1932

Abstract

The last two decades have witnessed substantial advances in identifying synaptic plasticity responsible for behavioral changes in animal models of substance use disorder. We have learned the most about cocaine-induced plasticity in the nucleus accumbens and its relationship to cocaine seeking, so that is the focus in this review. Synaptic plasticity pointing to potential therapeutic targets has been identified mainly using two drug self-administration models: extinction-reinstatement and abstinence models. A relationship between cocaine seeking and potentiated AMPAR transmission in nucleus accumbens is indicated by both models. In particular, an atypical subpopulation—Ca2+-permeable or CP-AMPARs—mediates cue-induced seeking that persists even after long periods of abstinence, modeling the persistent vulnerability to relapse that represents a major challenge in treating substance use disorder. We review strategies to reverse CP-AMPAR plasticity; strategies targeting other components of excitatory synapses, including dysregulated glutamate uptake and release; and behavioral interventions that can be augmented by harnessing synaptic plasticity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-061724-080548
2025-01-23
2025-04-07
The full text of this item is not currently available.

Literature Cited

  1. 1.
    Sinha R. 2011.. New findings on biological factors predicting addiction relapse vulnerability. . Curr. Psychiatry Rep. 13::398405
    [Crossref] [Google Scholar]
  2. 2.
    Nicosia N, Pacula RL, Kilmer B, Lundberg R, Chiesa J. 2009.. The costs of methamphetamine use: a national estimate. Res. Summ., Rand Corp., Santa Monica, CA:
    [Google Scholar]
  3. 3.
    SAMHSA (Subst. Abuse Ment. Health Serv. Adm.). 2020.. Treatment of stimulant use disorders. SAMHSA Publ. PEP20-06-01-001 , SAMHSA, Rockville, MD:
    [Google Scholar]
  4. 4.
    Roehler DR, Hoots BE, Olsen EO, Kariisa M, Wilson NO, et al. 2019.. Annual surveillance report of drug-related risks and outcomes. Rep. , Cent. Dis. Control Prev., US Dep. Health Hum. Serv., Washington, DC:
    [Google Scholar]
  5. 5.
    Han B, Cotto J, Etz K, Einstein EB, Compton WM, Volkow ND. 2021.. Methamphetamine overdose deaths in the US by sex and race and ethnicity. . JAMA Psychiatry 78::56467
    [Crossref] [Google Scholar]
  6. 6.
    Twillman RK, Dawson E, LaRue L, Guevara MG, Whitley P, Huskey A. 2020.. Evaluation of trends of near-real-time urine drug test results for methamphetamine, cocaine, heroin, and fentanyl. . JAMA Netw. Open 3::e1918514
    [Crossref] [Google Scholar]
  7. 7.
    Kruyer A, Kalivas PW, Scofield MD. 2023.. Astrocyte regulation of synaptic signaling in psychiatric disorders. . Neuropsychopharmacology 48::2136
    [Crossref] [Google Scholar]
  8. 8.
    Mantsch JR, Baker DA, Funk D, Le AD, Shaham Y. 2016.. Stress-induced reinstatement of drug seeking: 20 years of progress. . Neuropsychopharmacology 41::33556
    [Crossref] [Google Scholar]
  9. 9.
    Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, et al. 2016.. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. . Pharmacol. Rev. 68::81671
    [Crossref] [Google Scholar]
  10. 10.
    Venniro M, Reverte I, Ramsey LA, Papastrat KM, D'Ottavio G, et al. 2021.. Factors modulating the incubation of drug and non-drug craving and their clinical implications. . Neurosci. Biobehav. Rev. 131::84764
    [Crossref] [Google Scholar]
  11. 11.
    Swinford-Jackson SE, O'Brien CP, Kenny PJ, Vanderschuren L, Unterwald EM, Pierce RC. 2021.. The persistent challenge of developing addiction pharmacotherapies. Cold Spring Harb. . Perspect. Med. 11::a040311
    [Google Scholar]
  12. 12.
