. . Genome Res. 28::175765
    [Crossref] [Google Scholar]
  78. Mersch DP, Crespi A, Keller L. 2013.. Tracking individuals shows spatial fidelity is a key regulator of ant social organization. . Science 340::109093
    [Crossref] [Google Scholar]
  79. Miyakawa MO, Mikheyev AS. 2015.. QTL mapping of sex determination loci supports an ancient pathway in ants and honey bees. . PLOS Genet. 11::e1005656
    [Crossref] [Google Scholar]
  80. Modi MN, Shuai Y, Turner GC. 2020.. The Drosophila mushroom body: from architecture to algorithm in a learning circuit. . Annu. Rev. Neurosci. 43::46584
    [Crossref] [Google Scholar]
  81. Morgan DE. 2009.. Trail pheromones of ants. . Physiol. Entomol. 34::117
    [Crossref] [Google Scholar]
  82. Mysore K, Subramanian KA, Sarasij RC, Suresh A, Shyamala BV, et al. 2009.. Caste and sex specific olfactory glomerular organization and brain architecture in two sympatric ant species Camponotus sericeus and Camponotus compressus (Fabricius, 1798). . Arthropod Struct. Dev. 38::48597
    [Crossref] [Google Scholar]
  83. Nakanishi A, Nishino H, Watanabe H, Yokohari F, Nishikawa M. 2009.. Sex-specific antennal sensory system in the ant Camponotus japonicus: structure and distribution of sensilla on the flagellum. . Cell Tissue Res. 338::7997
    [Crossref] [Google Scholar]
  84. Nicholson DJ, Judd SPD, Cartwright BA, Collett TS. 1999.. Learning walks and landmark guidance in wood ants (Formica rufa). . J. Exp. Biol. 202::183138
    [Crossref] [Google Scholar]
  85. Nishikawa M, Nishino H, Misaka Y, Kubota M, Tsuji E, et al. 2008.. Sexual dimorphism in the antennal lobe of the ant Camponotus japonicus. . Zoolog. Sci. 25::195204
    [Crossref] [Google Scholar]
  86. Peeters C, Liebig J, Hölldobler B. 2000.. Sexual reproduction by both queens and workers in the ponerine ant Harpegnathos saltator. . Insectes Soc. 47::32532
    [Crossref] [Google Scholar]
  87. Peng F, Chittka L. 2017.. A simple computational model of the bee mushroom body can explain seemingly complex forms of olfactory learning and memory. . Curr. Biol. 27::22430
    [Crossref] [Google Scholar]
  88. Penick CA, Ghaninia M, Haight KL, Opachaloemphan C, Yan H, et al. 2021.. Reversible plasticity in brain size, behaviour and physiology characterizes caste transitions in a socially flexible ant (Harpegnathos saltator). . Philos. Trans. R. Soc. B 288::20210141
    [Google Scholar]
  89. Phillis RW, Bramlage AT, Wotus C, Whittaker A, Gramates LS, et al. 1993.. Isolation of mutations affecting neural circuitry required for grooming behavior in Drosophila melanogaster. . Genetics 133::58192
    [Crossref] [Google Scholar]
  90. Pires PM, Zhang L, Parache V, Abbott LF, Maimon G. 2024.. Converting an allocentric goal into an egocentric steering signal. . Nature 626::80818
    [Crossref] [Google Scholar]
  91. Pull CD, Ugelvig LV, Wiesenhofer F, Grasse AV, Tragust S, et al. 2018.. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. . eLife 7::e32073
    [Crossref] [Google Scholar]
  92. Ravary F, Jahyny B, Jaisson P. 2006.. Brood stimulation controls the phasic reproductive cycle of the parthenogenetic ant Cerapachys biroi. . Insectes Soc. 53::2026
    [Crossref] [Google Scholar]
  93. Reddy G, Shraiman BI, Vergassola M. 2022.. Sector search strategies for odor trail tracking. . PNAS 119::e2107431118
    [Crossref] [Google Scholar]
  94. Rehan SM, Richards MH. 2010.. The influence of maternal quality on brood sex allocation in the small carpenter bee, Ceratina calcarata. . Ethology 116::87687
    [Crossref] [Google Scholar]
  95. Renthal R, Velasquez D, Olmos D, Hampton J, Wergin WP. 2003.. Structure and distribution of antennal sensilla of the red imported fire ant. . Micron 34::40513
    [Crossref] [Google Scholar]
  96. Reppert SM, de Roode JC. 2018.. Demystifying monarch butterfly migration. . Curr. Biol. 28::R100922
    [Crossref] [Google Scholar]
  97. Riabinina O, Potter CJ. 2016.. The Q-system: a versatile expression system for Drosophila. . In Drosophila: Methods and Molecular Biology, ed. C Dahmann , pp. 5378. New York:: Humana Press
    [Google Scholar]
  98. Richardson TO, Kay T, Braunschweig R, Journeau OA, Rüegg M, et al. 2021.. Ant behavioral maturation is mediated by a stochastic transition between two fundamental states. . Curr. Biol. 31::225360.e3
    [Crossref] [Google Scholar]
  99. Robertson HM, Wanner KW. 2006.. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. . Genome Res. 16::1395403
