1932

Abstract

Specific proteins accumulate in neurodegenerative disease, and human genetics has indicated a causative role for many. In most cases, however, the mechanisms remain poorly understood. Degeneration is thought to involve a gain of abnormal function, although we do not know the normal function of many proteins implicated. The protein α-synuclein accumulates in the Lewy pathology of Parkinson's disease and related disorders, and mutations in α-synuclein cause degeneration, but we have not known its normal function or how it triggers disease. α-Synuclein localizes to presynaptic boutons and interacts with membranes in vitro. Overexpression slows synaptic vesicle exocytosis, and recent data suggest a normal role for the endogenous synucleins in dilation of the exocytic fusion pore. Disrupted membranes also appear surprisingly prominent in Lewy pathology. Synuclein thus interacts with membranes under both physiological and pathological conditions, suggesting that the normal function of synuclein may illuminate its role in degeneration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-031920-092547
2021-01-24
2025-01-11
The full text of this item is not currently available.

Literature Cited

  1. 1. 
    Selkoe DJ, Hardy J. 2016. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med 8:595–608
    [Google Scholar]
  2. 2. 
    Heber S, Herms J, Gajic V, Hainfellner J, Aguzzi A et al. 2000. Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci 20:7951–63
    [Google Scholar]
  3. 3. 
    Wang P, Yang G, Mosier DR, Chang P, Zaidi T et al. 2005. Defective neuromuscular synapses in mice lacking amyloid precursor protein (APP) and APP-like protein 2. J. Neurosci 25:1219–25
    [Google Scholar]
  4. 4. 
    Ballatore C, Lee VM, Trojanowski JQ. 2007. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat. Rev. Neurosci 8:663–72
    [Google Scholar]
  5. 5. 
    Wang Y, Mandelkow E. 2016. Tau in physiology and pathology. Nat. Rev. Neurosci 17:5–21
    [Google Scholar]
  6. 6. 
    Goedert M, Spillantini MG, Del Tredici K, Braak H. 2013. 100 years of Lewy pathology. Nat. Rev. Neurol. 9:13–24
    [Google Scholar]
  7. 7. 
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M 1997. α-Synuclein in Lewy bodies. Nature 388:839–40
    [Google Scholar]
  8. 8. 
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A et al. 1997. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276:2045–47
    [Google Scholar]
  9. 9. 
    Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M et al. 1998. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Gen 18:106–8
    [Google Scholar]
  10. 10. 
    Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R et al. 2004. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55:164–73
    [Google Scholar]
  11. 11. 
    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S et al. 2003. α-Synuclein locus triplication causes Parkinson's disease. Science 302:841
    [Google Scholar]
  12. 12. 
    Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR et al. 2009. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Gen. 41:1308–12
    [Google Scholar]
  13. 13. 
    Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC et al. 2016. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 533:95–99
    [Google Scholar]
  14. 14. 
    Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E 2003. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24:197–211
    [Google Scholar]
  15. 15. 
    Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P et al. 2012. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–53
    [Google Scholar]
  16. 16. 
    Watts JC, Giles K, Oehler A, Middleton L, Dexter DT et al. 2013. Transmission of multiple system atrophy prions to transgenic mice. PNAS 110:19555–60
    [Google Scholar]
  17. 17. 
    Peng C, Gathagan RJ, Covell DJ, Medellin C, Stieber A et al. 2018. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 557:558–63
    [Google Scholar]
  18. 18. 
    Woerman AL, Stohr J, Aoyagi A, Rampersaud R, Krejciova Z et al. 2015. Propagation of prions causing synucleinopathies in cultured cells. PNAS 112:E4949–58
    [Google Scholar]
  19. 19. 
    Conway KA, Harper JD, Lansbury PT. 1998. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat. Med 4:1318–20
    [Google Scholar]
  20. 20. 
    Volles MJ, Lansbury PT Jr. 2007. Relationships between the sequence of α-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity. J. Mol. Biol. 366:1510–22
    [Google Scholar]
  21. 21. 
    Maroteaux L, Campanelli JT, Scheller RH. 1988. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8:2804–15
    [Google Scholar]
  22. 22. 
