1932

Abstract

The human gastrointestinal tract is home to a vibrant, diverse ecosystem of prokaryotic and eukaryotic microorganisms. The gut fungi (mycobiota) have recently risen to prominence due to their ability to modulate host immunity. Colonization of the gut occurs through a combination of vertical transmission from the maternal mycobiota and environmental and dietary exposure. Data from human and animal studies demonstrate that nutrition strongly affects the mycobiota composition and that changes in the fungal communities can aggravate metabolic diseases. The mechanisms pertaining to the mycobiota's influence on host health, pathology, and resident gastrointestinal communities through intrakingdom, transkingdom, and immune cross talk are beginning to come into focus, setting the stage for a new chapter in microbiota–host interactions. Herein, we examine the inception, maturation, and dietary modulation of gastrointestinal and nutritional fungal communities and inspect their impact on metabolic diseases in humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-013120-043659
2020-08-21
2025-01-13
The full text of this item is not currently available.

Literature Cited

  1. 1. 
    Allert S, Förster TM, Svensson C-M, Richardson JP, Pawlik T et al. 2018. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio 9:3e00915-18
    [Google Scholar]
  2. 2. 
    Arana DM, Nombela C, Alonso-Monge R, Pla J 2005. The Pbs2 MAP kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. . Microbiology 151:41033–49
    [Google Scholar]
  3. 3. 
    Arrieta M-C, Stiemsma LT, Dimitriu PA, Thorson L, Russell S et al. 2015. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 7:307307ra152
    [Google Scholar]
  4. 4. 
    Asao T, Büchi G, Abdel-Kader MM, Chang SB, Wick EL, Wogan GN 1965. The structures of aflatoxins B and G1. J. Am. Chem. Soc. 87:4882–86
    [Google Scholar]
  5. 5. 
    Atkinson N. 1942. Antibacterial substances produced by moulds. Aust. J. Exp. Biol. Med. Sci. 20:4287–88
    [Google Scholar]
  6. 6. 
    Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R et al. 2019. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574:7777264–67
    [Google Scholar]
  7. 7. 
    Bajaj JS, Liu EJ, Kheradman R, Fagan A 2018. Fungal dysbiosis in cirrhosis. Gut 67:1146–54
    [Google Scholar]
  8. 8. 
    Bamburg JR, Riggs NV, Strong FM 1968. The structures of toxins from two strains of Fusarium tricinctum. . Tetrahedron 24:83329–36
    [Google Scholar]
  9. 9. 
    Bamburg JR, Strong FM. 1969. Mycotoxins of the trichothecane family produced by Fusarium tricinctum and Trichoderma lignorum. . Phytochemistry 8:122405–10
    [Google Scholar]
  10. 10. 
    Banjara N, Nickerson KW, Suhr MJ, Hallen-Adams HE 2016. Killer toxin from several food-derived Debaryomyces hansenii strains effective against pathogenic Candida yeasts. Int. J. Food Microbiol. 222:23–29
    [Google Scholar]
  11. 11. 
    Banjara N, Suhr MJ, Hallen-Adams HE 2015. Diversity of yeast and mold species from a variety of cheese types. Curr. Microbiol. 70:6792–800
    [Google Scholar]
  12. 12. 
    Baumann-Dudenhoeffer AM, D'Souza AW, Tarr PI, Warner BB, Dantas G 2018. Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat. Med. 24:121822–29
    [Google Scholar]
  13. 13. 
    Birch AJ, Massy-Westropp RA, Moye CJ 1955. Studies in relation to biosynthesis. VII. 2-Hydroxy-6-methylbenzoic acid in Penicillium griseofulvum Dierckx. Aust. J. Chem. 8:4539–44
    [Google Scholar]
  14. 14. 
    Bliss JM, Basavegowda KP, Watson WJ, Sheikh AU, Ryan RM 2008. Vertical and horizontal transmission of Candida albicans in very low birth weight infants using DNA fingerprinting techniques. Pediatr. Infect. Dis. J. 27:3231
    [Google Scholar]
  15. 15. 
