1932

Abstract

This review provides an overview of the conceptual issues regarding the interpretation of so-called direct top quark mass measurements, which are based on the kinematic reconstruction of top quark decay products at the Large Hadron Collider (LHC). These measurements quote the top mass parameter of Monte Carlo event generators with current uncertainties of around 0.5 GeV. The problem of finding a rigorous relation between and top mass renormalization schemes defined in field theory is unresolved to date and touches perturbative as well as nonperturbative aspects and the limitations of state-of-the-art Monte Carlo event generators. I review the status of LHC top mass measurements, illustrate how conceptual limitations enter the picture, and explain a controversy that has permeated the community in the context of the interpretation problem related to . I then summarize recent advances in acquiring first principles insights and outline what else has to be understood to fully resolve the issue. I conclude with recommendations on how to deal with the interpretation problem for the time being when making top mass–dependent theoretical predictions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101918-023530
2020-10-19
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/nucl/70/1/annurev-nucl-101918-023530.html?itemId=/content/journals/10.1146/annurev-nucl-101918-023530&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Tanabashi M et al. Phys. Rev. D 98:030001 2018.
    [Google Scholar]
  2. 2. 
    Azzi P et al. Standard Model Physics at the HL-LHC and HE-LHC Geneva: CERN https://e-publishing.cern.ch/index.php/CYRM/article/view/950 2019.
    [Google Scholar]
  3. 3. 
    Higgs PW Phys. Rev. Lett. 13:508 1964.
    [Google Scholar]
  4. 4. 
    Englert F, Brout R Phys. Rev. Lett. 13:321 1964.
    [Google Scholar]
  5. 5. 
    Guralnik GS, Hagen CR, Kibble TWB Phys. Rev. Lett. 13:585 1964.
    [Google Scholar]
  6. 6. 
    Cabibbo N, Maiani L, Parisi G, Petronzio R Nucl. Phys. B 158:295 1979.
    [Google Scholar]
  7. 7. 
    Alekhin S, Djouadi A, Moch S Phys. Lett. B 716:214 2012.
    [Google Scholar]
  8. 8. 
    Buttazzo D et al. J. High Energy Phys. 1312:89 2013.
    [Google Scholar]
  9. 9. 
    Andreassen A, Frost W, Schwartz MD Phys. Rev. Lett. 113:241801 2014.
    [Google Scholar]
  10. 10. 
    Branchina V, Messina E Phys. Rev. Lett. 111:241801 2013.
    [Google Scholar]
  11. 11. 
    Isidori G, Ridolfi G, Strumia A Nucl. Phys. B 609:387 2001.
    [Google Scholar]
  12. 12. 
    Hoang AH, Stewart IW Nucl. Phys. Proc. Suppl. 185:220 2008.
    [Google Scholar]
  13. 13. 
    Moch S, Langenfeld U, Uwer P Proc. Sci. RADCOR2009:030 2010.
    [Google Scholar]
  14. 14. 
    Deliot F, Glenzinski DA Rev. Mod. Phys. 84:211 2012.
    [Google Scholar]
  15. 15. 
    Juste A et al. Eur. Phys. J. C 74:3119 2014.
    [Google Scholar]
  16. 16. 
    Moch S et al. arXiv:1405.4781 [hep-ph] 2014.
  17. 17. 
    Corcella G EPJ Web Conf. 80:00019 2014.
    [Google Scholar]
  18. 18. 
    Hoang AH arXiv:1412.3649 [hep-ph] 2014.
  19. 19. 
    Weinzierl S arXiv:1505.00630 [hep-ph] 2015.
  20. 20. 
    Boos E et al. Phys. Usp. 58:1133 2015. [Usp. Fiz. Nauk 185:1241 (2015)]
    [Google Scholar]
  21. 21. 
    del Duca V, Laenen E Int. J. Mod. Phys. A 30:1530063 2015.
    [Google Scholar]
  22. 22. 
    Corcella G Proc. Sci. TOP2015:037 2016.