    Nakajo S, Omata K, Aiuchi T, Shibayama T, Okahashi I et al. 1990. Purification and characterization of a novel brain-specific 14-kDa protein. J. Neurochem 55:2031–38
    [Google Scholar]
  23. 23. 
    Jakes R, Spillantini MG, Goedert M. 1994. Identification of two distinct synucleins from human brain. FEBS Lett 345:27–32
    [Google Scholar]
  24. 24. 
    Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A et al. 1993. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. PNAS 90:11282–86
    [Google Scholar]
  25. 25. 
    Masters CL, Selkoe DJ. 2012. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb. Perspect. Med 2:a006262
    [Google Scholar]
  26. 26. 
    Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L et al. 1995. The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–75
    [Google Scholar]
  27. 27. 
    George JM, Jin H, Woods WS, Clayton DF. 1995. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–72
    [Google Scholar]
  28. 28. 
    Kholodilov NG, Neystat M, Oo TF, Lo SE, Larsen KE et al. 1999. Increased expression of rat synuclein in the substantia nigra pars compacta identified by mRNA differential display in a model of developmental target injury. J. Neurochem 73:2586–99
    [Google Scholar]
  29. 29. 
    Busch DJ, Morgan JR. 2012. Synuclein accumulation is associated with cell-specific neuronal death after spinal cord injury. J. Comp. Neurol 520:1751–71
    [Google Scholar]
  30. 30. 
    Beatman EL, Massey A, Shives KD, Burrack KS, Chamanian M et al. 2015. Alpha-synuclein expression restricts RNA viral infections in the brain. J. Virol 90:2767–82
    [Google Scholar]
  31. 31. 
    Davidson WS, Jonas A, Clayton DF, George JM 1998. Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem 273:9443–49
    [Google Scholar]
  32. 32. 
    Bussell R Jr., Eliezer D. 2003. A structural and functional role for 11-mer repeats in α-synuclein and other exchangeable lipid binding proteins. J. Mol. Biol. 329:763–78
    [Google Scholar]
  33. 33. 
    Jao CC, Der-Sarkissian A, Chen J, Langen R 2004. Structure of membrane-bound α-synuclein studied by site-directed spin labeling. PNAS 101:8331–36
    [Google Scholar]
  34. 34. 
    Bodner CR, Dobson CM, Bax A. 2009. Multiple tight phospholipid-binding modes of α-synuclein revealed by solution NMR spectroscopy. J. Mol. Biol. 390:775–90
    [Google Scholar]
  35. 35. 
    Čopič A, Antoine-Bally S, Giménez-Andrés M, La Torre Garay C, Antonny B et al. 2018. A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets. Nat. Commun. 9:1332
    [Google Scholar]
  36. 36. 
    Fortin DL, Troyer MD, Nakamura K, Kubo S, Anthony MD, Edwards RH. 2004. Lipid rafts mediate the synaptic localization of α-synuclein. J. Neurosci 24:6715–23
    [Google Scholar]
  37. 37. 
    Withers GS, George JM, Banker GA, Clayton DF. 1997. Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Dev. Brain Res 99:87–94
    [Google Scholar]
  38. 38. 
    Nakamura K, Nemani VM, Kaehlcke K, Ott M, Edwards RH. 2008. Optical reporters for the conformation of α-synuclein reveal a specific interaction with mitochondria. J. Neurosci 28:12305–17
    [Google Scholar]
  39. 39. 
    Lautenschlager J, Stephens AD, Fusco G, Strohl F, Curry N et al. 2018. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nat. Commun 9:712
    [Google Scholar]
  40. 40. 
    Boassa D, Berlanga ML, Yang MA, Terada M, Hu J et al. 2013. Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis. J. Neurosci 33:2605–15
    [Google Scholar]
  41. 41. 
    Vargas KJ, Schrod N, Davis T, Fernandez-Busnadiego R, Taguchi YV et al. 2017. Synucleins have multiple effects on presynaptic architecture. Cell Rep 18:161–73
    [Google Scholar]
  42. 42. 
    Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M. 1998. Binding of α-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J. Biol. Chem 273:26292–94
    [Google Scholar]
  43. 43. 