    Boix-Amorós A, Martinez-Costa C, Querol A, Collado MC, Mira A 2017. Multiple approaches detect the presence of fungi in human breastmilk samples from healthy mothers. Sci. Rep. 7:113016
    [Google Scholar]
  16. 16. 
    Boix-Amorós A, Puente-Sánchez F, du Toit E, Linderborg KM, Zhang Y et al. 2019. Mycobiome profiles in breast milk from healthy women depend on mode of delivery, geographic location, and interaction with bacteria. Appl. Environ. Microbiol. 85:9e02994-18
    [Google Scholar]
  17. 17. 
    Bräse S, Encinas A, Keck J, Nising CF 2009. Chemistry and biology of mycotoxins and related fungal metabolites. Chem. Rev. 109:93903–90
    [Google Scholar]
  18. 18. 
    Brockman DA, Chen X, Gallaher DD 2013. Consumption of a high β-glucan barley flour improves glucose control and fatty liver and increases muscle acylcarnitines in the Zucker diabetic fatty rat. Eur. J. Nutr. 52:71743–53
    [Google Scholar]
  19. 19. 
    Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC et al. 1996. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. . PNAS 93:41418–22
    [Google Scholar]
  20. 20. 
    Buts J-P, Keyser ND, Marandi S, Hermans D, Sokal EM et al. 1999. Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats. Gut 45:189–96
    [Google Scholar]
  21. 21. 
    Buts J-P, Keyser ND, Raedemaeker LD 1994. Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatr. Res. 36:4522–27
    [Google Scholar]
  22. 22. 
    Buts J-P, Keyser ND, Stilmant C, Sokal E, Marandi S 2002. Saccharomyces boulardii enhances N-terminal peptide hydrolysis in suckling rat small intestine by endoluminal release of a zinc-binding metalloprotease. Pediatr. Res. 51:4528–34
    [Google Scholar]
  23. 23. 
    Buts J-P, Stilmant C, Bernasconi P, Neirinck C, Keyser ND 2008. Characterization of α,α-trehalase released in the intestinal lumen by the probiotic Saccharomyces boulardii. Scand. J. . Gastroenterol 43:121489–96
    [Google Scholar]
  24. 24. 
    Cao Y, Zou S, Xu H, Li M, Tong Z et al. 2016. Hypoglycemic activity of the Baker's yeast β-glucan in obese/type 2 diabetic mice and the underlying mechanism. Mol. Nutr. Food Res. 60:122678–90
    [Google Scholar]
  25. 25. 
    Chagas GM, Campello AP, Klüppel MLW 1992. Mechanism of citrinin-induced dysfunction of mitochondria. I. Effects on respiration, enzyme activities and membrane potential of renal cortical mitochondria. J. Appl. Toxicol. 12:2123–29
    [Google Scholar]
  26. 26. 
    Chain E, Florey HW, Jennings MA 1942. An antibacterial substance produced by Penicillium claviforme. Br. J. Exp. Pathol 23:4202–5
    [Google Scholar]
  27. 27. 
    Chang P-K, Cary JW, Yu J, Bhatnagar D, Cleveland TE 1995. The Aspergillus parasiticus polyketide synthase gene pksA, a homolog of Aspergillus nidulans wA, is required for aflatoxin B1 biosynthesis. Mol. Gen. Genet. 248:3270–77
    [Google Scholar]
  28. 28. 
    Chu H, Duan Y, Lang S, Jiang L, Wang Y et al. 2020. The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease. J. Hepatol. 72:3391–400
    [Google Scholar]
  29. 29. 
    Collado MC, Isolauri E, Laitinen K, Salminen S 2010. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am. J. Clin. Nutr. 92:51023–30
    [Google Scholar]
  30. 30. 
    Cundliffe E, Cannon M, Davies J 1974. Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins. PNAS 71:130–34
    [Google Scholar]
  31. 31. 