    [Google Scholar]
  23. 23. 
    Azzi P et al. arXiv:1703.01626 [hep-ph] 2017.
  24. 24. 
    Hoang AH, Plätzer S, Samitz D J. High Energy Phys. 1810:200 2018.
    [Google Scholar]
  25. 25. 
    Fadin VS, Khoze VA Sov. J. Nucl. Phys. 48:309 1988. [Yad. Fiz. 48:487 (1988)]
    [Google Scholar]
  26. 26. 
    Strassler MJ, Peskin ME Phys. Rev. D 43:1500 1991.
    [Google Scholar]
  27. 27. 
    Jezabek M, Kuhn JH, Teubner T Z. Phys. C 56:653 1992.
    [Google Scholar]
  28. 28. 
    Hoang AH et al. Eur. Phys. J. Direct 2:3 2000.
    [Google Scholar]
  29. 29. 
    Hoang AH, Stahlhofen M J. High Energy Phys. 1405:121 2014.
    [Google Scholar]
  30. 30. 
    Beneke M et al. Phys. Rev. Lett. 115:192001 2015.
    [Google Scholar]
  31. 31. 
    Seidel K, Simon F, Tesar M, Poss S Eur. Phys. J. C 73:2530 2013.
    [Google Scholar]
  32. 32. 
    Horiguchi T et al. arXiv:1310.0563 [hep-ex] 2013.
  33. 33. 
    Vos M et al. arXiv:1604.08122 [hep-ex] 2016.
  34. 34. 
    Abramowicz H et al. J. High Energy Phys. 11:3 2019.
    [Google Scholar]
  35. 35. 
    Boronat M et al. Phys. Lett. B 804:135353 2020.
    [Google Scholar]
  36. 36. 
    Tarrach R Nucl. Phys. B 183:384 1981.
    [Google Scholar]
  37. 37. 
    Gray N, Broadhurst DJ, Grafe W, Schilcher K Z. Phys. C 48:673 1990.
    [Google Scholar]
  38. 38. 
    Chetyrkin KG, Steinhauser M Phys. Rev. Lett. 83:4001 1999.
    [Google Scholar]
  39. 39. 
    Chetyrkin KG, Steinhauser M Nucl. Phys. B 573:617 2000.
    [Google Scholar]
  40. 40. 
    Melnikov K, Ritbergen TV Phys. Lett. B 482:99 2000.
    [Google Scholar]
  41. 41. 
    Marquard P, Mihaila L, Piclum JH, Steinhauser M Nucl. Phys. B 773:1 2007.
    [Google Scholar]
  42. 42. 
    Neubert M Phys. Rep. 245:259 1994.
    [Google Scholar]
  43. 43. 
    Manohar AV, Wise MB Heavy Quark Physics Cambridge, UK: Cambridge Univ. Press 2000.
    [Google Scholar]
  44. 44. 
    Ball P, Beneke M, Braun VM Nucl. Phys. B 452:563 1995.
    [Google Scholar]
  45. 45. 
    Baak M et al. Eur. Phys. J. C 74:3046 2014.
    [Google Scholar]
  46. 46. 
    Buras AJ Phys. Lett. B 317:449 1993.
    [Google Scholar]
  47. 47. 
    Hoang AH, Lepenik C, Preisser M J. High Energy Phys. 1709:99 2017.
    [Google Scholar]
  48. 48. 
    Aaboud M et al. Eur. Phys. J. C 79:290 2019.
    [Google Scholar]
  49. 49. 
    Foldy LL, Wouthuysen SA Phys. Rev. 78:29 1950.
    [Google Scholar]
  50. 50. 
    Hoang AH, Jain A, Scimemi I, Stewart IW Phys. Rev. Lett. 101:151602 2008.
    [Google Scholar]
  51. 51. 
    Hoang AH et al. J. High Energy Phys. 1804:3 2018.
    [Google Scholar]
  52. 52. 
    Voloshin MB Phys. Rev. D 46:3062 1992.
    [Google Scholar]
  53. 53. 