    Unni VK, Weissman TA, Rockenstein E, Masliah E, McLean PJ, Hyman BT. 2010. In vivo imaging of α-synuclein in mouse cortex demonstrates stable expression and differential subcellular compartment mobility. PLOS ONE 5:e10589
    [Google Scholar]
  44. 44. 
    Zabrocki P, Bastiaens I, Delay C, Bammens T, Ghillebert R et al. 2008. Phosphorylation, lipid raft interaction and traffic of α-synuclein in a yeast model for Parkinson. Biochim. Biophys. Acta Mol. Cell Res 1783:1767–80
    [Google Scholar]
  45. 45. 
    Kubo SI, Nemani VM, Chalkley RJ, Anthony MD, Hattori N et al. 2005. A combinatorial code for the interaction of α-synuclein with membranes. J. Biol. Chem 280:31664–72
    [Google Scholar]
  46. 46. 
    Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D, Nussbaum RL. 2002. Lipid droplet binding and oligomerization properties of the Parkinson's disease protein α-synuclein. J. Biol. Chem 277:6344–52
    [Google Scholar]
  47. 47. 
    Millership S, Ninkina N, Guschina IA, Norton J, Brambilla R et al. 2012. Increased lipolysis and altered lipid homeostasis protect γ-synuclein–null mutant mice from diet-induced obesity. PNAS 109:20943–48
    [Google Scholar]
  48. 48. 
    Sharon R, Goldberg MS, Bar-Josef I, Betensky RA, Shen J, Selkoe DJ 2001. α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. PNAS 98:9110–15
    [Google Scholar]
  49. 49. 
    Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ. 2003. The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 37:583–95
    [Google Scholar]
  50. 50. 
    Sharon R, Bar-Joseph I, Mirick GE, Serhan CN, Selkoe DJ. 2003. Altered fatty acid composition of dopaminergic neurons expressing α-synuclein and human brains with α-synucleinopathies. J. Biol. Chem 278:49874–81
    [Google Scholar]
  51. 51. 
    Ellis CE, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F et al. 2005. Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking α-synuclein. Mol. Cell. Biol 25:10190–201
    [Google Scholar]
  52. 52. 
    Fanning S, Haque A, Imberdis T, Baru V, Barrasa MI et al. 2019. Lipidomic analysis of α-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment. Mol. Cell 73:1001–14.e8
    [Google Scholar]
  53. 53. 
    Stefani G, Onofri F, Valtorta F, Vaccaro P, Greengard P, Benfenati F. 1997. Kinetic analysis of the phosphorylation-dependent interactions of synapsin I with rat brain synaptic vesicles. J. Physiol 504:Pt 3501–15
    [Google Scholar]
  54. 54. 
    Hosaka M, Hammer RE, Sudhof TC. 1999. A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24:377–87
    [Google Scholar]
  55. 55. 
    Chi P, Greengard P, Ryan TA. 2001. Synapsin dispersion and reclustering during synaptic activity. Nat. Neurosci 4:1187–93
    [Google Scholar]
  56. 56. 
    Fortin DL, Nemani VM, Voglmaier SM, Anthony MD, Ryan TA, Edwards RH. 2005. Neural activity controls the synaptic accumulation of α-synuclein. J. Neurosci 25:10913–21
    [Google Scholar]
  57. 57. 
    Tao-Cheng JH. 2006. Activity-related redistribution of presynaptic proteins at the active zone. Neuroscience 141:1217–24
    [Google Scholar]
  58. 58. 
    Comellas G, Lemkau LR, Zhou DH, George JM, Rienstra CM. 2012. Structural intermediates during α-synuclein fibrillogenesis on phospholipid vesicles. J. Am. Chem. Soc 134:5090–99
    [Google Scholar]
  59. 59. 
    Dikiy I, Eliezer D. 2012. Folding and misfolding of alpha-synuclein on membranes. Biochim. Biophys. Acta Biomembr 1818:1013–18
    [Google Scholar]
  60. 60. 
    Lee HJ, Choi C, Lee SJ. 2002. Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J. Biol. Chem 277:671–78
    [Google Scholar]
  61. 61. 
    Zhu M, Fink AL. 2003. Lipid binding inhibits α-synuclein fibril formation. J. Biol. Chem 278:16873–77
    [Google Scholar]
  62. 62. 
