1932

Abstract

We review the theoretical and experimental progress in the Glauber model of multiple nucleon and/or parton scatterings after the last 10–15 years of operation with proton and nuclear beams at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider. The main developments and the state of the art of the field are summarized. These encompass measurements of the inclusive inelastic proton and nuclear cross sections, advances in the description of the proton and nuclear density profiles and their fluctuations, inclusion of subnucleonic degrees of freedom, experimental procedures and issues related to the determination of the collision centrality, validation of the binary scaling prescription for hard scattering cross sections, and constraints on transport properties of quark–gluon matter from varying initial-state conditions in relativistic hydrodynamics calculations. These advances confirm the validity and usefulness of the Glauber formalism for quantitative studies of quantum chromodynamics matter produced in high-energy collisions of systems, from protons to uranium nuclei, of vastly different size.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102419-060007
2021-09-21
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/nucl/71/1/annurev-nucl-102419-060007.html?itemId=/content/journals/10.1146/annurev-nucl-102419-060007&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Busza W, Rajagopal K, van der Schee W. Annu. Rev. Nucl. Part. Sci. 68:339 2018.
    [Google Scholar]
  2. 2. 
    Borsanyi S et al. Phys. Lett. B 730:99 2014.
    [Google Scholar]
  3. 3. 
    Bazavov A et al. (HotQCD Collab.) Phys. Rev. D 90:094503 2014.
    [Google Scholar]
  4. 4. 
    d'Enterria D. J. Phys. G 34:S53 2007.
    [Google Scholar]
  5. 5. 
    Martin P, Glauber R. Phys. Rev. 109:1307 1958.
    [Google Scholar]
  6. 6. 
    Glauber RJ, Matthiae G. Nucl. Phys. B 21:135 1970.
    [Google Scholar]
  7. 7. 
    Czyz W, Maximon L. Ann. Phys. 52:59 1969.
    [Google Scholar]
  8. 8. 
    Bialas A, Bleszynski M, Czyz W. Nucl. Phys. B 111:461 1976.
    [Google Scholar]
  9. 9. 
    Bialas A, Bleszynski M, Czyz W. Acta Phys. Polon. B 8:389 1977.
    [Google Scholar]
  10. 10. 
    Wang XN, Gyulassy M. Phys. Rev. D 44:3501 1991.
    [Google Scholar]
  11. 11. 
    Broniowski W, Rybczynski M, Bozek P. Comput. Phys. Commun. 180:69 2009.
    [Google Scholar]
  12. 12. 
    Alver B, Baker M, Loizides C, Steinberg P. arXiv:0805.4411 [nucl-ex] 2008.
  13. 13. 
    Alvioli M, Drescher HJ, Strikman M. Phys. Lett. B 680:225 2009.
    [Google Scholar]
  14. 14. 
    Rybczynski M, Stefanek G, Broniowski W, Bozek P. Comput. Phys. Commun. 185:1759 2014.
    [Google Scholar]
  15. 15. 
    Loizides C, Nagle J, Steinberg P. SoftwareX 1–2:13 2015.
    [Google Scholar]
  16. 16. 
    Loizides C. Phys. Rev. C 94:024914 2016.
    [Google Scholar]
  17. 17. 
    Mitchell JT, Perepelitsa DV, Tannenbaum MJ, Stankus PW. Phys. Rev. C 93:054910 2016.
    [Google Scholar]
  18. 18. 
    Loizides C, Kamin J, d'Enterria D Phys. Rev. C 97:054910 2018. Phys. Rev. C 99:019901 2019.); Loizides C, Kamin J, d'Enterria D TGlauberMC, version 3. Modeling Software https://tglaubermc.hepforge.org/ 2017.
    [Google Scholar]
  19. 19. 
    Bożek P, Broniowski W, Rybczynski M, Stefanek G. Comput. Phys. Commun. 245:106850 2019.
    [Google Scholar]
  20. 20. 