    Bigi I, Shifman M, Uraltsev N Annu. Rev. Nucl. Part. Sci. 47:591 1997.
    [Google Scholar]
  54. 54. 
    Czarnecki A, Melnikov K, Uraltsev N Phys. Rev. Lett. 80:3189 1998.
    [Google Scholar]
  55. 55. 
    Hoang AH, Ligeti Z, Manohar AV Phys. Rev. Lett. 82:277 1999.
    [Google Scholar]
  56. 56. 
    Hoang AH, Ligeti Z, Manohar AV Phys. Rev. D 59:074017 1999.
    [Google Scholar]
  57. 57. 
    Hoang AH Phys. Rev. D 61:034005 2000.
    [Google Scholar]
  58. 58. 
    Beneke M Phys. Lett. B 434:115 1998.
    [Google Scholar]
  59. 59. 
    Pineda A J. High Energy Phys. 0106:022 2001.
    [Google Scholar]
  60. 60. 
    Jain A, Scimemi I, Stewart IW Phys. Rev. D 77:094008 2008.
    [Google Scholar]
  61. 61. 
    Marquard P, Smirnov AV, Smirnov VA, Steinhauser M Phys. Rev. Lett. 114:142002 2015.
    [Google Scholar]
  62. 62. 
    Lehmann H, Symanzik K, Zimmermann W Nuovo Cim. 1:205 1955.
    [Google Scholar]
  63. 63. 
    Lehmann H, Symanzik K, Zimmermann W Nuovo Cim. 6:319 1957.
    [Google Scholar]
  64. 64. 
    Kronfeld AS Phys. Rev. D 58:051501 1998.
    [Google Scholar]
  65. 65. 
    Bigi II, Shifman MA, Uraltsev NG, Vainshtein AI Phys. Rev. D 50:2234 1994.
    [Google Scholar]
  66. 66. 
    Beneke M, Braun VM Nucl. Phys. B 426:301 1994.
    [Google Scholar]
  67. 67. 
    Beneke M Phys. Rep. 317:1 1999.
    [Google Scholar]
  68. 68. 
    Gross DJ, Neveu A Phys. Rev. D 10:3235 1974.
    [Google Scholar]
  69. 69. 
    Lautrup B Phys. Lett. B 69:109 1977.
    [Google Scholar]
  70. 70. 
    ’t Hooft G Subnucl. Ser. 15:943 1979.
    [Google Scholar]
  71. 71. 
    David F Nucl. Phys. B 234:237 1984.
    [Google Scholar]
  72. 72. 
    Mueller AH Nucl. Phys. B 250:327 1985.
    [Google Scholar]
  73. 73. 
    Smith MC, Willenbrock SS Phys. Rev. Lett. 79:3825 1997.
    [Google Scholar]
  74. 74. 
    Peset C, Pineda A, Segovia J J. High Energy Phys. 1809:167 2018.
    [Google Scholar]
  75. 75. 
    Beneke M, Marquard P, Nason P, Steinhauser M Phys. Lett. B 775:63 2017.
    [Google Scholar]
  76. 76. 
    Fleming S, Hoang AH, Mantry S, Stewart IW Phys. Rev. D 77:114003 2008.
    [Google Scholar]
  77. 77. 
    Ferrario Ravasio S, Nason P, Oleari C J. High Energy Phys. 1901:203 2019.
    [Google Scholar]
  78. 78. 
    Hoang AH, Mantry S, Pathak A, Stewart IW Phys. Rev. D 100:074021 2019.
    [Google Scholar]
  79. 79. 
    Incandela JR, Quadt A, Wagner W, Wicke D Prog. Part. Nucl. Phys. 63:239 2009.
    [Google Scholar]
  80. 80. 
    Schilling FP Int. J. Mod. Phys. A 27:1230016 2012.
    [Google Scholar]
  81. 81. 
    CMS Collab. Projected improvement of the accuracy of top-quark mass measurements at the upgraded LHC CMS Phys. Anal. Summ. CMS-PAS-FTR-13-017, CERN, Geneva 2013.