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:7484559–63
    [Google Scholar]
  32. 32. 
    Desjardins AE, Hohn TM, McCormick SP 1993. Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol. Rev. 57:3595–604
    [Google Scholar]
  33. 33. 
    Dollive S, Chen Y-Y, Grunberg S, Bittinger K, Hoffmann C et al. 2013. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLOS ONE 8:8e71806
    [Google Scholar]
  34. 34. 
    Dounin M. 1926. The fusariosis of cereal crops in European Russia in 1923. Phytopathology 16:305–8
    [Google Scholar]
  35. 35. 
    Ehrlich KC, Li P, Scharfenstein L, Chang P-K 2010. HypC, the anthrone oxidase involved in aflatoxin biosynthesis. Appl. Environ. Microbiol. 76:103374–77
    [Google Scholar]
  36. 36. 
    Eriksen GS, Pettersson H, Lundh T 2004. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food Chem. Toxicol. 42:4619–24
    [Google Scholar]
  37. 37. 
    Everard A, Matamoros S, Geurts L, Delzenne NM 2014. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. mBio 5:3e01011-14
    [Google Scholar]
  38. 38. 
    Fleming A. 1929. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol 10:3226–36
    [Google Scholar]
  39. 39. 
    Freeman GG, Morrison RI. 1949. The isolation and chemical properties of trichothecin, an antifungal substance from Trichothecium roseum Link. Biochem. J. 44:11–5
    [Google Scholar]
  40. 40. 
    Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S et al. 2016. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22:101187–91
    [Google Scholar]
  41. 41. 
    Goncharova NV, Khrapova MV, Pupyshev AB, Korolenko ETs, Nešéáková Z, Korolenko TA 2016. Hypolipidemic effect of mannan in mice with acute lipemia induced by poloxamer 407. Bull. Exp. Biol. Med. 162:118–22
    [Google Scholar]
  42. 42. 
    Goossens J, Pasmans F, Verbrugghe E, Vandenbroucke V, De Baere S et al. 2012. Porcine intestinal epithelial barrier disruption by the Fusarium mycotoxins deoxynivalenol and T-2 toxin promotes transepithelial passage of doxycycline and paromomycin. BMC Vet. Res. 8:1245
    [Google Scholar]
  43. 43. 
    Gouba N, Raoult D, Drancourt M 2014. Eukaryote culturomics of the gut reveals new species. PLOS ONE 9:9e106994
    [Google Scholar]
  44. 44. 
    Greco SH, Torres-Hernandez A, Kalabin A, Whiteman C, Rokosh R et al. 2016. Mincle signaling promotes Con A hepatitis. J. Immunol. 197:72816–27
    [Google Scholar]
  45. 45. 
    Hallen-Adams HE, Kachman SD, Kim J, Legge RM, Martínez I 2015. Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecol 15:9–17
    [Google Scholar]
  46. 46. 
    Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG 2014. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146:167–75.e5
    [Google Scholar]
  47. 47. 
    Harms H-K, Bertele-Harms R-M, Bruer-Kleis D 1987. Enzyme-substitution therapy with the yeast Saccharomyces cerevisiae in congenital sucrase-isomaltase deficiency. N. Engl. J. Med. 316:211306–9
    [Google Scholar]
  48. 48. 
    He Y, Cox RJ. 2016. The molecular steps of citrinin biosynthesis in fungi. Chem. Sci. 7:32119–27
    [Google Scholar]
  49. 49. 
    Heisel T, Montassier E, Johnson A, Al-Ghalith G, Lin Y-W et al. 2017. High-fat diet changes fungal microbiomes and interkingdom relationships in the murine gut. mSphere 2:5e00351-17
    [Google Scholar]
  50. 50. 
    Heisel T, Nyaribo L, Sadowsky MJ, Gale CA 2019. Breastmilk and NICU surfaces are potential sources of fungi for infant mycobiomes. Fungal Genet. Biol. 128:29–35
    [Google Scholar]
  51. 51. 