    De Jager CW, De Vries H, De Vries C. At. Data Nucl. Data Tables 14:479 1974.
    [Google Scholar]
  21. 21. 
    De Vries H, De Jager CW, De Vries C. At. Data Nucl. Data Tables 36:495 1987.
    [Google Scholar]
  22. 22. 
    Heinz U, Snellings R. Annu. Rev. Nucl. Part. Sci. 63:123 2013.
    [Google Scholar]
  23. 23. 
    Wang XN, Gyulassy M. Phys. Rev. Lett. 86:3496 2001.
    [Google Scholar]
  24. 24. 
    Acharya S et al. (ALICE Collab.) Phys. Rev. C 101:044907 2020.
    [Google Scholar]
  25. 25. 
    Ollitrault JY. Phys. Rev. D 46:229 1992.
    [Google Scholar]
  26. 26. 
    Romatschke P. Int. J. Mod. Phys. E 19:1 2010.
    [Google Scholar]
  27. 27. 
    Teaney DA. Viscous hydrodynamics and the quark gluon plasma. Quark-Gluon Plasma 4 RC Hwa, X-N Wang 207–66 Singapore: World Sci 2010.
    [Google Scholar]
  28. 28. 
    Luzum M, Romatschke P. Phys. Rev. Lett. 103:262302 2009.
    [Google Scholar]
  29. 29. 
    Schenke B, Jeon S, Gale C Phys. Rev. Lett. 106:042301 2011.
    [Google Scholar]
  30. 30. 
    Weller RD, Romatschke P. Phys. Lett. B 774:351 2017.
    [Google Scholar]
  31. 31. 
    Alver B, Roland G. Phys. Rev. C 81:054905 2010.). Erratum. Phys. Rev. C 82:039903 2010.
    [Google Scholar]
  32. 32. 
    Aamodt K et al. (ALICE Collab.) Phys. Rev. Lett. 107:032301 2011.
    [Google Scholar]
  33. 33. 
    Adare A et al. (PHENIX Collab.) Phys. Rev. Lett. 107:252301 2011.
    [Google Scholar]
  34. 34. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. C 86:014907 2012.
    [Google Scholar]
  35. 35. 
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 724:213 2013.
    [Google Scholar]
  36. 36. 
    Dainese A, Loizides C, Paic G. Eur. Phys. J. C 38:461 2005.
    [Google Scholar]
  37. 37. 
    Lokhtin I, Snigirev A. Eur. Phys. J. C 45:211 2006.
    [Google Scholar]
  38. 38. 
    Djordjevic M, Zigic D, Djordjevic M, Auvinen J. Phys. Rev. C 99:061902 2019.
    [Google Scholar]
  39. 39. 
    d'Enterria D. Jet quenching. Landolt-Börnstein—Group I Elementary Particles, Nuclei and Atoms, Vol. 23: Relativistic Heavy Ion Physics R Stock Berlin: Springer https://doi.org/10.1007/978-3-642-01539-7_16 2010.
    [Crossref] [Google Scholar]
  40. 40. 
    Baltz A Phys. Rep. 458:1 2008.
    [Google Scholar]
  41. 41. 
    Miller ML, Reygers K, Sanders SJ, Steinberg P. Annu. Rev. Nucl. Part. Sci. 57:205 2007.
    [Google Scholar]
  42. 42. 
    Alver B et al. (PHOBOS Collab.) Phys. Rev. C 83:024913 2011.
    [Google Scholar]
  43. 43. 
    Abada A et al. (FCC Collab.) Eur. Phys. J. Spec. Top. 228:755 2019.
    [Google Scholar]
  44. 44. 
    Tanabashi M et al. (Part. Data Group) Phys. Rev. D 98:030001 2018.
    [Google Scholar]
  45. 45. 
    Alner GJ et al. (UA5 Collab.) Z. Phys. C 32:153 1986.
    [Google Scholar]
  46. 46. 