    [Google Scholar]
  82. 82. 
    Corcella G Front. Phys. 7:54 2019.
    [Google Scholar]
  83. 83. 
    Czakon M, Fiedler P, Heymes D, Mitov A J. High Energy Phys. 1605:34 2016.
    [Google Scholar]
  84. 84. 
    Czakon M et al. J. High Energy Phys. 1805:149 2018.
    [Google Scholar]
  85. 85. 
    Czakon M et al. J. High Energy Phys. 1710:186 2017.
    [Google Scholar]
  86. 86. 
    Gao J, Li CS, Zhu HX Phys. Rev. Lett. 110:042001 2013.
    [Google Scholar]
  87. 87. 
    Gao J, Papanastasiou AS Phys. Rev. D 96:051501 2017.
    [Google Scholar]
  88. 88. 
    Heinrich G et al. J. High Energy Phys. 1406:158 2014.
    [Google Scholar]
  89. 89. 
    Denner A, Pellen M J. High Energy Phys. 1802:13 2018.
    [Google Scholar]
  90. 90. 
    Langenfeld U, Moch S, Uwer P Phys. Rev. D 80:054009 2009.
    [Google Scholar]
  91. 91. 
    Bellm J et al. Eur. Phys. J. C 76:196 2016.
    [Google Scholar]
  92. 92. 
    Sjöstrand T et al. Comput. Phys. Commun. 191:159 2015.
    [Google Scholar]
  93. 93. 
    Gleisberg T et al. J. High Energy Phys. 0902:007 2009.
    [Google Scholar]
  94. 94. 
    Dasgupta M et al. J. High Energy Phys. 1809:33 2018.
    [Google Scholar]
  95. 95. 
    Cormier K et al. Eur. Phys. J. C 79:915 2019.
    [Google Scholar]
  96. 96. 
    Marchesini G, Webber BR Nucl. Phys. B 238:1 1984.
    [Google Scholar]
  97. 97. 
    Nagy Z, Soper DE J. High Energy Phys. 0510:024 2005.
    [Google Scholar]
  98. 98. 
    Plätzer S, Gieseke S J. High Energy Phys. 1101:24 2011.
    [Google Scholar]
  99. 99. 
    Webber BR Nucl. Phys. B 238:492 1984.
    [Google Scholar]
  100. 100. 
    Andersson B, Gustafson G, Ingelman G, Sjöstrand T Phys. Rep. 97:31 1983.
    [Google Scholar]
  101. 101. 
    Frixione S, Webber BR arXiv:hep-ph/0207182 2002.
  102. 102. 
    Alwall J et al. J. High Energy Phys. 1407:79 2014.
    [Google Scholar]
  103. 103. 
    Alioli S, Nason P, Oleari C, Re E J. High Energy Phys. 1006:43 2010.
    [Google Scholar]
  104. 104. 
    Plätzer S, Gieseke S Eur. Phys. J. C 72:2187 2012.
    [Google Scholar]
  105. 105. 
    Hoeche S, Krauss F, Schonherr M, Siegert F J. High Energy Phys. 1209:49 2012.
    [Google Scholar]
  106. 106. 
    Bellm J et al. Eur. Phys. J. C 76:665 2016.
    [Google Scholar]
  107. 107. 
    Bendavid J et al. arXiv:1803.07977 [hep-ph] 2018.
  108. 108. 
    Ferrario Ravasio S, Jeo T, Nason P, Oleari C Eur. Phys. J. C 78:458 2018.
    [Google Scholar]
  109. 109. 
    Bellm J et al. arXiv:1705.06919 [hep-ph] 2017.
  110. 110. 
    Gieseke S, Rohr C, Siodmok A Eur. Phys. J. C 72:2225 2012.
    [Google Scholar]
  111. 111. 
    Argyropoulos S, Sjöstrand T J. High Energy Phys. 1411:43 2014.
    [Google Scholar]
  112. 112. 