    Hetherington AC, Raistrick H. 1931. Studies in the biochemistry of micro-organisms. Part XIV. On the production and chemical constitution of a new yellow colouring matter, citrinin, produced from glucose by Penicillium citrinum. Philos. Trans. R. Soc. B 220:468–473269–95
    [Google Scholar]
  52. 52. 
    Hoffmann C, Dollive S, Grunberg S, Chen J, Li H et al. 2013. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLOS ONE 8:6e66019
    [Google Scholar]
  53. 53. 
    Hoffmeister D, Keller NP. 2007. Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat. Prod. Rep. 24:2393–416
    [Google Scholar]
  54. 54. 
    Honkanen J, Vuorela A, Muthas D, Orivuori L, Luopajärvi K et al. 2020. Fungal dysbiosis and intestinal inflammation in children with beta-cell autoimmunity. Front. Immunol. 11:468
    [Google Scholar]
  55. 55. 
    Jahn H-U, Ullrich R, Schneider T, Liehr R-M, Schieferdecker HL et al. 1996. Immunological and trophical effects of Saccharomyces boulardii on the small intestine in healthy human volunteers. Digestion 57:295–104
    [Google Scholar]
  56. 56. 
    Johnson WW, Guengerich FP. 1997. Reaction of aflatoxin B1exo-8,9-epoxide with DNA: kinetic analysis of covalent binding and DNA-induced hydrolysis. PNAS 94:126121–25
    [Google Scholar]
  57. 57. 
    Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C 2014. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 16:92891–904
    [Google Scholar]
  58. 58. 
    Kankkunen P, Rintahaka J, Aalto A, Leino M, Majuri M-L et al. 2009. Trichothecene mycotoxins activate inflammatory response in human macrophages. J. Immunol. 182:106418–25
    [Google Scholar]
  59. 59. 
    Karumuthil-Melethil S, Gudi R, Johnson BM, Perez N, Vasu C 2014. Fungal β-glucan, a dectin-1 ligand, promotes protection from type 1 diabetes by inducing regulatory innate immune response. J. Immunol. 193:73308–21
    [Google Scholar]
  60. 60. 
    Kasper L, König A, Koenig P-A, Gresnigt MS, Westman J et al. 2018. The fungal peptide toxin candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 9:14260
    [Google Scholar]
  61. 61. 
    Katt J, Schwinge D, Schoknecht T, Quaas A, Sobottka I et al. 2013. Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology 58:31084–93
    [Google Scholar]
  62. 62. 
    Kim D-H, Kim H, Jeong D, Kang I-B, Chon J-W et al. 2017. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: targeted and untargeted community analysis with correlation of biomarkers. J. Nutr. Biochem. 44:35–43
    [Google Scholar]
  63. 63. 
    Krohn S, Zeller K, Böhm S, Chatzinotas A, Harms H et al. 2018. Molecular quantification and differentiation of Candida species in biological specimens of patients with liver cirrhosis. PLOS ONE 13:6e0197319
    [Google Scholar]
  64. 64. 
    Kulaksiz H, Rudolph G, Kloeters-Plachky P, Sauer P, Geiss H, Stiehl A 2006. Biliary candida infections in primary sclerosing cholangitis. J. Hepatol. 45:5711–16
    [Google Scholar]
  65. 65. 
    Kusmiati Dhewantara FXR. 2016. Cholesterol-lowering effect of beta glucan extracted from Saccharomyces cerevisiae in rats. Sci. Pharm. 84:1153–65
    [Google Scholar]
  66. 66. 
    Lan RYZ, Salunga TL, Tsuneyama K, Lian Z-X, Yang G-X et al. 2009. Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J. Autoimmun. 32:143–51
    [Google Scholar]
  67. 67. 
    Lancaster MC, Jenkins FP, Philp JM 1961. Toxicity associated with certain samples of groundnuts. Nature 192:48071095–96
    [Google Scholar]
  68. 68. 