    Ronsley C, Nolan S, Knight R, Hayashi K, Klimas J, et al. 2020.. Treatment of stimulant use disorder: a systematic review of reviews. . PLOS ONE 15::e0234809
    [Crossref] [Google Scholar]
  13. 13.
    Diering GH, Huganir RL. 2018.. The AMPA receptor code of synaptic plasticity. . Neuron 100::31429
    [Crossref] [Google Scholar]
  14. 14.
    Wolf ME, Ferrario CR. 2010.. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. . Neurosci. Biobehav. Rev. 35::185211
    [Crossref] [Google Scholar]
  15. 15.
    Kourrich S, Rothwell PE, Klug JR, Thomas MJ. 2007.. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. . J. Neurosci. 27::792128
    [Crossref] [Google Scholar]
  16. 16.
    Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, et al. 2008.. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. . Nature 454::11821
    [Crossref] [Google Scholar]
  17. 17.
    Isaac JT, Ashby MC, McBain CJ. 2007.. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. . Neuron 54::85971
    [Crossref] [Google Scholar]
  18. 18.
    Mameli M, Bellone C, Brown MT, Luscher C. 2011.. Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area. . Nat. Neurosci. 14::41416
    [Crossref] [Google Scholar]
  19. 19.
    Bellone C, Luscher C. 2006.. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. . Nat. Neurosci. 9::63641
    [Crossref] [Google Scholar]
  20. 20.
    Bellone C, Loureiro M, Luscher C. 2021.. Drug-evoked synaptic plasticity of excitatory transmission in the ventral tegmental area. Cold Spring Harb. . Perspect. Med. 11::a039701
    [Google Scholar]
  21. 21.
    Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, et al. 2018.. Structure, function, and allosteric modulation of NMDA receptors. . J. Gen. Physiol. 150::1081105
    [Crossref] [Google Scholar]
  22. 22.
    Karler R, Calder LD, Chaudhry IA, Turkanis SA. 1989.. Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. . Life Sci. 45::599606
    [Crossref] [Google Scholar]
  23. 23.
    Wolf ME, White FJ, Hu XT. 1994.. MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. . J. Neurosci. 14::173545
    [Crossref] [Google Scholar]
  24. 24.
    Ortinski PI. 2014.. Cocaine-induced changes in NMDA receptor signaling. . Mol. Neurobiol. 50::494506
    [Crossref] [Google Scholar]
  25. 25.
    Hanson JE, Yuan H, Perszyk RE, Banke TG, Xing H, et al. 2024.. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. . Neuropsychopharmacology 49::5166
    [Crossref] [Google Scholar]
  26. 26.
    Perez-Otano I, Larsen RS, Wesseling JF. 2016.. Emerging roles of GluN3-containing NMDA receptors in the CNS. . Nat. Rev. Neurosci. 17::62335
    [Crossref] [Google Scholar]
  27. 27.
    Chen J, Ma Y, Fan R, Yang Z, Li MD. 2018.. Implication of genes for the N-Methyl-d-aspartate (NMDA) receptor in substance addictions. . Mol. Neurobiol. 55::756778
    [Crossref] [Google Scholar]
  28. 28.
    Negrete-Diaz JV, Falcon-Moya R, Rodriguez-Moreno A. 2022.. Kainate receptors: from synaptic activity to disease. . FEBS J. 289::507488
    [Crossref] [Google Scholar]
  29. 29.
    Reiner A, Levitz J. 2018.. Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. . Neuron 98::108098
    [Crossref] [Google Scholar]
  30. 30.
    Joffe ME, Centanni SW, Jaramillo AA, Winder DG, Conn PJ. 2018.. Metabotropic glutamate receptors in alcohol use disorder: physiology, plasticity, and promising pharmacotherapies. . ACS Chem. Neurosci. 9::2188204
    [Crossref] [Google Scholar]
  31. 31.
    Luscher C, Huber KM. 2010.. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. . Neuron 65::44559
    [Crossref] [Google Scholar]
  32. 32.
