1932

Abstract

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory provides an intense, high-quality source of neutrinos from pion decay at rest. This source was recently used for the first measurements of coherent elastic neutrino–nucleus scattering (CEvNS) by the COHERENT Collaboration, which resulted in new constraints of physics beyond the Standard Model. The SNS neutrino source will enable further CEvNS measurements, exploration of inelastic neutrino–nucleus interactions of particular relevance for understanding supernova neutrinos, and searches for accelerator-produced sub-GeV dark matter. Taking advantage of this unique facility, COHERENT's suite of detectors in Neutrino Alley at the SNS is accumulating more data to address a broad physics program at the intersection of particle physics, nuclear physics, and astrophysics. This review describes COHERENT's first two CEvNS measurements, their interpretation, and the potential of a future physics program at the SNS.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101918-023518
2023-09-25
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-101918-023518.html?itemId=/content/journals/10.1146/annurev-nucl-101918-023518&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akimov D et al. Science 357:1123 2017.)
    [Google Scholar]
  2. 2.
    Akimov D et al. Phys. Rev. Lett. 126:012002 2021.)
    [Google Scholar]
  3. 3.
    de Gouvêa A et al. arXiv:1310.4340 [hep-ex] 2013.)
  4. 4.
    Tomalak O. arXiv:2112.12395 [hep-ph] 2021.)
  5. 5.
    Gallo Rosso A, Vissani F, Volpe MC. J. Cosmol. Astropart. Phys. 1804:040 2018.)
    [Google Scholar]
  6. 6.
    Alonso J et al. arXiv:1006.0260 [physics.ins-det] 2010.)
  7. 7.
    Athanassopoulos C et al. Nucl. Instrum. Meth. A 388:149 1997.)
    [Google Scholar]
  8. 8.
    Maschuw R. Prog. Part. Nucl. Phys. 40:183 1998.)
    [Google Scholar]
  9. 9.
    Brice S et al. Phys. Rev. D 89:072004 2014.)
    [Google Scholar]
  10. 10.
    Baxter D et al. J. High Energy Phys. 2002:123 2020.)
    [Google Scholar]
  11. 11.
    Aguilar-Arevalo AA et al. arXiv:2105.14020 [hep-ex] 2021.)
  12. 12.
    Mason T et al. eConf C000821:FR203 2000.)
    [Google Scholar]
  13. 13.
    Henderson S. Nucl. Instrum. Meth. A 763:610 2014.)
    [Google Scholar]
  14. 14.
    Haines J et al. Nucl. Instrum. Meth. A 764:94 2014.)
    [Google Scholar]
  15. 15.
    Akimov D et al. Phys. Rev. D 106:032003 2022.)
    [Google Scholar]
  16. 16.
    Avignone F et al. Phys. Atom. Nucl. 63:1007 2000.)
    [Google Scholar]
  17. 17.
    Stancu I. Nucl. Phys. B Proc. Suppl. 155:251 2006.)
    [Google Scholar]
  18. 18.
    Elnimr M et al. arXiv:1307.7097 [physics.ins-det] 2013.)
  19. 19.
    Scholberg K et al. arXiv:0910.1989 [hep-ex] 2009.)
  20. 20.
    Ankner JF et al. Spallation Neutron Source second target station integrated systems update Tech. Rep. ORNL/TM-2017/490 Oak Ridge Natl. Lab. Oak Ridge, TN: 2017.)
    [Google Scholar]
  21. 21.
    Higuera A et al. Phys. Rev. Lett. 113:261802 2014.)
    [Google Scholar]
  22. 22.
    Freedman D, Schramm D, Tubbs D. Annu. Rev. Nucl. Part. Sci. 27:167 1977.)
    [Google Scholar]
  23. 23.
    Erler J, Su S. Prog. Part. Nucl. Phys. 71:119 2013.)
    [Google Scholar]
  24. 24.
    Piekarewicz J, Linero AR, Giuliani P, Chicken E. Phys. Rev. C 94:034316 2016.)
    [Google Scholar]
  25. 25.
    Klein S, Nystrand J. Phys. Rev. C 60:014903 1999.)
    [Google Scholar]
  26. 26.
    Helm R. Phys. Rev. 104:1466 1956.)
    [Google Scholar]
  27. 27.
    Scholberg K et al. SNOwGLoBES. Software Package https://webhome.phy.duke.edu/∼schol/snowglobes/ 2013.)