    Soper JH, Kehm V, Burd CG, Bankaitis VA, Lee VM. 2010. Aggregation of α-synuclein in S. cerevisiae is associated with defects in endosomal trafficking and phospholipid biosynthesis. J. Mol. Neurosci 43:391–405
    [Google Scholar]
  63. 63. 
    Diao J, Burre J, Vivona S, Cipriano DJ, Sharma M et al. 2013. Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. eLife 2:e00592
    [Google Scholar]
  64. 64. 
    Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L et al. 2011. In vivo demonstration that α-synuclein oligomers are toxic. PNAS 108:4194–99
    [Google Scholar]
  65. 65. 
    Bartels T, Choi JG, Selkoe DJ. 2011. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–10
    [Google Scholar]
  66. 66. 
    Dettmer U, Newman AJ, Luth ES, Bartels T, Selkoe D. 2013. In vivo cross-linking reveals principally oligomeric forms of α-synuclein and β-synuclein in neurons and non-neural cells. J. Biol. Chem 288:6371–85
    [Google Scholar]
  67. 67. 
    Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S et al. 2012. α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J. Biol. Chem 287:15345–64
    [Google Scholar]
  68. 68. 
    Theillet FX, Binolfi A, Bekei B, Martorana A, Rose HM et al. 2016. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530:45–50
    [Google Scholar]
  69. 69. 
    Burre J, Sharma M, Sudhof TC 2014. α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. PNAS 111:E4274–83
    [Google Scholar]
  70. 70. 
    Wang L, Das U, Scott DA, Tang Y, McLean PJ, Roy S 2014. α-Synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr. Biol 24:2319–26
    [Google Scholar]
  71. 71. 
    Choi BK, Choi MG, Kim JY, Yang Y, Lai Y et al. 2013. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. PNAS 110:4087–92
    [Google Scholar]
  72. 72. 
    DeWitt DC, Rhoades E. 2013. α-Synuclein can inhibit SNARE-mediated vesicle fusion through direct interactions with lipid bilayers. Biochemistry 52:2385–87
    [Google Scholar]
  73. 73. 
    Lai Y, Kim S, Varkey J, Lou X, Song JK et al. 2014. Nonaggregated α-synuclein influences SNARE-dependent vesicle docking via membrane binding. Biochemistry 53:3889–96
    [Google Scholar]
  74. 74. 
    Dettmer U, Newman AJ, Soldner F, Luth ES, Kim NC et al. 2015. Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat. Commun 6:7314
    [Google Scholar]
  75. 75. 
    Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM. 2002. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34:521–33
    [Google Scholar]
  76. 76. 
    Gispert S, Del Turco D, Garrett L, Chen A, Bernard DJ et al. 2003. Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation. Mol. Cell. Neurosci 24:419–29
    [Google Scholar]
  77. 77. 
    Tofaris GK, Garcia Reitböck P, Humby T, Lambourne SL, O'Connell M et al. 2006. Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human α-synuclein(1–120): implications for Lewy body disorders. J. Neurosci 26:3942–50
    [Google Scholar]
  78. 78. 
    Lundblad M, Decressac M, Mattsson B, Bjorklund A 2012. Impaired neurotransmission caused by overexpression of α-synuclein in nigral dopamine neurons. PNAS 109:3213–19
    [Google Scholar]
  79. 79. 
    Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M et al. 2000. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–69
    [Google Scholar]
  80. 80. 
    Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW et al. 2002. Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters. J. Neurosci. Res 68:568–78
    [Google Scholar]
  81. 81. 
    Fleming SM, Tetreault NA, Mulligan CK, Hutson CB, Masliah E, Chesselet MF. 2008. Olfactory deficits in mice overexpressing human wildtype α-synuclein. Eur. J. Neurosci 28:247–56
    [Google Scholar]
  82. 82. 
    Shults CW, Rockenstein E, Crews L, Adame A, Mante M et al. 2005. Neurological and neurodegenerative alterations in a transgenic mouse model expressing human α-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J. Neurosci 25:10689–99
    [Google Scholar]
  83. 83. 
    Yazawa I, Giasson BI, Sasaki R, Zhang B, Joyce S et al. 2005. Mouse model of multiple system atrophy α-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron 45:847–59
    [Google Scholar]
  84. 84. 