    [Crossref] [Google Scholar]
  100. Robertson HM, Warr CG, Carlson JR. 2003.. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. . PNAS 100::1453742
    [Crossref] [Google Scholar]
  101. Rose S, Beckwith EJ, Burmester C, May RC, Dionne MS, Rezaval C. 2022.. Pre-copulatory reproductive behaviours are preserved in Drosophila melanogaster infected with bacteria. . Philos. Trans. R. Soc. B 289::20220492
    [Google Scholar]
  102. Rössler W. 2019.. Neuroplasticity in desert ants (Hymenoptera: Formicidae)—importance for the ontogeny of navigation. . Myrmecol. News 29::120
    [Google Scholar]
  103. Rössler W. 2023.. Multisensory navigation and neuronal plasticity in desert ants. . Trends Neurosci. 46::41517
    [Crossref] [Google Scholar]
  104. Rössler W, Groh C. 2012.. Plasticity of synaptic microcircuits in the mushroom-body calyx of the honey bee. . In Honeybee Neurobiology and Behavior, ed. CG Galizia, D Eisenhardt, M Giurfa , pp. 14153. Dordrecht, Neth:.: Springer
    [Google Scholar]
  105. Ruta V, Datta SR, Vasconcelos ML, Freeland J, Looger LL, Axel R. 2010.. A dimorphic pheromone circuit in Drosophila from sensory input to descending output. . Nature 468::68690
    [Crossref] [Google Scholar]
  106. Sayre ME. 2022.. Neural correlates of diverse navigational strategies. PhD Thesis , Lund Univ., Sweden:
    [Google Scholar]
  107. Sayre ME, Templin R, Chavez J, Kempenaers J, Heinze S. 2021.. A projectome of the bumblebee central complex. . eLife 10::e68911
    [Crossref] [Google Scholar]
  108. Schmitt F, Stieb SM, Wehner R, Rössler W. 2016.. Experience-related reorganization of giant synapses in the lateral complex: potential role in plasticity of the sky-compass pathway in the desert ant Cataglyphis fortis. . Dev. Neurobiol. 76::390404
    [Crossref] [Google Scholar]
  109. Schwander T, Lo N, Beekman M, Oldroyd BP, Keller L. 2010.. Nature versus nurture in social insect caste differentiation. . Trends Ecol. Evol. 25::27582
    [Crossref] [Google Scholar]
  110. Seeds AM, Ravbar P, Chung P, Hampel S, Midgley FM, et al. 2014.. A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. . eLife 3::e02951
    [Crossref] [Google Scholar]
  111. Sieber KR, Dorman T, Newell N, Yan H. 2021.. (Epi)genetic mechanisms underlying the evolutionary success of eusocial insects. . Insects 12::498
    [Crossref] [Google Scholar]
  112. Simola DF, Graham RJ, Brady CM, Enzmann BL, Desplan C, et al. 2016.. Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. . Science 351::aac6633
    [Crossref] [Google Scholar]
  113. Smith EJ, Vizueta J, Younger MA, Mullen SP, Traniello JFA. 2023.. Dietary diversity, sociality, and the evolution of ant gustation. . Front. Ecol. Evol. 11::1175719
    [Crossref] [Google Scholar]
  114. Snir O, Alwaseem H, Heissel S, Sharma A, Valdés-Rodríguez S, et al. 2022.. The pupal moulting fluid has evolved social functions in ants. . Nature 612::48894
    [Crossref] [Google Scholar]
  115. Sprenger PP, Menzel F. 2020.. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. . Myrmecol. News 30::126
    [Google Scholar]
  116. Steele TJ, Lanz AJ, Nagel KI. 2023.. Olfactory navigation in arthropods. . J. Comp. Physiol. A 209::46788
    [Crossref] [Google Scholar]
  117. Stensmyr MC, Dweck HKM, Farhan A, Ibba I, Strutz A, et al. 2012.. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. . Cell 151::134557
    [Crossref] [Google Scholar]
  118. Stieb SM, Kelber C, Wehner R, Rössler W. 2011.. Antennal-lobe organization in desert ants of the genus Cataglyphis. . Brain Behav. Evol. 77::13646
    [Crossref] [Google Scholar]
  119. Stock M, Milutinović B, Hoenigsberger M, Grasse AV, Wiesenhofer F, et al. 2023.. Pathogen evasion of social immunity. . Nat. Ecol. Evol. 7::45060
    [Crossref] [Google Scholar]
  120. Stockmaier S, Ulrich Y, Albery GF, Cremer S, Lopes PC. 2023.. Behavioural defences against parasites across host social structures. . Funct. Ecol. 37::80920
    [Crossref] [Google Scholar]
  121. Stone T, Webb B, Adden A, Ben Weddig N, Honkanen A, et al. 2017.. An anatomically constrained model for path integration in the bee brain. . Curr. Biol. 27::306985.e11
    [Crossref] [Google Scholar]
  122. Stoop R. 2012.. Neuromodulation by oxytocin and vasopressin. . Neuron 76::14259
    [Crossref] [Google Scholar]
  123. Strausfeld NJ. 2002.. Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. . J. Comp. Neurol. 450::433
    [Crossref] [Google Scholar]