    Amos NA et al. (E710 Collab.) Phys. Lett. B 243:158 1990.
    [Google Scholar]
  47. 47. 
    Amos NA et al. (E710 Collab.) Phys. Rev. Lett. 68:2433 1992.
    [Google Scholar]
  48. 48. 
    Abe F et al. (CDF Collab.) Phys. Rev. D 50:5550 1994.
    [Google Scholar]
  49. 49. 
    Abe F et al. (CDF Collab.) Phys. Rev. D 50:5518 1994.
    [Google Scholar]
  50. 50. 
    Adam J et al. (STAR Collab.) Phys. Lett. B 808:135663 2020.
    [Google Scholar]
  51. 51. 
    Abelev B et al. (ALICE Collab.) Eur. Phys. J. C 73:2456 2013.
    [Google Scholar]
  52. 52. 
    Aad G et al. (ATLAS Collab.) Nat. Commun. 2:463 2011.
    [Google Scholar]
  53. 53. 
    Aad G et al. (ATLAS Collab.) Nucl. Phys. B 889:486 2014.
    [Google Scholar]
  54. 54. 
    Aaboud M et al. (ATLAS Collab.) Phys. Lett. B 761:158 2016.
    [Google Scholar]
  55. 55. 
    Aaboud M et al. (ATLAS Collab.) Phys. Rev. Lett. 117:182002 2016.
    [Google Scholar]
  56. 56. 
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 722:5 2013.
    [Google Scholar]
  57. 57. 
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 1807:161 2018.
    [Google Scholar]
  58. 58. 
    Aaij R et al. (LHCb Collab.) J. High Energy Phys. 1502:129 2015.
    [Google Scholar]
  59. 59. 
    Aaij R et al. (LHCb Collab.) J. High Energy Phys. 1806:100 2018.
    [Google Scholar]
  60. 60. 
    Antchev G et al. (TOTEM Collab.) Europhys. Lett. 96:21002 2011.
    [Google Scholar]
  61. 61. 
    Antchev G et al. (TOTEM Collab.) Europhys. Lett. 101:21004 2013.
    [Google Scholar]
  62. 62. 
    Antchev G et al. (TOTEM Collab.) Phys. Rev. Lett. 111:012001 2013.
    [Google Scholar]
  63. 63. 
    Antchev G et al. (TOTEM Collab.) Eur. Phys. J. C 79:103 2019.
    [Google Scholar]
  64. 64. 
    Cafagna F. (TOTEM Collab.) Proc. Sci. ICRC2019:207 2020.
    [Google Scholar]
  65. 65. 
    Abreu P et al. (Pierre Auger Collab.) Phys. Rev. Lett. 109:062002 2012.
    [Google Scholar]
  66. 66. 
    Cudell JR et al. (COMPETE Collab.) Phys. Rev. Lett. 89:201801 2002.
    [Google Scholar]
  67. 67. 
    d'Enterria D, Pierog T. J. High Energy Phys. 1608:170 2016.
    [Google Scholar]
  68. 68. 
    Abelev B et al. (ALICE Collab.) Phys. Rev. Lett. 109:252302 2012.
    [Google Scholar]
  69. 69. 
    Khachatryan V et al. (CMS Collab.) Phys. Lett. B 759:641 2016.
    [Google Scholar]
  70. 70. 
    Abelev BB et al. (ALICE Collab.) J. Instrum. 9:P11003 2014.
    [Google Scholar]
  71. 71. 
    Sjöstrand T et al. Comput. Phys. Commun. 191:159 2015.
    [Google Scholar]
  72. 72. 
    Bahr M et al. Eur. Phys. J. C 58:639 2008.
    [Google Scholar]
  73. 73. 
    Field R. Acta Phys. Polon. B 42:2631 2011.
    [Google Scholar]
  74. 74. 
    d'Enterria D, Snigirev A Double, triple, and n-parton scatterings in high-energy proton and nuclear collisions. Advanced Series on Directions in High Energy Physics, Vol. 29: Multiple Parton Interactions at the LHC P Bartalini, JR Gaunt 159–87 Singapore: World Sci 2018.