    Nuber S, Rajsombath M, Minakaki G, Winkler J, Muller CP et al. 2018. Abrogating native α-synuclein tetramers in mice causes a L-DOPA-responsive motor syndrome closely resembling Parkinson's disease. Neuron 100:75–90.e5
    [Google Scholar]
  85. 85. 
    Yavich L, Oksman M, Tanila H, Kerokoski P, Hiltunen M et al. 2005. Locomotor activity and evoked dopamine release are reduced in mice overexpressing A30P-mutated human α-synuclein. Neurobiol. Dis 20:303–13
    [Google Scholar]
  86. 86. 
    Janezic S, Threlfell S, Dodson PD, Dowie MJ, Taylor TN et al. 2013. Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. PNAS 110:E4016–25
    [Google Scholar]
  87. 87. 
    Larsen KE, Schmitz Y, Troyer MD, Mosharov E, Dietrich P et al. 2006. α-Synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J. Neurosci 26:11915–22
    [Google Scholar]
  88. 88. 
    Nemani VM, Lu W, Berge V, Nakamura K, Onoa B et al. 2010. Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65:66–79
    [Google Scholar]
  89. 89. 
    Scott DA, Tabarean I, Tang Y, Cartier A, Masliah E, Roy S 2010. A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration. J. Neurosci 30:8083–95
    [Google Scholar]
  90. 90. 
    Larson ME, Greimel SJ, Amar F, LaCroix M, Boyle G et al. 2017. Selective lowering of synapsins induced by oligomeric α-synuclein exacerbates memory deficits. PNAS 114:E4648–57
    [Google Scholar]
  91. 91. 
    Atias M, Tevet Y, Sun J, Stavsky A, Tal S et al. 2019. Synapsins regulate α-synuclein functions. PNAS 116:11116–18
    [Google Scholar]
  92. 92. 
    Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T et al. 2007. Three-dimensional architecture of presynaptic terminal cytomatrix. J. Neurosci 27:6868–77
    [Google Scholar]
  93. 93. 
    Medeiros AT, Soll LG, Tessari I, Bubacco L, Morgan JR. 2017. α-Synuclein dimers impair vesicle fission during clathrin-mediated synaptic vesicle recycling. Front. Cell. Neurosci 11:388
    [Google Scholar]
  94. 94. 
    Busch DJ, Oliphint PA, Walsh RB, Banks SM, Woods WS et al. 2014. Acute increase of α-synuclein inhibits synaptic vesicle recycling evoked during intense stimulation. Mol. Biol. Cell 25:3926–41
    [Google Scholar]
  95. 95. 
    Eguchi K, Taoufiq Z, Thorn-Seshold O, Trauner D, Hasegawa M, Takahashi T. 2017. Wild-type monomeric α-synuclein can impair vesicle endocytosis and synaptic fidelity via tubulin polymerization at the calyx of Held. J. Neurosci 37:6043–52
    [Google Scholar]
  96. 96. 
    Xu J, Wu XS, Sheng J, Zhang Z, Yue HY et al. 2016. α-Synuclein mutation inhibits endocytosis at mammalian central nerve terminals. J. Neurosci 36:4408–14
    [Google Scholar]
  97. 97. 
    Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH et al. 2000. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–52
    [Google Scholar]
  98. 98. 
    Garcia-Reitboeck P, Anichtchik O, Dalley JW, Ninkina N, Tofaris GK et al. 2013. Endogenous alpha-synuclein influences the number of dopaminergic neurons in mouse substantia nigra. Exp. Neurol 248:541–45
    [Google Scholar]
  99. 99. 
    Chadchankar H, Yavich L. 2011. Sub-regional differences and mechanisms of the short-term plasticity of dopamine overflow in striatum in mice lacking alpha-synuclein. Brain Res 1423:67–76
    [Google Scholar]
  100. 100. 
    Yavich L, Tanila H, Vepsalainen S, Jakala P. 2004. Role of α-synuclein in presynaptic dopamine recruitment. J. Neurosci 24:11165–70
    [Google Scholar]
  101. 101. 