    [Google Scholar]
  28. 28.
    Freedman D. Phys. Rev. D 9:1389 1974.)
    [Google Scholar]
  29. 29.
    Kopeliovich VB, Frankfurt LL JETP Lett. 19:145 1974.) [ Pisma Zh. Eksp. Teor. Fiz. 19:236 1974.)]
    [Google Scholar]
  30. 30.
    Gaitskell RJ. Annu. Rev. Nucl. Part. Sci. 54:315 2004.)
    [Google Scholar]
  31. 31.
    Boulay MG, Hime A. Astropart. Phys. 25:179 2006.)
    [Google Scholar]
  32. 32.
    Safronova M et al. Rev. Mod. Phys. 90:025008 2018.)
    [Google Scholar]
  33. 33.
    Zeller G et al. Phys. Rev. Lett. 88:091802 2002. Erratum Phys. Rev. Lett. 90:239902 2003.)
    [Google Scholar]
  34. 34.
    Androić D et al. Nature 557:207 2018.)
    [Google Scholar]
  35. 35.
    Benesch J et al. arXiv:1411.4088 [nucl-ex] 2014.)
  36. 36.
    Roberts B, Dzuba V, Flambaum V. Annu. Rev. Nucl. Part. Sci. 65:63 2015.)
    [Google Scholar]
  37. 37.
    Barranco J, Miranda O, Rashba T. J. High Energy Phys 0512:021 2005.)
    [Google Scholar]
  38. 38.
    Scholberg K. Phys. Rev. D 73:033005 2006.)
    [Google Scholar]
  39. 39.
    Coloma P, Schwetz T. Phys. Rev. D 94:055005 2016. Erratum Phys. Rev. D 95:079903 2017.)
    [Google Scholar]
  40. 40.
    Coloma P et al. J. High Energy Phys. 1704:116 2017.)
    [Google Scholar]
  41. 41.
    Coloma P, Gonzalez-Garcia M, Maltoni M, Schwetz T. Phys. Rev. D 96:115007 2017.)
    [Google Scholar]
  42. 42.
    Liao J, Marfatia D. Phys. Lett. B 775:54 2017.)
    [Google Scholar]
  43. 43.
    Dent JB et al. Phys. Rev. D 97:035009 2018.)
    [Google Scholar]
  44. 44.
    Tomalak O, Machado P, Pandey V, Plestid R. J High Energy Phys 2102:97 2021.)
    [Google Scholar]
  45. 45.
    Papavassiliou J, Bernabeu J, Passera M. Proc. Sci. HEP2005:192 2006.)
    [Google Scholar]
  46. 46.
    Cadeddu M et al. Phys. Rev. D 98:113010 2018. Erratum Phys. Rev. D 101:059902 2020.)
    [Google Scholar]
  47. 47.
    Vogel P, Engel J. Phys. Rev. D 39:3378 1989.)
    [Google Scholar]
  48. 48.
    Dodd A, Papageorgiu E, Ranfone S. Phys. Lett. B 266:434 1991.)
    [Google Scholar]
  49. 49.
    Kosmas T et al. Phys. Rev. D 92:013011 2015.)
    [Google Scholar]
  50. 50.
    Zyla P et al. Prog. Theor. Exp. Phys. 2020:083C01 2020.)
    [Google Scholar]
  51. 51.
    Bell NF et al. Phys. Lett. B 642:377 2006.)
    [Google Scholar]
  52. 52.
    Agostini M et al. Phys. Rev. D 96:091103 2017.)
    [Google Scholar]
  53. 53.
    Aprile E et al. Phys. Rev. D 102:072004 2020.)
    [Google Scholar]
  54. 54.
    Auerbach LB et al. Phys. Rev. D 63:112001 2001.)
    [Google Scholar]
  55. 55.
    Abazajian K et al. arXiv:1204.5379 [hep-ph] 2012.)
  56. 56.
    Giunti C, Lasserre T. Annu. Rev. Nucl. Part. Sci. 69:163 2019.)
    [Google Scholar]
  57. 57.
    Anderson A et al. Phys. Rev. D 86:013004 2012.)
    [Google Scholar]
  58. 58.
    Kosmas T, Papoulias D, Tortola M, Valle J. Phys. Rev. D 96:063013 2017.)
    [Google Scholar]
  59. 59.
    Blanco C, Hooper D, Machado P. Phys. Rev. D 101:075051 2020.)