    Christiansen JR, Skands PZ J. High Energy Phys. 1508:3 2015.
    [Google Scholar]
  113. 113. 
    Gieseke S, Kirchgaeßer P, Plätzer S Eur. Phys. J. C 78:99 2018.
    [Google Scholar]
  114. 114. 
    Gieseke S, Kirchgaeßer P, Plätzer S, Siodmok A J. High Energy Phys. 1811:149 2018.
    [Google Scholar]
  115. 115. 
    Sjöstrand T, Skands PZ Eur. Phys. J. C 39:129 2005.
    [Google Scholar]
  116. 116. 
    Bahr M, Gieseke S, Seymour MH J. High Energy Phys. 0807:076 2008.
    [Google Scholar]
  117. 117. 
    Corcella G, Franceschini R, Kim D Nucl. Phys. B 929:485 2018.
    [Google Scholar]
  118. 118. 
    Jeo T et al. Eur. Phys. J. C 76:691 2016.
    [Google Scholar]
  119. 119. 
    Heinrich G et al. J. High Energy Phys. 1807:129 2018.
    [Google Scholar]
  120. 120. 
    Sirunyan AM et al. Eur. Phys. J. C 79:313 2019.
    [Google Scholar]
  121. 121. 
    Sirunyan AM et al. Eur. Phys. J. C 77:354 2017.
    [Google Scholar]
  122. 122. 
    Tevatron Electroweak Work. Group (CDF–D0 Collab.) arXiv:1407.2682 [hep-ex] 2014.
  123. 123. 
    Abazov VM et al. Phys. Rev. D 91:112003 2015.
    [Google Scholar]
  124. 124. 
    Siikonen H arXiv:2002.06073 [hep-ex] 2020.
  125. 125. 
    Czakon M, Fiedler P, Mitov A Phys. Rev. Lett. 110:252004 2013.
    [Google Scholar]
  126. 126. 
    Alioli S et al. Eur. Phys. J. C 73:2438 2013.
    [Google Scholar]
  127. 127. 
    Frixione S, Mitov A J. High Energy Phys. 1409:12 2014.
    [Google Scholar]
  128. 128. 
    Aad G et al. Eur. Phys. J. C 74:3109 (2014). Addendum. Eur. Phys. J. C 76:642 2016.
    [Google Scholar]
  129. 129. 
    Khachatryan V et al. J. High Energy Phys. 1608:29 2016.
    [Google Scholar]
  130. 130. 
    Sirunyan AM et al. Eur. Phys. J. C 79:368 2019.
    [Google Scholar]
  131. 131. 
    Alekhin S, Blümlein J, Moch S, Placakyte R Phys. Rev. D 96:014011 2017.
    [Google Scholar]
  132. 132. 
    Dulat S et al. Phys. Rev. D 93:033006 2016.
    [Google Scholar]
  133. 133. 
    Harland-Lang LA, Martin AD, Motylinski P, Thorne RS Eur. Phys. J. C 75:204 2015.
    [Google Scholar]
  134. 134. 
    Ball RD et al. Eur. Phys. J. C 77:663 2017.
    [Google Scholar]
  135. 135. 
    Aad G et al. J. High Energy Phys. 1911:150 2019.
    [Google Scholar]
  136. 136. 
    Aaboud M et al. Eur. Phys. J. C 77:804 2017.
    [Google Scholar]
  137. 137. 
    Sirunyan AM et al. (CMS Collab.) arXiv:1904.05237 [hep-ex] 2019.
  138. 138. 
    Lester CG, Summers DJ Phys. Lett. B 463:99 1999.
    [Google Scholar]
  139. 139. 
    Chatrchyan S et al. Eur. Phys. J. C 73:2494 2013.
    [Google Scholar]
  140. 140. 
    Agashe K, Franceschini R, Kim D, Schulze M Eur. Phys. J. C 76:636 2016.
    [Google Scholar]
  141. 141. 
    Khachatryan V et al. J. High Energy Phys. 1612:123 2016.