    Lang S, Liu J, Torralba MG, Kuelbs C 2020. Intestinal fungal dysbiosis and systemic immune response to fungi in patients with alcoholic hepatitis. Hepatology 71:2522–38
    [Google Scholar]
  69. 69. 
    Leonardi I, Li X, Iliev I 2018. Macrophage interactions with fungi and bacteria in inflammatory bowel disease. Curr. Opin. Gastroenterol. 34:6392–97
    [Google Scholar]
  70. 70. 
    Leonardi I, Li X, Semon A, Li D, Doron I et al. 2018. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 359:6372232–36
    [Google Scholar]
  71. 71. 
    Leonardi I, Paramsothy S, Doron I, Semon A, Kaakoush NO et al. 2020. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe 27:5823–29.e3
    [Google Scholar]
  72. 72. 
    Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM et al. 2015. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease. Cell Host Microbe 18:4489–500
    [Google Scholar]
  73. 73. 
    Li M, Zhu L, Xie A, Yuan J 2015. Oral administration of Saccharomyces boulardii ameliorates carbon tetrachloride-induced liver fibrosis in rats via reducing intestinal permeability and modulating gut microbial composition. Inflammation 38:1170–79
    [Google Scholar]
  74. 74. 
    Li X, Leonardi I, Semon A, Doron I, Gao IH et al. 2018. Response to fungal dysbiosis by gut-resident CX3CR1+ mononuclear phagocytes aggravates allergic airway disease. Cell Host Microbe 24:6847–56.e4
    [Google Scholar]
  75. 75. 
    Li XV, Leonardi I, Iliev ID 2019. Gut mycobiota in immunity and inflammatory disease. Immunity 50:61365–79
    [Google Scholar]
  76. 76. 
    Liang M, Liwen Z, Yun Z, Yanbo D, Jianping C 2018. The imbalance between Foxp3+ Tregs and Th1/Th17/Th22 cells in patients with newly diagnosed autoimmune hepatitis. J. Immunol. Res. 2018:3753081
    [Google Scholar]
  77. 77. 
    Lynen F, Tada M. 1961. Die biochemischen Grundlagen der “Polyacetat-Regel.”. Angew. Chem. 73:15513–19
    [Google Scholar]
  78. 78. 
    Mahfoud R, Maresca M, Garmy N, Fantini J 2002. The mycotoxin patulin alters the barrier function of the intestinal epithelium: mechanism of action of the toxin and protective effects of glutathione. Toxicol. Appl. Pharmacol. 181:3209–18
    [Google Scholar]
  79. 79. 
    Malik A, Sharma D, Malireddi RKS, Guy CS, Chang T-C et al. 2018. SYK-CARD9 signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer. Immunity 49:3515–30.e5
    [Google Scholar]
  80. 80. 
    Mar Rodríguez M, Pérez D, Javier Chaves F, Esteve E, Marin-Garcia P et al. 2015. Obesity changes the human gut mycobiome. Sci. Rep 5:14600 Erratum. 2016. Sci. Rep. 6:21679
    [Google Scholar]
  81. 81. 
    Merwe KJVD, Steyn PS, Fourie L, Scott DB, Theron JJ 1965. Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature 205:49761112–13
    [Google Scholar]
  82. 82. 
    Morales-Menchén A, Navarro-García F, Guirao-Abad JP, Román E, Prieto D et al. 2018. Non-canonical activities of Hog1 control sensitivity of Candida albicans to killer toxins from Debaryomyces hansenii. Front. Cell. Infect. Microbiol 8:135
    [Google Scholar]
  83. 83. 
    Morooka N, Uratsuji N, Yoshizawa T, Yamamoto H 1972. Studies on the toxic substances in barley infected with Fusarium spp. Food Hygiene Saf. Sci. 13:5368–75
    [Google Scholar]
  84. 84. 
    Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX et al. 2016. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532:759764–68
    [Google Scholar]
  85. 85. 