    Longhena F, Faustini G, Varanita T, Zaltieri M, Porrini V et al. 2018. Synapsin III is a key component of α-synuclein fibrils in Lewy bodies of PD brains. Brain Pathol 28:875–88
    [Google Scholar]
  102. 102. 
    Kile BM, Guillot TS, Venton BJ, Wetsel WC, Augustine GJ, Wightman RM. 2010. Synapsins differentially control dopamine and serotonin release. J. Neurosci 30:9762–70
    [Google Scholar]
  103. 103. 
    Chandra S, Fornai F, Kwon HB, Yazdani U, Atasoy D et al. 2004. Double-knockout mice for α- and β-synucleins: effect on synaptic functions. PNAS 101:14966–71
    [Google Scholar]
  104. 104. 
    Abeliovich A, Gitler AD. 2016. Defects in trafficking bridge Parkinson's disease pathology and genetics. Nature 539:207–16
    [Google Scholar]
  105. 105. 
    Senior SL, Ninkina N, Deacon R, Bannerman D, Buchman VL et al. 2008. Increased striatal dopamine release and hyperdopaminergic-like behaviour in mice lacking both alpha-synuclein and gamma-synuclein. Eur. J. Neurosci 27:947–57
    [Google Scholar]
  106. 106. 
    Anwar S, Peters O, Millership S, Ninkina N, Doig N et al. 2011. Functional alterations to the nigro-striatal system in mice lacking all three members of the synuclein family. J. Neurosci 31:7264–74
    [Google Scholar]
  107. 107. 
    Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC. 2010. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–67
    [Google Scholar]
  108. 108. 
    Greten-Harrison B, Polydoro M, Morimoto-Tomita M, Diao L, Williams AM et al. 2010. αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. PNAS 107:19573–78
    [Google Scholar]
  109. 109. 
    Oksman M, Tanila H, Yavich L. 2006. Brain reward in the absence of alpha-synuclein. NeuroReport 17:1191–94
    [Google Scholar]
  110. 110. 
    Garcia-Reitböck P, Anichtchik O, Bellucci A, Iovino M, Ballini C et al. 2010. SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson's disease. Brain 133:2032–44
    [Google Scholar]
  111. 111. 
    Sun J, Wang L, Bao H, Premi S, Das U et al. 2019. Functional cooperation of α-synuclein and VAMP2 in synaptic vesicle recycling. PNAS 116:11113–15
    [Google Scholar]
  112. 112. 
    Sousa VL, Bellani S, Giannandrea M, Yousuf M, Valtorta F et al. 2009. α-Synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol. Biol. Cell 20:3725–39
    [Google Scholar]
  113. 113. 
    Kamp F, Exner N, Lutz AK, Wender N, Hegermann J et al. 2010. Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 29:3571–89
    [Google Scholar]
  114. 114. 
    Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM et al. 2011. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J. Biol. Chem 286:20710–26
    [Google Scholar]
  115. 115. 
    Guardia-Laguarta C, Area-Gomez E, Rüb C, Liu Y, Magrane J et al. 2014. α-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci 34:249–59
    [Google Scholar]
  116. 116. 
    Ordonez DG, Lee MK, Feany MB. 2018. α-Synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron 97:108–24.e6
    [Google Scholar]
  117. 117. 
    Varkey J, Isas JM, Mizuno N, Jensen MB, Bhatia VK et al. 2010. Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins. J. Biol. Chem 285:32486–93
    [Google Scholar]
  118. 118. 
    Middleton ER, Rhoades E. 2010. Effects of curvature and composition on α-synuclein binding to lipid vesicles. Biophys. J 99:2279–88
    [Google Scholar]
  119. 119. 
    Pranke IM, Morello V, Bigay J, Gibson K, Verbavatz JM et al. 2011. α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J. Cell Biol 194:89–103
    [Google Scholar]
  120. 120. 
    Westphal CH, Chandra SS. 2013. Monomeric synucleins generate membrane curvature. J. Biol. Chem 288:1829–40
    [Google Scholar]
  121. 121. 
    Daumke O, Roux A, Haucke V. 2014. BAR domain scaffolds in dynamin-mediated membrane fission. Cell 156:882–92
    [Google Scholar]
  122. 122. 