    [Google Scholar]
  75. 75. 
    Khachatryan V et al. (CMS Collab.) J. High Energy Phys. 1009:91 2010.
    [Google Scholar]
  76. 76. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. Lett. 116:172301 2016.
    [Google Scholar]
  77. 77. 
    Khachatryan V et al. (CMS Collab.) Phys. Lett. B 765:193 2017.
    [Google Scholar]
  78. 78. 
    d'Enterria D et al. Eur. Phys. J. C 66:173 2010.
    [Google Scholar]
  79. 79. 
    Hofstadter R. Rev. Mod. Phys. 28:214 1956.
    [Google Scholar]
  80. 80. 
    Corke R, Sjöstrand T. J. High Energy Phys. 1105:9 2011.
    [Google Scholar]
  81. 81. 
    Skands P, Carrazza S, Rojo J. Eur. Phys. J. C 74:3024 2014.
    [Google Scholar]
  82. 82. 
    Acharya S et al. (ALICE Collab.) Eur. Phys. J. C 79:857 2019.
    [Google Scholar]
  83. 83. 
    Sjöstrand T The development of MPI modeling in Pythia. Advanced Series on Directions in High Energy Physics, Vol. 29: Multiple Parton Interactions at the LHC P Bartalini, JR Gaunt 191–225 Singapore: World Sci 2018.
    [Google Scholar]
  84. 84. 
    Loizides C, Morsch A. Phys. Lett. B 773:408 2017.
    [Google Scholar]
  85. 85. 
    Alvioli M, Holopainen H, Eskola KJ, Strikman M. Phys. Rev. C 85:034902 2012.
    [Google Scholar]
  86. 86. 
    Rybczyński M, Wlodarczyk Z. J. Phys. G 41:015106 2013.
    [Google Scholar]
  87. 87. 
    Grosse-Oetringhaus JF, Reygers K. J. Phys. G 37:083001 2010.
    [Google Scholar]
  88. 88. 
    Welsh K, Singer J, Heinz UW. Phys. Rev. C 94:024919 2016.
    [Google Scholar]
  89. 89. 
    Moreland JS, Bernhard JE, Bass SA. Phys. Rev. C 101:024911 2020.
    [Google Scholar]
  90. 90. 
    Teaney D, Yan L Phys. Rev. C 83:064904 2011.
    [Google Scholar]
  91. 91. 
    Alver B et al. (PHOBOS Collab.) Phys. Rev. Lett. 98:242302 2007.
    [Google Scholar]
  92. 92. 
    Blaizot JP, Broniowski W, Ollitrault JY. Phys. Rev. C 90:034906 2014.
    [Google Scholar]
  93. 93. 
    Heiselberg H et al. Phys. Rev. Lett. 67:2946 1991.
    [Google Scholar]
  94. 94. 
    Alvioli M, Strikman M. Phys. Lett. B 722:347 2013.
    [Google Scholar]
  95. 95. 
    Alvioli M, Frankfurt L, Perepelitsa D, Strikman M. Phys. Rev. D 98:071502 2018.
    [Google Scholar]
  96. 96. 
    Gribov V. Sov. Phys. JETP 29:483 1969.
    [Google Scholar]
  97. 97. 
    Bierlich C, Gustafson G, Lönnblad L. J. High Energy Phys. 1610:139 2016.
    [Google Scholar]
  98. 98. 
    Adare A et al. (PHENIX Collab.) Phys. Rev. Lett. 116:122301 2016.
    [Google Scholar]
  99. 99. 
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 76:199 2016.
    [Google Scholar]
  100. 100. 
    McGlinchey D, Nagle J, Perepelitsa D. Phys. Rev. C 94:024915 2016.
    [Google Scholar]
  101. 101. 