    Mueller KD, Zhang H, Serrano CR, Billmyre RB, Huh EY et al. 2019. Gastrointestinal microbiota alteration induced by Mucor circinelloides in a murine model. J. Microbiol. 57:6509–20
    [Google Scholar]
  86. 86. 
    Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE et al. 2014. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLOS Pathog 10:3e1003996
    [Google Scholar]
  87. 87. 
    Narula N, Dhillon A, Zhang D, Sherlock ME, Tondeur M, Zachos M 2018. Enteral nutritional therapy for induction of remission in Crohn's disease. Cochrane Database Syst. Rev. 4:4CD000542
    [Google Scholar]
  88. 88. 
    Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR et al. 2017. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5:1153
    [Google Scholar]
  89. 89. 
    Neyrinck AM, Possemiers S, Verstraete W, De Backer F, Cani PD, Delzenne NM 2012. Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice. J. Nutr. Biochem. 23:151–59
    [Google Scholar]
  90. 90. 
    Oo YH, Banz V, Kavanagh D, Liaskou E, Withers DR et al. 2012. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J. Hepatol. 57:51044–51
    [Google Scholar]
  91. 91. 
    Ostry V, Malir F, Ruprich J 2013. Producers and important dietary sources of ochratoxin A and citrinin. Toxins 5:91574–86
    [Google Scholar]
  92. 92. 
    Panpetch W, Somboonna N, Palasuk M, Hiengrach P, Finkelman M et al. 2019. Oral Candida administration in a Clostridium difficile mouse model worsens disease severity but is attenuated by Bifidobacterium. . PLOS ONE 14:1e0210798
    [Google Scholar]
  93. 93. 
    Penders J, Thijs C, Vink C, Stelma FF, Snijders B et al. 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:2511–21
    [Google Scholar]
  94. 94. 
    Pfohl‐Leszkowicz A, Manderville RA. 2007. Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 51:161–99
    [Google Scholar]
  95. 95. 
    Prentice N, Dickson AD. 1968. Emetic material associated with Fusarium species in cereal grains and artificial media. Biotechnol. Bioeng. 10:4413–27
    [Google Scholar]
  96. 96. 
    Puel O, Galtier P, Oswald IP 2010. Biosynthesis and toxicological effects of patulin. Toxins 2:4613–31
    [Google Scholar]
  97. 97. 
    Rabot S, Membrez M, Blanchard H, Berger B 2016. High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci. Rep. 6:32484
    [Google Scholar]
  98. 98. 
    Remenova T, Morand O, Amato D, Chadha-Boreham H, Tsurutani S, Marquardt T 2015. A double-blind, randomized, placebo-controlled trial studying the effects of Saccharomyces boulardii on the gastrointestinal tolerability, safety, and pharmacokinetics of miglustat. Orphanet J. Rare Dis. 10:181
    [Google Scholar]
  99. 99. 
    Richard ML, Sokol H. 2019. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 16:6331–45
    [Google Scholar]
  100. 100. 
    Rogiers O, Frising UC, Kucharíková S, Jabra-Rizk MA, van Loo G et al. 2019. Candidalysin crucially contributes to Nlrp3 inflammasome activation by Candida albicans hyphae. mBio 10:1e02221-18
    [Google Scholar]
  101. 101. 
    Rustom IYS. 1997. Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods. Food Chem 59:157–67
    [Google Scholar]
  102. 102. 
    Schei K, Avershina E, Øien T, Rudi K, Follestad T et al. 2017. Early gut mycobiota and mother-offspring transfer. Microbiome 5:1107
    [Google Scholar]
  103. 103. 
    Schirmer M, Garner A, Vlamakis H, Xavier RJ 2019. Microbial genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 17:8497–511
    [Google Scholar]
  104. 104. 
    Shao T-Y, Ang WXG, Jiang TT, Huang FS, Andersen H et al. 2019. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 25:3404–17.e6
    [Google Scholar]
  105. 105. 