    Vargas KJ, Makani S, Davis T, Westphal CH, Castillo PE, Chandra SS. 2014. Synucleins regulate the kinetics of synaptic vesicle endocytosis. J. Neurosci 34:9364–76
    [Google Scholar]
  123. 123. 
    Fulop T, Radabaugh S, Smith C. 2005. Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J. Neurosci 25:7324–32
    [Google Scholar]
  124. 124. 
    Aoki R, Kitaguchi T, Oya M, Yanagihara Y, Sato M et al. 2010. Duration of fusion pore opening and the amount of hormone released are regulated by myosin II during kiss-and-run exocytosis. Biochem. J 429:497–504
    [Google Scholar]
  125. 125. 
    Logan T, Bendor J, Toupin C, Thorn K, Edwards RH. 2017. α-Synuclein promotes dilation of the exocytotic fusion pore. Nat. Neurosci 20:681–89
    [Google Scholar]
  126. 126. 
    Abbineni PS, Bohannon KP, Bittner MA, Axelrod D, Holz RW. 2019. Identification of β-synuclein on secretory granules in chromaffin cells and the effects of α- and β-synuclein on post-fusion BDNF discharge and fusion pore expansion. Neurosci. Lett 699:134–39
    [Google Scholar]
  127. 127. 
    Miesenböck G, De Angelis DA, Rothman JE 1998. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–95
    [Google Scholar]
  128. 128. 
    Alabi AA, Tsien RW. 2013. Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu. Rev. Physiol 75:393–422
    [Google Scholar]
  129. 129. 
    Watanabe S, Lehmann M, Hujber E, Fetter RD, Richards J et al. 2014. Nanometer-resolution fluorescence electron microscopy (nano-EM) in cultured cells. Methods Mol. Biol. 1117:503–26
    [Google Scholar]
  130. 130. 
    Staal RG, Mosharov EV, Sulzer D. 2004. Dopamine neurons release transmitter via a flickering fusion pore. Nat. Neurosci 7:341–46
    [Google Scholar]
  131. 131. 
    Silm K, Yang J, Marcott PF, Asensio CS, Eriksen J et al. 2019. Synaptic vesicle recycling pathway determines neurotransmitter content and release properties. Neuron 102:786–800.e5
    [Google Scholar]
  132. 132. 
    Berberian K, Torres AJ, Fang Q, Kisler K, Lindau M. 2009. F-actin and myosin II accelerate catecholamine release from chromaffin granules. J. Neurosci 29:863–70
    [Google Scholar]
  133. 133. 
    Nightingale TD, White IJ, Doyle EL, Turmaine M, Harrison-Lavoie KJ et al. 2011. Actomyosin II contractility expels von Willebrand factor from Weibel-Palade bodies during exocytosis. J. Cell Biol 194:613–29
    [Google Scholar]
  134. 134. 
    Wen PJ, Grenklo S, Arpino G, Tan X, Liao HS et al. 2016. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nat. Commun 7:12604
    [Google Scholar]
  135. 135. 
    Anantharam A, Bittner MA, Aikman RL, Stuenkel EL, Schmid SL et al. 2011. A new role for the dynamin GTPase in the regulation of fusion pore expansion. Mol. Biol. Cell 22:1907–18
    [Google Scholar]
  136. 136. 
    Zhao WD, Hamid E, Shin W, Wen PJ, Krystofiak ES et al. 2016. Hemi-fused structure mediates and controls fusion and fission in live cells. Nature 534:548–52
    [Google Scholar]
  137. 137. 
    Eliezer D, Kutluay E, Bussell R Jr., Browne G. 2001. Conformational properties of α-synuclein in its free and lipid-associated states. J. Mol. Biol 307:1061–73
    [Google Scholar]
  138. 138. 
    Chandra S, Chen X, Rizo J, Jahn R, Sudhof TC. 2003. A broken α-helix in folded α-Synuclein. J. Biol. Chem 278:15313–18
    [Google Scholar]
  139. 139. 
    Georgieva ER, Ramlall TF, Borbat PP, Freed JH, Eliezer D. 2008. Membrane-bound α-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles. J. Am. Chem. Soc 130:12856–57
    [Google Scholar]
  140. 140. 