    [Google Scholar]
  60. 60.
    Reed BT, Fattoyev FJ, Horowitz CJ, Piekarewicz J. Phys. Rev. Lett. 126:172503 2021.)
    [Google Scholar]
  61. 61.
    Adhikari D et al. Phys. Rev. Lett. 126:172502 2021.)
    [Google Scholar]
  62. 62.
    Payne C et al. Phys. Rev. C 100:061304 2019.)
    [Google Scholar]
  63. 63.
    Amanik P, McLaughlin G J. Phys. G 36:015105 2009.)
    [Google Scholar]
  64. 64.
    Patton K, Engel J, McLaughlin G, Schunck N. Phys. Rev. C 86:024612 2012.)
    [Google Scholar]
  65. 65.
    Cadeddu M, Giunti C, Li YF, Zhang YY. Phys. Rev. Lett. 120:072501 2018.)
    [Google Scholar]
  66. 66.
    Hoferichter M, Menéndez J, Schwenk A. Phys. Rev. D 102:074018 2020.)
    [Google Scholar]
  67. 67.
    deNiverville P, Pospelov M, Ritz A Phys. Rev. D 92:095005 2015.)
    [Google Scholar]
  68. 68.
    deNiverville P, Chen C, Pospelov M, Ritz A Phys. Rev. D 95:035006 2017.)
    [Google Scholar]
  69. 69.
    Dutta B et al. Phys. Rev. Lett. 124:121802 2020.)
    [Google Scholar]
  70. 70.
    Boehm C, Fayet P. Nucl. Phys. B 683:219 2004.)
    [Google Scholar]
  71. 71.
    Fayet P. Phys. Rev. D 70:023514 2004.)
    [Google Scholar]
  72. 72.
    deNiverville P, Pospelov M, Ritz A Phys. Rev. D 84:075020 2011.)
    [Google Scholar]
  73. 73.
    Batell B et al. Phys. Rev. D 90:115014 2014.)
    [Google Scholar]
  74. 74.
    Akimov D et al. Phys. Rev. D 102:052007 2020.)
    [Google Scholar]
  75. 75.
    Drukier A, Stodolsky L. Phys. Rev. D 30:2295 1984.)
    [Google Scholar]
  76. 76.
    Cabrera B, Krauss L, Wilczek F. Phys. Rev. Lett. 55:25 1985.)
    [Google Scholar]
  77. 77.
    Monroe J, Fisher P. Phys. Rev. D 76:033007 2007.)
    [Google Scholar]
  78. 78.
    Gütlein A et al. Astropart. Phys. 34:90 2010.)
    [Google Scholar]
  79. 79.
    Cushman P et al. arXiv:1310.8327 [hep-ex] 2013.)
  80. 80.
    Anderson A et al. Phys. Rev. D 84:013008 2011.)
    [Google Scholar]
  81. 81.
    Billard J, Figueroa-Feliciano E, Strigari L. Phys. Rev. D 89:023524 2014.)
    [Google Scholar]
  82. 82.
    Vahsen S et al. arXiv:2008.12587 [physics.ins-det] 2020.)
  83. 83.
    Billard J, Strigari L, Figueroa-Feliciano E. Phys. Rev. D 91:095023 2015.)
    [Google Scholar]
  84. 84.
    Horowitz C, Coakley K, McKinsey D. Phys. Rev. D 68:023005 2003.)
    [Google Scholar]
  85. 85.
    Formaggio JA, Zeller GP. Rev. Mod. Phys. 84:1307 2012.)
    [Google Scholar]
  86. 86.
    Scholberg K. Annu. Rev. Nucl. Part. Sci. 62:81 2012.)
    [Google Scholar]
  87. 87.
    Abi B et al. Eur. Phys. J. C 81:423 2021.)
    [Google Scholar]
  88. 88.
    Gardiner S. Comput. Phys. Commun. 269:108123 2021.)
    [Google Scholar]
  89. 89.
    Bolozdynya A et al. arXiv:1211.5199 [hep-ex] 2012.)
  90. 90.
    Akimov D et al. J. Instrum. 16:P08048 2021.)
    [Google Scholar]
  91. 91.
    Mascarenhas N et al. IEEE Trans. Nucl. Sci. 56:1269 2009.)
    [Google Scholar]
  92. 92.
    Tayloe R et al. Nucl. Instrum. Meth. A 562:198 2006.)
    [Google Scholar]
  93. 93.