    Sima P, Vannucci L, Vetvicka V 2018. β-glucans and cholesterol (review). Int. J. Mol. Med. 41:41799–808
    [Google Scholar]
  106. 106. 
    Skalski JH, Limon JJ, Sharma P, Gargus MD, Nguyen C et al. 2018. Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLOS Pathog 14:9e1007260
    [Google Scholar]
  107. 107. 
    Speakman EA, Dambuza IM, Salazar F, Brown GD 2020. T cell antifungal immunity and the role of C-type lectin receptors. Trends Immunol 41:161–76
    [Google Scholar]
  108. 108. 
    Stanislawski MA, Dabelea D, Wagner BD, Sontag MK 2017. Pre-pregnancy weight, gestational weight gain, and the gut microbiota of mothers and their infants. Microbiome 5:1113
    [Google Scholar]
  109. 109. 
    Suhr MJ, Banjara N, Hallen‐Adams HE 2016. Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett. Appl. Microbiol. 62:3209–15
    [Google Scholar]
  110. 110. 
    Suzuki C, Ando Y, Machida S 2001. Interaction of SMKT, a killer toxin produced by Pichia farinosa, with the yeast cell membranes. Yeast 18:161471–78
    [Google Scholar]
  111. 111. 
    Suzuki C, Nikkuni S. 1989. Purification and properties of the killer toxin produced by a halotolerant yeast. Pichia farinosa. Agric. Biol. Chem. 53:102599–604
    [Google Scholar]
  112. 112. 
    Swidergall M, Khalaji M, Solis NV, Moyes DL, Drummond RA et al. 2019. Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection. J. Infect. Dis. 220:91477–88
    [Google Scholar]
  113. 113. 
    Tatsuno T, Saito M, Enomoto M, Tsunoda H 1968. Nivalenol, a toxic principle of Fusarium nivale. Chem. Pharm. Bull 16:122519–20
    [Google Scholar]
  114. 114. 
    Tay S-T, Lim S-L, Tan H-W 2014. Growth inhibition of Candida species by Wickerhamomyces anomalus mycocin and a lactone compound of Aureobasidium pullulans. BMC Complement. Altern. Med 14:1439
    [Google Scholar]
  115. 115. 
    Treem WR, Ahsan N, Sullivan B, Rossi T, Holmes R et al. 1993. Evaluation of liquid yeast-derived sucrase enzyme replacement in patients with sucrase-isomaltase deficiency. Gastroenterology 105:41061–68
    [Google Scholar]
  116. 116. 
    van Luijk A. 1938. Antagonism of Penicillium spec. versus Pythium debaryanum. Chron. Bot 4:3210–11
    [Google Scholar]
  117. 117. 
    van Tilburg Bernardes E, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG et al. 2020. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat. Commun. 11:12577
    [Google Scholar]
  118. 118. 
    Vanacloig-Pedros E, Proft M, Pascual-Ahuir A 2016. Different toxicity mechanisms for citrinin and ochratoxin A revealed by transcriptomic analysis in yeast. Toxins 8:10273
    [Google Scholar]
  119. 119. 
    Verma AH, Richardson JP, Zhou C, Coleman BM, Moyes DL 2017. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci. Immunol. 2:17eaam8834
    [Google Scholar]
  120. 120. 
    Verma AH, Zafar H, Ponde NO, Hepworth OW, Sihra D et al. 2018. IL-36 and IL-1/IL-17 drive immunity to oral candidiasis via parallel mechanisms. J. Immunol. 201:2627–34
    [Google Scholar]
  121. 121. 
    Vorobyev A, Gupta Y, Sezin T, Koga H, Bartsch YC et al. 2019. Gene-diet interactions associated with complex trait variation in an advanced intercross outbred mouse line. Nat. Commun. 10:14097
    [Google Scholar]
  122. 122. 
    Wampach L, Heintz-Buschart A, Hogan A, Muller EEL, Narayanasamy S et al. 2017. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front. Microbiol. 8:738
    [Google Scholar]
  123. 123. 