    Jao CC, Hegde BG, Chen J, Haworth IS, Langen R 2008. Structure of membrane-bound α-synuclein from site-directed spin labeling and computational refinement. PNAS 105:19666–71
    [Google Scholar]
  141. 141. 
    Ferreon AC, Gambin Y, Lemke EA, Deniz AA 2009. Interplay of α-synuclein binding and conformational switching probed by single-molecule fluorescence. PNAS 106:5645–50
    [Google Scholar]
  142. 142. 
    Mizuno N, Varkey J, Kegulian NC, Hegde BG, Cheng N et al. 2012. Remodeling of lipid vesicles into cylindrical micelles by α-synuclein in an extended α-helical conformation. J. Biol. Chem 287:29301–11
    [Google Scholar]
  143. 143. 
    Kobbersmed JR, Grasskamp AT, Jusyte M, Böhme MA, Ditlevsen S et al. 2020. Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca2+ channel distances. eLife 9:e51032
    [Google Scholar]
  144. 144. 
    Lesage S, Anheim M, Letournel F, Bousset L, Honore A et al. 2013. G51D α-synuclein mutation causes a novel Parkinsonian-pyramidal syndrome. Ann. Neurol 23:459–71
    [Google Scholar]
  145. 145. 
    Proukakis C, Dudzik CG, Brier T, MacKay DS, Cooper JM et al. 2013. A novel α-synuclein missense mutation in Parkinson disease. Neurology 80:1062–64
    [Google Scholar]
  146. 146. 
    Lazaro DF, Rodrigues EF, Langohr R, Shahpasandzadeh H, Ribeiro T et al. 2014. Systematic comparison of the effects of alpha-synuclein mutations on its oligomerization and aggregation. PLOS Genet 10:e1004741
    [Google Scholar]
  147. 147. 
    Newberry RW, Leong JT, Chow ED, Kampmann M, DeGrado WF. 2020. Deep mutational scanning reveals the structural basis for α-synuclein activity. Nat. Chem. Biol 16:653–59
    [Google Scholar]
  148. 148. 
    Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. 2004. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305:1292–95
    [Google Scholar]
  149. 149. 
    Golovko MY, Rosenberger TA, Faergeman NJ, Feddersen S, Cole NB et al. 2006. Acyl-CoA synthetase activity links wild-type but not mutant α-synuclein to brain arachidonate metabolism. Biochemistry 45:6956–66
    [Google Scholar]
  150. 150. 
    Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC. 2005. α-Synuclein cooperates with CSPα in preventing neurodegeneration. Cell 123:383–96
    [Google Scholar]
  151. 151. 
    Cadieux-Dion M, Andermann E, Lachance-Touchette P, Ansorge O, Meloche C et al. 2013. Recurrent mutations in DNAJC5 cause autosomal dominant Kufs disease. Clin. Genet 83:571–75
    [Google Scholar]
  152. 152. 
    Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G et al. 2009. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. New Engl. J. Med. 361:1651–61
    [Google Scholar]
  153. 153. 
    Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ et al. 2011. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146:37–52
    [Google Scholar]
  154. 154. 
    Mazzulli JR, Zunke F, Tsunemi T, Toker NJ, Jeon S et al. 2016. Activation of β-glucocerebrosidase reduces pathological α-synuclein and restores lysosomal function in Parkinson's patient midbrain neurons. J. Neurosci 36:7693–706
    [Google Scholar]
  155. 155. 
    Henderson MX, Sedor S, McGeary I, Cornblath EJ, Peng C et al. 2020. Glucocerebrosidase activity modulates neuronal susceptibility to pathological α-synuclein insult. Neuron 105:822–36.e7
    [Google Scholar]
  156. 156. 
    Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC et al. 2017. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science 357:1255–61
    [Google Scholar]
  157. 157. 
    Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M 1998. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. PNAS 95:6469–73
    [Google Scholar]
  158. 158. 
    Galvin JE, Uryu K, Lee VM, Trojanowski JQ 1999. Axon pathology in Parkinson's disease and Lewy body dementia hippocampus contains α-, β-, and γ-synuclein. PNAS 96:13450–55
    [Google Scholar]
  159. 159. 
    Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE et al. 2019. Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22:1099–109
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-031920-092547
Loading
/content/journals/10.1146/annurev-pathol-031920-092547
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error