    Roecker C et al. Nucl. Instrum. Meth. A 826:21 2016.)
    [Google Scholar]
  94. 94.
    Akimov D et al. arXiv:2112.02768 [physics.ins-det] 2021.)
  95. 95.
    Kolbe E, Langanke K. Phys. Rev. C 63:025802 2001.)
    [Google Scholar]
  96. 96.
    Väänänen D, Volpe C J. Cosmol. Astropart. Phys. 1110:019 2011.)
    [Google Scholar]
  97. 97.
    Duba C et al. J. Phys. Conf. Ser. 136:042077 2008.)
    [Google Scholar]
  98. 98.
    Qian YZ, Haxton W, Langanke K, Vogel P. Phys. Rev. C 55:1532 1997.)
    [Google Scholar]
  99. 99.
    Woosley S, Hartmann D, Hoffman R, Haxton W. Astrophys. J. 356:272 1990.)
    [Google Scholar]
  100. 100.
    Collar JI et al. Nucl. Instrum. Meth. A 773:56 2015.)
    [Google Scholar]
  101. 101.
    Scholz BJ. First observation of coherent elastic neutrino-nucleus scattering PhD Diss. Univ. Chicago 2017.)
    [Google Scholar]
  102. 102.
    Akimov D et al. J. Instrum. 17P10034 ( 2022.)
    [Google Scholar]
  103. 103.
    Rich GC. Measurement of low-energy nuclear-recoil quenching factors in CsI[Na] and statistical analysis of the first observation of coherent, elastic neutrino-nucleus scattering PhD Diss. Univ. N.C. Chapel Hill: 2017.)
    [Google Scholar]
  104. 104.
    Akimov D et al. arXiv:2111.02477 [physics.ins-det] 2021.)
  105. 105.
    Akimov D et al. Phys. Rev. Lett. 129:081801 2022.)
    [Google Scholar]
  106. 106.
    Akimov D et al. Phys. Rev. D 100:115020 2019.)
    [Google Scholar]
  107. 107.
    Akimov D et al. J. Instrum. 16:P04002 2021.)
    [Google Scholar]
  108. 108.
    Akimov D et al. arXiv:2006.12659 [nucl-ex] 2020.)
  109. 109.
    Denton PB, Farzan Y, Shoemaker IM. J. High Energy Phys. 1807:37 2018.)
    [Google Scholar]
  110. 110.
    Abdullah M et al. Phys. Rev. D 98:015005 2018.)
    [Google Scholar]
  111. 111.
    Coloma P, Esteban I, Gonzalez-Garcia M, Maltoni M J. High Energy Phys. 2002:23 2020.)
    [Google Scholar]
  112. 112.
    Canas B et al. Phys. Rev. D 101:035012 2020.)
    [Google Scholar]
  113. 113.
    Papoulias D, Kosmas T, Kuno Y. Front. Phys. 7:191 2019.)
    [Google Scholar]
  114. 114.
    Akimov D et al. arXiv:2110.11453 [hep-ex] 2021.)
  115. 115.
    Aalseth CE et al. Phys. Rev. Lett. 101:251301 2008.)
    [Google Scholar]
  116. 116.
    Aalseth CE et al. Phys. Rev. Lett. 106:131301 2011.)
    [Google Scholar]
  117. 117.
    Aalseth C et al. Phys. Rev. Lett. 107:141301 2011.)
    [Google Scholar]
  118. 118.
    Aalseth C et al. Phys. Rev. D 88:012002 2013.)
    [Google Scholar]
  119. 119.
    Abgrall N et al. Adv. High Energy Phys. 2014:365432 2014.)
    [Google Scholar]
  120. 120.
    Collab. GERDA Nature 544:47 2017.)
    [Google Scholar]
  121. 121.
    Abgrall N et al. AIP Conf. Proc. 1894:020027 2017.)
    [Google Scholar]
  122. 122.
    Zhao W et al. Phys. Rev. D 93:092003 2016.)
    [Google Scholar]
  123. 123.
    Soma AK et al. Nucl. Instrum. Meth. A 836:67 2016.)
    [Google Scholar]
  124. 124.
    Bonet H et al. Phys. Rev. Lett. 126:041804 2021.)
    [Google Scholar]
  125. 125.
    Engel J, Pittel S, Vogel P. Phys. Rev. C 50:1702 1994.)
    [Google Scholar]
  126. 126.