    Stansley BJ, Conn PJ. 2019.. Neuropharmacological insight from allosteric modulation of mGlu receptors. . Trends Pharmacol. Sci. 40::24052
    [Crossref] [Google Scholar]
  33. 33.
    Niedzielska-Andres E, Pomierny-Chamiolo L, Andres M, Walczak M, Knackstedt LA, et al. 2021.. Cocaine use disorder: a look at metabotropic glutamate receptors and glutamate transporters. . Pharmacol. Ther. 221::107797
    [Crossref] [Google Scholar]
  34. 34.
    Caprioli D, Justinova Z, Venniro M, Shaham Y. 2018.. Effect of novel allosteric modulators of metabotropic glutamate receptors on drug self-administration and relapse: a review of preclinical studies and their clinical implications. . Biol. Psychiatry 84::18092
    [Crossref] [Google Scholar]
  35. 35.
    Tyler RE, Besheer J, Joffe ME. 2022.. Advances in translating mGlu2 and mGlu3 receptor selective allosteric modulators as breakthrough treatments for affective disorders and alcohol use disorder. . Pharmacol. Biochem. Behav. 219::173450
    [Crossref] [Google Scholar]
  36. 36.
    Lu L, Grimm JW, Hope BT, Shaham Y. 2004.. Incubation of cocaine craving after withdrawal: a review of preclinical data. . Neuropharmacology 47:(Suppl. 1):21426
    [Crossref] [Google Scholar]
  37. 37.
    Pickens CL, Airavaara M, Theberge F, Fanous S, Hope BT, Shaham Y. 2011.. Neurobiology of the incubation of drug craving. . Trends Neurosci. 34::41120
    [Crossref] [Google Scholar]
  38. 38.
    Lee BR, Ma YY, Huang YH, Wang X, Otaka M, et al. 2013.. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. . Nat. Neurosci. 16::164451
    [Crossref] [Google Scholar]
  39. 39.
    Fredriksson I, Venniro M, Reiner DJ, Chow JJ, Bossert JM, Shaham Y. 2021.. Animal models of drug relapse and craving after voluntary abstinence: a review. . Pharmacol. Rev. 73::105083
    [Crossref] [Google Scholar]
  40. 40.
    Schwendt M, Knackstedt LA. 2021.. Extinction versus abstinence: a review of the molecular and circuit consequences of different post-cocaine experiences. . Int. J. Mol. Sci. 22::6113
    [Crossref] [Google Scholar]
  41. 41.
    Nicolas C, Zlebnik NE, Farokhnia M, Leggio L, Ikemoto S, Shaham Y. 2022.. Sex differences in opioid and psychostimulant craving and relapse: a critical review. . Pharmacol. Rev. 74::11940
    [Crossref] [Google Scholar]
  42. 42.
    Smaga I, Fierro D, Mesa J, Filip M, Knackstedt LA. 2020.. Molecular changes evoked by the beta-lactam antibiotic ceftriaxone across rodent models of substance use disorder and neurological disease. . Neurosci. Biobehav. Rev. 115::11630
    [Crossref] [Google Scholar]
  43. 43.
    Bobadilla AC, Heinsbroek JA, Gipson CD, Griffin WC, Fowler CD, et al. 2017.. Corticostriatal plasticity, neuronal ensembles, and regulation of drug-seeking behavior. . Prog. Brain Res. 235::93112
    [Crossref] [Google Scholar]
  44. 44.
    Hodebourg R, Kalivas PW, Kruyer A. 2022.. Extrasynaptic therapeutic targets in substance use and stress disorders. . Trends Pharmacol. Sci. 43::5668
    [Crossref] [Google Scholar]
  45. 45.
    Siemsen BM, Reichel CM, Leong KC, Garcia-Keller C, Gipson CD, et al. 2019.. Effects of methamphetamine self-administration and extinction on astrocyte structure and function in the nucleus accumbens core. . Neuroscience 406::52841
    [Crossref] [Google Scholar]
  46. 46.