    [Google Scholar]
  142. 142. 
    Khachatryan V et al. Phys. Rev. D 93:092006 2016.
    [Google Scholar]
  143. 143. 
    Butterworth JM, Davison AR, Rubin M, Salam GP Phys. Rev. Lett. 100:242001 2008.
    [Google Scholar]
  144. 144. 
    Ellis SD, Vermilion CK, Walsh JR Phys. Rev. D 81:094023 2010.
    [Google Scholar]
  145. 145. 
    Krohn D, Thaler J, Wang LT J. High Energy Phys. 1002:84 2010.
    [Google Scholar]
  146. 146. 
    Larkoski AJ, Marzani S, Soyez G, Thaler J J. High Energy Phys. 1405:146 2014.
    [Google Scholar]
  147. 147. 
    Kawabata S, Yokoya H Eur. Phys. J. C 77:323 2017.
    [Google Scholar]
  148. 148. 
    Nason P Proc. Sci. TOP2015:056 2016.
    [Google Scholar]
  149. 149. 
    Nason P arXiv:1712.02796 [hep-ph] 2017.
  150. 150. 
    Kieseler J, Lipka K, Moch SO Phys. Rev. Lett. 116:162001 2016.
    [Google Scholar]
  151. 151. 
    Butenschoen M et al. Phys. Rev. Lett. 117:232001 2016.
    [Google Scholar]
  152. 152. 
    Fleming S, Hoang AH, Mantry S, Stewart IW Phys. Rev. D 77:074010 2008.
    [Google Scholar]
  153. 153. 
    Gieseke S, Stephens P, Webber B J. High Energy Phys. 0312:045 2003.
    [Google Scholar]
  154. 154. 
    Davison RA, Webber BR Eur. Phys. J. C 59:13 2009.
    [Google Scholar]
  155. 155. 
    Abbate R et al. Phys. Rev. D 83:074021 2011.
    [Google Scholar]
  156. 156. 
    Sirunyan AM et al. Eur. Phys. J. C 77:467 2017.
    [Google Scholar]
  157. 157. 
    Aaboud M et al. Phys. Rev. D 98:012003 2018.
    [Google Scholar]
  158. 158. 
    Sirunyan AM et al. (CMS Collab.) arXiv:1911.03800 [hep-ex] 2019.
  159. 159. 
    Hoang AH, Mantry S, Pathak A, Stewart IW J. High Energy Phys. 12:2 2019.
    [Google Scholar]
  160. 160. 
    Becher T, Broggio A, Ferroglia A Introduction Introduction to Soft-Collinear Effective Theory1–4 Cham, Switz.: Springer 2015.
    [Google Scholar]
  161. 161. 
    Baumeister R, Weinzierl S arXiv:2004.01657 [hep-ph] 2020.
  162. 162. 
    Dinsdale M, Ternick M, Weinzierl S Phys. Rev. D 76:094003 2007.
    [Google Scholar]
  163. 163. 
    Li HT, Skands P Phys. Lett. B 771:59 2017.
    [Google Scholar]
  164. 164. 
    Höche S, Prestel S Phys. Rev. D 96:074017 2017.
    [Google Scholar]
  165. 165. 
    Dulat F, Höche S, Prestel S Phys. Rev. D 98:074013 2018.
    [Google Scholar]
  166. 166. 
    Dasgupta M et al. arXiv:2002.11114 [hep-ph] 2020.
  167. 167. 
    Forshaw JR, Holguin J, Plätzer S arXiv:2003.06400 [hep-ph] 2020.
  168. 168. 
    Brooks H, Skands P Phys. Rev. D 100:076006 2019.
    [Google Scholar]
  169. 169. 
    Ángeles Martínez R et al. J. High Energy Phys. 1805:44 2018.
    [Google Scholar]
  170. 170. 
    Forshaw JR, Holguin J, Plätzer S J. High Energy Phys. 1908:145 2019.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-101918-023530
Loading
/content/journals/10.1146/annurev-nucl-101918-023530
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error