    Wang T, Fan C, Yao A, Xu X, Zheng G et al. 2018. The adaptor protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity 49:3504–14.e4
    [Google Scholar]
  124. 124. 
    Wang Y, Wang L, Wu F, Liu F, Wang Q et al. 2018. A consensus ochratoxin A biosynthetic pathway: insights from the genome sequence of Aspergillus ochraceus and a comparative genomic analysis. Appl. Environ. Microbiol. 84:19e01009-18
    [Google Scholar]
  125. 125. 
    Wannop CC. 1961. The histopathology of Turkey “X” disease in Great Britain. Avian Dis 5:4371–81
    [Google Scholar]
  126. 126. 
    Wells CA, Salvage-Jones JA, Li X, Butcher S, Murray RZ 2008. The macrophage-inducible C-type lectin, Mincle, is an essential component of the innate immune response to Candida albicans. J. Immunol 180:117404–13
    [Google Scholar]
  127. 127. 
    Wheeler ML, Limon JJ, Underhill DM 2017. Immunity to commensal fungi: detente and disease. Annu. Rev. Pathol. Mech. Dis. 12:359–85
    [Google Scholar]
  128. 128. 
    Wiesner BP. 1942. Bactericidal effects of Aspergillus clavatus. . Nature 149:3778356–57
    [Google Scholar]
  129. 129. 
    Wilkins WH, Harris GCM. 1942. Investigation into the production of bacteriostatic substances by fungi. I. Preliminary examination of 100 fungal species. Br. J. Exp. Pathol. 23:4166–69
    [Google Scholar]
  130. 130. 
    Woodward RB, Singh G. 1949. The structure of patulin. J. Am. Chem. Soc. 71:2758–59
    [Google Scholar]
  131. 131. 
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:6052105–8
    [Google Scholar]
  132. 132. 
    Xu J, Li Y, Yang Z, Li C, Liang H et al. 2018. Yeast probiotics shape the gut microbiome and improve the health of early-weaned piglets. Front. Microbiol. 9:2011
    [Google Scholar]
  133. 133. 
    Yang A-M, Inamine T, Hochrath K, Chen P, Wang L et al. 2017. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Investig. 127:72829–41
    [Google Scholar]
  134. 134. 
    Yoshizawa T, Morooka N. 1973. Deoxynivalenol and its monoacetate: new mycotoxins from Fusarium roseum and moldy barley. Agric. Biol. Chem. 37:122933–34
    [Google Scholar]
  135. 135. 
    Yu L, Zhao X, Cheng M, Yang G, Wang B et al. 2017. Saccharomyces boulardii administration changes gut microbiota and attenuates d-galactosamine-induced liver injury. Sci. Rep. 7:11359
    [Google Scholar]
  136. 136. 
    Zaouche A, Loukil C, de Lagausie P, Peuchmaur M, Macry J, Fitoussi F et al. 2000. Effects of oral Saccharomyces boulardii on bacterial overgrowth, translocation, and intestinal adaptation after small-bowel resection in rats. Scand. J. Gastroenterol. 35:2160–65
    [Google Scholar]
  137. 137. 
    Zhai Q, Gong X, Wang C, Zhao J, Zhang H et al. 2019. Food-borne patulin toxicity is related to gut barrier disruption and can be prevented by docosahexaenoic acid and probiotic supplementation. Food Funct 10:31330–39
    [Google Scholar]
  138. 138. 
    Zhang B, Shen XL, Liang R, Li Y, Huang K et al. 2014. Protective role of the mitochondrial Lon protease 1 in ochratoxin A-induced cytotoxicity in HEK293 cells. J. Proteom. 101:154–68
    [Google Scholar]
  139. 139. 
    Zuo T, Wong SH, Cheung CP, Lam K, Lui R et al. 2018. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat. Commun. 9:13663
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-013120-043659
Loading
/content/journals/10.1146/annurev-nutr-013120-043659
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error