    Moussawi K, Zhou W, Shen H, Reichel CM, See RE, et al. 2011.. Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. . PNAS 108::38590
    [Crossref] [Google Scholar]
  47. 47.
    Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW. 2013.. Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. . Neuron 77::86772
    [Crossref] [Google Scholar]
  48. 48.
    Smith AC, Kupchik YM, Scofield MD, Gipson CD, Wiggins A, et al. 2014.. Synaptic plasticity mediating cocaine relapse requires matrix metalloproteinases. . Nat. Neurosci. 17::165557
    [Crossref] [Google Scholar]
  49. 49.
    Moussawi K, Pacchioni A, Moran M, Olive MF, Gass JT, et al. 2009.. N-Acetylcysteine reverses cocaine-induced metaplasticity. . Nat. Neurosci. 12::18289
    [Crossref] [Google Scholar]
  50. 50.
    Knackstedt LA, Moussawi K, Lalumiere R, Schwendt M, Klugmann M, Kalivas PW. 2010.. Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. . J. Neurosci. 30::798492
    [Crossref] [Google Scholar]
  51. 51.
    White SL, Ortinski PI, Friedman SH, Zhang L, Neve RL, et al. 2016.. A critical role for the GluA1 accessory protein, SAP97, in cocaine seeking. . Neuropsychopharmacology 41::73650
    [Crossref] [Google Scholar]
  52. 52.
    LaCrosse AL, O'Donovan SM, Sepulveda-Orengo MT, McCullumsmith RE, Reissner KJ, et al. 2017.. Contrasting the role of xCT and GLT-1 upregulation in the ability of ceftriaxone to attenuate the cue-induced reinstatement of cocaine seeking and normalize AMPA receptor subunit expression. . J. Neurosci. 37::580921
    [Crossref] [Google Scholar]
  53. 53.
    Fischer KD, Houston AC, Rebec GV. 2013.. Role of the major glutamate transporter GLT1 in nucleus accumbens core versus shell in cue-induced cocaine-seeking behavior. . J. Neurosci. 33::931927
    [Crossref] [Google Scholar]
  54. 54.
    Shukla A, Beroun A, Panopoulou M, Neumann PA, Grant SG, et al. 2017.. Calcium-permeable AMPA receptors and silent synapses in cocaine-conditioned place preference. . EMBO J. 36::45874
    [Crossref] [Google Scholar]
  55. 55.
    Panopoulou M, Schluter OM. 2022.. Ca2+-permeable AMPA receptors set the threshold for retrieval of drug memories. . Mol. Psychiatry 27::286878
    [Crossref] [Google Scholar]
  56. 56.
    Roberts-Wolfe D, Bobadilla AC, Heinsbroek JA, Neuhofer D, Kalivas PW. 2018.. Drug refraining and seeking potentiate synapses on distinct populations of accumbens medium spiny neurons. . J. Neurosci. 38::71007
    [Crossref] [Google Scholar]
  57. 57.
    Shen H, Moussawi K, Zhou W, Toda S, Kalivas PW. 2011.. Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. . PNAS 108::1940712
    [Crossref] [Google Scholar]
  58. 58.
    Gipson CD, Reissner KJ, Kupchik YM, Smith AC, Stankeviciute N, et al. 2013.. Reinstatement of nicotine seeking is mediated by glutamatergic plasticity. . PNAS 110::912429
    [Crossref] [Google Scholar]
  59. 59.
    Smith ACW, Scofield MD, Heinsbroek JA, Gipson CD, Neuhofer D, et al. 2017.. Accumbens nNOS interneurons regulate cocaine relapse. . J. Neurosci. 37::74256
    [Crossref] [Google Scholar]
  60. 60.
    Lewandowski SI, Hodebourg R, Wood SK, Carter JS, Nelson KH, et al. 2023.. Matrix metalloproteinase activity during methamphetamine cued relapse. . Addict. Biol. 28::e13279
    [Crossref] [Google Scholar]
  61. 61.