    Distel J et al. Phys. Rev. C 68:054613 2003.)
    [Google Scholar]
  127. 127.
    Xu J et al. Astropart. Phys. 66:53 2015.)
    [Google Scholar]
  128. 128.
    Alexander T et al. arXiv:1901.10108 [physics.ins-det] 2019.)
  129. 129.
    Abgrall N et al. Eur. Phys. J. C 79:100 2019.)
    [Google Scholar]
  130. 130.
    NA61/SHINE Collab./H2 Low-E Beamline Work. Group Addendum to the NA61/SHINE proposal: a low-energy beamline at the SPS H2 Rep. CERN-SPSC-2021-028/SPSC-P-330-ADD-12 CERN Geneva: https://cds.cern.ch/record/2783037/files/SPSC-P-330-ADD-12.pdf 2021.)
    [Google Scholar]
  131. 131.
    Acharya B, Bacca S. Phys. Rev. C 101:015505 2020.)
    [Google Scholar]
  132. 132.
    Abe K et al. Astropart. Phys. 81:39 2016.)
    [Google Scholar]
  133. 133.
    Abe K et al. arXiv:1805.04163 [physics.ins-det] 2018.)
  134. 134.
    Gerbier G et al. Astropart. Phys. 11:287 1999.)
    [Google Scholar]
  135. 135.
    Simon E et al. Nucl. Instrum. Meth. A 507:643 2003.)
    [Google Scholar]
  136. 136.
    Stiegler T, Sofka C, Webb RC, White JT. arXiv:1706.07494 [physics.ins-det] 2017.)
  137. 137.
    Spooner N et al. Phys. Lett. B 321:156 1994.)
    [Google Scholar]
  138. 138.
    Tovey D et al. Phys. Lett. B 433:150 1998.)
    [Google Scholar]
  139. 139.
    Xu J et al. Phys. Rev. C 92:015807 2015.)
    [Google Scholar]
  140. 140.
    Barbeau PS, Collar JI, Tench O J. Cosmol. Astropart. Phys. 0709:009 2007.)
    [Google Scholar]
  141. 141.
    Ahmed Z et al. Phys. Rev. Lett. 106:131302 2011.)
    [Google Scholar]
  142. 142.
    Chasman C, Jones KW, Kraner HW, Brandt W. Phys. Rev. Lett. 21:1430 1968.)
    [Google Scholar]
  143. 143.
    Sattler AR, Vook FL, Palms JM. Phys. Rev. 143:588 1966.)
    [Google Scholar]
  144. 144.
    Shutt T et al. Phys. Rev. Lett. 69:3425 1992.)
    [Google Scholar]
  145. 145.
    Chernyak D et al. Eur. Phys. J. C 80:547 2020.)
    [Google Scholar]
  146. 146.
    Ding K, Chernyak D, Liu J. Eur. Phys. J. C 80:1146 2020.)
    [Google Scholar]
  147. 147.
    Kozynets T, Fallows S, Krauss CB. Astropart. Phys. 105:25 2019.)
    [Google Scholar]
  148. 148.
    Abdullah M, Aristizabal Sierra D, Dutta B, Strigari LE Phys. Rev. D 102:015009 2020.)
    [Google Scholar]
  149. 149.
    Aguilar-Arevalo A et al. arXiv:2110.13033 [hep-ex] 2021.)
  150. 150.
    Akimov DY et al. J. Instrum. 15:P02020 2020.)
    [Google Scholar]
  151. 151.
    Lubashevskiy A. First results of nuGeN experiment at Kalinin Nuclear Power Plant on coherent elastic neutrino-nucleus scattering. Presented at the 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2021), online. https://indico.ific.uv.es/event/6178/contributions/15547/ 2021.)
  152. 152.
    Agnolet G et al. Nucl. Instrum. Meth. A 853:53 2017.)
    [Google Scholar]
  153. 153.
    Augier C et al. arXiv:2111.06745 [physics.ins-det] 2021.)
  154. 154.
    Rothe J et al. J. Low Temp. Phys. 199:433 2019.)
    [Google Scholar]
  155. 155.
    Flores LJ et al. Phys. Rev. D 103:L091301 2021.)
    [Google Scholar]
  156. 156.
    An P et al. arXiv:2212.11295 [hep-ex] 2022.)
/content/journals/10.1146/annurev-nucl-101918-023518
Loading
/content/journals/10.1146/annurev-nucl-101918-023518
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error