    Ciofi degli Atti C et al. Phys. Rev. C 84:025205 2011.
    [Google Scholar]
  102. 102. 
    Flensburg C, Gustafson G, Lönnblad L. J. High Energy Phys. 1108:103 2011.
    [Google Scholar]
  103. 103. 
    Salam G. J. High Energy Phys. 9807:019 1998.
    [Google Scholar]
  104. 104. 
    Barrett RC, Jackson DF. Nuclear Sizes and Structure Oxford, UK: Oxford Univ. Press 1977.
    [Google Scholar]
  105. 105. 
    Klos B et al. Phys. Rev. C 76:014311 2007.
    [Google Scholar]
  106. 106. 
    Tarbert CM et al. Phys. Rev. Lett. 112:242502 2014.
    [Google Scholar]
  107. 107. 
    Fricke G et al. At. Data Nucl. Data Tables 60:177 1995.
    [Google Scholar]
  108. 108. 
    Horowitz CJ, Pollock SJ, Souder PA, Michaels R. Phys. Rev. C 63:025501 2001.
    [Google Scholar]
  109. 109. 
    Paukkunen H. Phys. Lett. B 745:73 2015.
    [Google Scholar]
  110. 110. 
    De S. J. Phys. G 44:045104 2017.
    [Google Scholar]
  111. 111. 
    Helenius I, Paukkunen H, Eskola KJ. Eur. Phys. J. C 77:148 2017.
    [Google Scholar]
  112. 112. 
    Alvioli M, Strikman M. Phys. Rev. C 100:024912 2019.
    [Google Scholar]
  113. 113. 
    Durham JM. (PHENIX Collab.) Proc. Sci. HardProbes2018165 2018.
    [Google Scholar]
  114. 114. 
    Adamczyk L et al. (STAR Collab.) Phys. Rev. Lett. 115:222301 2015.
    [Google Scholar]
  115. 115. 
    Hulthén L, Sugawara M The two-nucleon problem. Encyclopedia of Physics, Vol. 39: Structure of Atomic Nuclei S Flügge 1–143 Berlin/Heidelberg: Springer 1957.
    [Google Scholar]
  116. 116. 
    Adler SS et al. (PHENIX Collab.) Phys. Rev. Lett. 91:072303 2003.
    [Google Scholar]
  117. 117. 
    Adler SS et al. (PHENIX Collab.) Phys. Rev. C 74:024904 2006.
    [Google Scholar]
  118. 118. 
    Nagle JL et al. Phys. Rev. Lett. 113:112301 2014.
    [Google Scholar]
  119. 119. 
    Lim S et al. Phys. Rev. C 99:044904 2019.
    [Google Scholar]
  120. 120. 
    Shou QY et al. Phys. Lett. B 749:215 2015.
    [Google Scholar]
  121. 121. 
    Noronha-Hostler J et al. arXiv:1905.13323 [hep-ph] 2019.
  122. 122. 
    Giacalone G. Phys. Rev. Lett. 124:202301 2020.
    [Google Scholar]
  123. 123. 
    Huang S, Chen Z, Jia J, Li W. Phys. Rev. C 101:021901 2020.
    [Google Scholar]
  124. 124. 
    Sievert MD, Noronha-Hostler J. Phys. Rev. C 100:024904 2019.
    [Google Scholar]
  125. 125. 
    Vogt R. Acta Phys. Hung. A 9:339 1999.
    [Google Scholar]
  126. 126. 
    d'Enterria D arXiv:nucl-ex/0302016 2003.
  127. 127. 
    Adler S et al. (PHENIX Collab.) Phys. Rev. Lett. 94:232301 2005.
    [Google Scholar]
  128. 128. 
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 710:256 2012.
    [Google Scholar]
  129. 129. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. C 93:034914 2016.
    [Google Scholar]
  130. 130. 
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 2007:116 2020.
    [Google Scholar]
  131. 131. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. Lett. 110:022301 2013.
    [Google Scholar]
  132. 132. 