    Bradlow RCJ, Berk M, Kalivas PW, Back SE, Kanaan RA. 2022.. The potential of N-acetyl-L-cysteine (NAC) in the treatment of psychiatric disorders. . CNS Drugs 36::45182
    [Crossref] [Google Scholar]
  62. 62.
    McKetin R, Dean OM, Turner A, Kelly PJ, Quinn B, et al. 2021.. N-acetylcysteine (NAC) for methamphetamine dependence: a randomised controlled trial. . eClinicalMedicine 38::101005
    [Crossref] [Google Scholar]
  63. 63.
    Moran MM, McFarland K, Melendez RI, Kalivas PW, Seamans JK. 2005.. Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. . J. Neurosci. 25::638993
    [Crossref] [Google Scholar]
  64. 64.
    Li SH, Abd-Elrahman KS, Ferguson SSG. 2022.. Targeting mGluR2/3 for treatment of neurodegenerative and neuropsychiatric diseases. . Pharmacol. Ther. 239::108275
    [Crossref] [Google Scholar]
  65. 65.
    Mihov Y, Hasler G. 2016.. Negative allosteric modulators of metabotropic glutamate receptors subtype 5 in addiction: a therapeutic window. . Int. J. Neuropsychopharmacol. 19::pyw002
    [Crossref] [Google Scholar]
  66. 66.
    Gobin C, Schwendt M. 2020.. The cognitive cost of reducing relapse to cocaine-seeking with mGlu5 allosteric modulators. . Psychopharmacology 237::11525
    [Crossref] [Google Scholar]
  67. 67.
    Murray CH, Christian DT, Milovanovic M, Loweth JA, Hwang EK, et al. 2021. mGlu5 function in the nucleus accumbens core during the incubation of methamphetamine craving. . Neuropharmacology 186::108452
    [Crossref] [Google Scholar]
  68. 68.
    Hamor PU, Knackstedt LA, Schwendt M. 2023.. The role of metabotropic glutamate receptors in neurobehavioral effects associated with methamphetamine use. . Int. Rev. Neurobiol. 168::177219
    [Crossref] [Google Scholar]
  69. 69.
    Dogra S, Conn PJ. 2022.. Metabotropic glutamate receptors as emerging targets for the treatment of schizophrenia. . Mol. Pharmacol. 101::27585
    [Crossref] [Google Scholar]
  70. 70.
    Fourgeaud L, Mato S, Bouchet D, Hemar A, Worley PF, Manzoni OJ. 2004.. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. . J. Neurosci. 24::693945
    [Crossref] [Google Scholar]
  71. 71.
    Kaczmarek KT, Protokowicz K, Kaczmarek L. 2024.. Matrix metalloproteinase-9: a magic drug target in neuropsychiatry?. J. Neurochem. 168 (9):184253
    [Crossref] [Google Scholar]
  72. 72.
    Wolf ME, Tseng KY. 2012.. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: when, how, and why?. Front. Mol. Neurosci. 5::72
    [Crossref] [Google Scholar]
  73. 73.
    Loweth JA, Scheyer AF, Milovanovic M, LaCrosse AL, Flores-Barrera E, et al. 2014.. Synaptic depression via mGluR1 positive allosteric modulation suppresses cue-induced cocaine craving. . Nat. Neurosci. 17::7380
    [Crossref] [Google Scholar]
  74. 74.
    Kawa AB, Hwang EK, Funke JR, Zhou H, Costa-Mattioli M, Wolf ME. 2022.. Positive allosteric modulation of mGlu1 reverses cocaine-induced behavioral and synaptic plasticity through the integrated stress response and oligophrenin-1. . Biol. Psychiatry 92::87179
    [Crossref] [Google Scholar]
  75. 75.
    Scheyer AF, Loweth JA, Christian DT, Uejima J, Rabei R, et al. 2016.. AMPA receptor plasticity in accumbens core contributes to incubation of methamphetamine craving. . Biol. Psychiatry 80::66170
    [Crossref] [Google Scholar]
  76. 76.