  124. Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K. 1998.. Evolution, discovery, and interpretations of arthropod mushroom bodies. . Learn. Mem. 5::1137
    [Crossref] [Google Scholar]
  125. Teseo S, Kronauer DJC, Jaisson P, Châline N. 2013.. Enforcement of reproductive synchrony via policing in a clonal ant. . Curr. Biol. 23::32832
    [Crossref] [Google Scholar]
  126. Tragust S, Mitteregger B, Barone V, Konrad M, Ugelvig LV, Cremer S. 2013.. Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. . Curr. Biol. 23::7682
    [Crossref] [Google Scholar]
  127. Tranter C, Hughes WOH. 2015.. Acid, silk and grooming: alternative strategies in social immunity in ants?. Behav. Ecol. Sociobiol. 69::168799
    [Crossref] [Google Scholar]
  128. Trible W, Kronauer DJC. 2017.. Caste development and evolution in ants: It's all about size. . J. Exp. Biol. 220::5362
    [Crossref] [Google Scholar]
  129. Trible W, Kronauer DJC. 2021.. Hourglass model for developmental evolution of ant castes. . Trends Ecol. Evol. 36::1003
    [Crossref] [Google Scholar]
  130. Trible W, Olivos-Cisneros L, McKenzie SK, Saragosti J, Chang N-C, et al. 2017.. orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. . Cell 170::72735.e10
    [Crossref] [Google Scholar]
  131. Trumbo ST. 2012.. Patterns of parental care in invertebrates. . In The Evolution of Parental Care, ed. N Royle, PT Smiseth, M Kölliker , pp. 81100. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  132. Ulrich Y, Burns D, Libbrecht R, Kronauer DJC. 2016.. Ant larvae regulate worker foraging behavior and ovarian activity in a dose-dependent manner. . Behav. Ecol. Sociobiol. 70::101118
    [Crossref] [Google Scholar]
  133. Ulrich Y, Kawakatsu M, Tokita CK, Saragosti J, Chandra V, et al. 2021.. Response thresholds alone cannot explain empirical patterns of division of labor in social insects. . PLOS Biol. 19::e3001269
    [Crossref] [Google Scholar]
  134. van Zweden JS, d'Ettorre P. 2010.. Nestmate recognition in social insects and the role of hydrocarbons. . In Insect Hydrocarbons, ed. GJ Blomquist, AG Bagnères , pp. 22243. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  135. Vogt K, Aso Y, Hige T, Knapek S, Ichinose T, et al. 2016.. Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. . eLife 5::e14009
    [Crossref] [Google Scholar]
  136. Vosshall LB, Stocker RF. 2007.. Molecular architecture of smell and taste in Drosophila. . Annu. Rev. Neurosci. 30::50533
    [Crossref] [Google Scholar]
  137. Walsh JT, Garnier S, Linksvayer TA. 2020.. Ant collective behavior is heritable and shaped by selection. . Am. Nat. 196:(5):54154
    [Crossref] [Google Scholar]
  138. Wang JW, Wong AM, Flores J, Vosshall LB, Axel R. 2003.. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. . Cell 112::27182
    [Crossref] [Google Scholar]
  139. Wang Z, Singhvi A, Kong P. 2004.. Taste representations in the Drosophila brain. . Cell 117::98191
    [Crossref] [Google Scholar]
  140. Webb B, Wystrach A. 2016.. Neural mechanisms of insect navigation. . Curr. Opin. Insect Sci. 15::2739
    [Crossref] [Google Scholar]
  141. Wehner R. 1992.. Arthropods. . In Animal Homing, ed. F Papi , pp. 45144. London:: Chapman & Hall
    [Google Scholar]
  142. Wehner R. 2020.. Desert Navigator: The Journey of an Ant. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  143. Wheeler WM. 1923.. Social Life Among the Insects. New York:: Harcourt Brace
    [Google Scholar]
  144. Wittlinger M, Wehner R, Wolf H. 2006.. The ant odometer: stepping on stilts and stumps. . Science 312::196567
    [Crossref] [Google Scholar]
  145. Yan H, Opachaloemphan C, Mancini G, Yang H, Gallitto M, et al. 2017.. An engineered orco mutation produces aberrant social behavior and defective neural development in ants. . Cell 170::73647.e9
    [Crossref] [Google Scholar]
  146. Yan H, Liebig J. 2021.. Genetic basis of chemical communication in eusocial insects. . Genes Dev. 35::47082
    [Crossref] [Google Scholar]
  147. Zhou X, Slone JD, Rokas A, Berger SL, Liebig J, et al. 2012.. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. . PLOS Genet. 8::e1002930
    [Crossref] [Google Scholar]
  148. Zube C, Rössler W. 2008.. Caste- and sex-specific adaptations within the olfactory pathway in the brain of the ant Camponotusfloridanus. . Arthropod Struct. Dev. 37::46979
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-083023-102101
Loading
/content/journals/10.1146/annurev-neuro-083023-102101
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error