    Aad G et al. (ATLAS Collab.) Eur. Phys. J. C 75:23 2015.
    [Google Scholar]
  133. 133. 
    Aad G et al. (ATLAS Collab.) Phys. Rev. C 92:044915 2015.
    [Google Scholar]
  134. 134. 
    Khachatryan V et al. (CMS Collab.) Phys. Lett. B 759:36 2016.
    [Google Scholar]
  135. 135. 
    Acharya S et al. (ALICE Collab.) Phys. Lett. B 780:372 2018.
    [Google Scholar]
  136. 136. 
    Aad G et al. (ALICE Collab.) Phys. Lett. B 802:135262 2020.
    [Google Scholar]
  137. 137. 
    Aad G et al. (ALICE Collab.) Eur. Phys. J. C 79:935 2019.
    [Google Scholar]
  138. 138. 
    Sirunyan AM et al. (CMS Collab.) Phys. Lett. B 800:135048 2020.
    [Google Scholar]
  139. 139. 
    Eskola KJ, Paakkinen P, Paukkunen H, Salgado CA. Eur. Phys. J. C 77:163 2017.
    [Google Scholar]
  140. 140. 
    Kusina A et al. Eur. Phys. J. C 77:488 2017.
    [Google Scholar]
  141. 141. 
    Abdul Khalek R, Ethier JJ, Rojo J, van Weelden G J. High Energy Phys. 2009:183 2020.
    [Google Scholar]
  142. 142. 
    Khanpour H, Atashbar Tehrani S Phys. Rev. D 93:014026 2016.
    [Google Scholar]
  143. 143. 
    Eskola KJ, Helenius I, Kuha M, Paukkunen H. Phys. Rev. Lett. 125:212301 2020.
    [Google Scholar]
  144. 144. 
    Deng WT, Wang XN, Xu R. Phys. Rev. C 83:014915 2011.
    [Google Scholar]
  145. 145. 
    Pierog T et al. Phys. Rev. C 92:034906 2015.
    [Google Scholar]
  146. 146. 
    Lin ZW et al. Phys. Rev. C 72:064901 2005.
    [Google Scholar]
  147. 147. 
    Ostapchenko S. Phys. Rev. D 83:014018 2011.
    [Google Scholar]
  148. 148. 
    Roesler S, Engel R, Ranft J The Monte Carlo event generator DPMJET-III. Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications: Proceedings of the Monte Carlo 2000 Conference, Lisbon, 23–26 October 2000 A Kling et al.1033–38 Berlin: Springer 2001.
    [Google Scholar]
  149. 149. 
    Sjöstrand T, Mrenna S, Skands PZ. Comput. Phys. Commun. 178:852 2008.
    [Google Scholar]
  150. 150. 
    Bierlich C, Gustafson G, Lönnblad L, Shah H. J. High Energy Phys. 1810:134 2018.
    [Google Scholar]
  151. 151. 
    d'Enterria D et al. Astropart. Phys. 35:98 2011.
    [Google Scholar]
  152. 152. 
    Andersson B. The Lund Model 7 Cambridge, UK: Cambridge Univ. Press 2005.
    [Google Scholar]
  153. 153. 
    Andersson B, Gustafson G, Nilsson-Almqvist B. Nucl. Phys. B 281:289 1987.
    [Google Scholar]
  154. 154. 
    Klein SR et al. Comput. Phys. Commun. 212:258 2017.
    [Google Scholar]
  155. 155. 
    Harland-Lang L, Khoze V, Ryskin M Eur. Phys. J. C 79:39 2019.
    [Google Scholar]
  156. 156. 
    Heinz U Early collective expansion: relativistic hydrodynamics and the transport properties of QCD matter. Landolt-Börnstein—Group I Elementary Particles, Nuclei and Atoms, Vol. 23: Relativistic Heavy Ion Physics R Stock Berlin: Springer https://doi.org/10.1007/978-3-642-01539-7_9 2010.
    [Crossref] [Google Scholar]
  157. 157. 
    Hirano T, Huovinen P, Murase K, Nara Y Prog. Part. Nucl. Phys. 70:108 2013.
    [Google Scholar]
  158. 158. 
    Gale C, Jeon S, Schenke B. Int. J. Mod. Phys. A 28:1340011 2013.
    [Google Scholar]
  159. 159. 
    Petersen H et al. Phys. Rev. C 78:044901 2008.
    [Google Scholar]
  160. 160. 
    Strickland M. Pramana 84:671 2015.
    [Google Scholar]
  161. 161. 
    Kharzeev D, Levin E, Nardi M Phys. Rev. C 71:054903 2005.
    [Google Scholar]
  162. 162. 
    Drescher HJ, Nara Y. Phys. Rev. C 75:034905 2007.
    [Google Scholar]
  163. 163. 
    Schenke B, Tribedy P, Venugopalan R. Phys. Rev. C 86:034908 2012.
    [Google Scholar]
  164. 164. 
    Schenke B, Tribedy P, Venugopalan R. Phys. Rev. Lett. 108:252301 2012.
    [Google Scholar]
  165. 165. 
    Gelis F, Iancu E, Jalilian-Marian J, Venugopalan R. Annu. Rev. Nucl. Part. Sci. 60:463 2010.
    [Google Scholar]
  166. 166. 
    Eskola K, Kajantie K, Ruuskanen P, Tuominen K. Nucl. Phys. B 570:379 2000.
    [Google Scholar]
  167. 167. 
    Niemi H, Eskola K, Paatelainen R. Phys. Rev. C 93:024907 2016.
    [Google Scholar]
  168. 168. 
    Moreland JS, Bernhard JE, Bass SA. Phys. Rev. C 92:011901 2015.
    [Google Scholar]
  169. 169. 
    Kowalski H, Teaney D. Phys. Rev. D 68:114005 2003.
    [Google Scholar]
  170. 170. 
    Acharya S et al. (ALICE Collab.) Phys. Lett. B 784:82 2018.
    [Google Scholar]
  171. 171. 
    Nagle J, Zajc W. Phys. Rev. C 99:054908 2019.
    [Google Scholar]
  172. 172. 
    Abelev B et al. (ALICE Collab.) Phys. Rev. C 88:044909 2013.
    [Google Scholar]
  173. 173. 
    Acharya S. (ALICE Collab.) Centrality determination in heavy ion collisions. Rep. ALICE-PUBLIC-2018-011 CERN Geneva: https://cds.cern.ch/record/2636623 2018.
    [Google Scholar]
  174. 174. 
    Chatrchyan S et al. (CMS Collab.) J. High Energy Phys. 1108:141 2011.
    [Google Scholar]
  175. 175. 
    Aad G et al. (ATLAS Collab.) Phys. Lett. B 710:363 2012.
    [Google Scholar]
  176. 176. 
    Wood JS. 2012. The development of the CMS zero degree calorimeters to derive the centrality of AA collisions PhD Diss., Univ. Kansas Lawrence:
    [Google Scholar]
  177. 177. 
    Adare A et al. (PHENIX Collab.) Phys. Rev. C 90:034902 2014.
    [Google Scholar]
  178. 178. 
    Adam J et al. (ALICE Collab.) Phys. Rev. C 91:064905 2015.
    [Google Scholar]
  179. 179. 
    Perepelitsa DV, Steinberg PA. arXiv:1412.0976 [nucl-ex] 2014.
  180. 180. 
    Acharya S et al. (ALICE Collab.) Phys. Lett. B 793:420 2019.
    [Google Scholar]
  181. 181. 
    Sirunyan AM et al. (CMS Collab.) arXiv:2103.14089 [hep-ex] ( 2021.
/content/journals/10.1146/annurev-nucl-102419-060007
Loading
/content/journals/10.1146/annurev-nucl-102419-060007
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error