    Funke JR, Hwang EK, Wunsch AM, Baker R, Engeln KA, et al. 2023.. Persistent neuroadaptations in the nucleus accumbens core accompany incubation of methamphetamine craving in male and female rats. . eNeuro 10::ENEURO.0480-22.2023
    [Crossref] [Google Scholar]
  77. 77.
    Bariselli S, Fobbs WC, Creed MC, Kravitz AV. 2019.. A competitive model for striatal action selection. . Brain Res. 1713::7079
    [Crossref] [Google Scholar]
  78. 78.
    Allichon MC, Ortiz V, Pousinha P, Andrianarivelo A, Petitbon A, et al. 2021.. Cell-type-specific adaptions in striatal medium-sized spiny neurons and their roles in behavioral responses to drugs of abuse. . Front. Synaptic Neurosci. 13::799274
    [Crossref] [Google Scholar]
  79. 79.
    Burke DA, Rotstein HG, Alvarez VA. 2017.. Striatal local circuitry: a new framework for lateral inhibition. . Neuron 96::26784
    [Crossref] [Google Scholar]
  80. 80.
    Hwang E-K, Wunch AM, Wolf ME. 2024.. Retinoic acid-mediated homeostatic plasticity drives cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation of cocaine craving. . bioRxiv 2024.09.12.611703. https://doi.org/10.1101/2024.09.12.611703
  81. 81.
    Loweth JA, Tseng KY, Wolf ME. 2013.. Using metabotropic glutamate receptors to modulate cocaine's synaptic and behavioral effects: mGluR1 finds a niche. . Curr. Opin. Neurobiol. 23::5006
    [Crossref] [Google Scholar]
  82. 82.
    Murray CH, Loweth JA, Milovanovic M, Stefanik MT, Caccamise AJ, et al. 2019.. AMPA receptor and metabotropic glutamate receptor 1 adaptations in the nucleus accumbens core during incubation of methamphetamine craving. . Neuropsychopharmacology 44::153441
    [Crossref] [Google Scholar]
  83. 83.
    Christian DT, Stefanik MT, Bean LA, Loweth JA, Wunsch AM, et al. 2021.. GluN3-containing NMDA receptors in the rat nucleus accumbens core contribute to incubation of cocaine craving. . J. Neurosci. 41::826277
    [Crossref] [Google Scholar]
  84. 84.
    Yuan T, Mameli M, O'Connor EC, Dey PN, Verpelli C, et al. 2013.. Expression of cocaine-evoked synaptic plasticity by GluN3A-containing NMDA receptors. . Neuron 80::102538
    [Crossref] [Google Scholar]
  85. 85.
    Creed M, Kaufling J, Fois GR, Jalabert M, Yuan T, et al. 2016.. Cocaine exposure enhances the activity of ventral tegmental area dopamine neurons via calcium-impermeable NMDARs. . J. Neurosci. 36::1075968
    [Crossref] [Google Scholar]
  86. 86.
    Wong B, Zimbelman AR, Milovanovic M, Wolf ME, Stefanik MT. 2022.. GluA2-lacking AMPA receptors in the nucleus accumbens core and shell contribute to the incubation of oxycodone craving in male rats. . Addict. Biol. 27::e13237
    [Crossref] [Google Scholar]
  87. 87.
    Turrigiano GG, Nelson SB. 2004.. Homeostatic plasticity in the developing nervous system. . Nat. Rev. Neurosci. 5::97107
    [Crossref] [Google Scholar]
  88. 88.
    Boudreau AC, Wolf ME. 2005.. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. . J. Neurosci. 25::914451
    [Crossref] [Google Scholar]
  89. 89.
    Sun X, Wolf ME. 2009.. Nucleus accumbens neurons exhibit synaptic scaling that is occluded by repeated dopamine pre-exposure. . Eur. J. Neurosci. 30::53950
    [Crossref] [Google Scholar]
  90. 90.
    Chen L, Lau AG, Sarti F. 2014.. Synaptic retinoic acid signaling and homeostatic synaptic plasticity. . Neuropharmacology 78::312
    [Crossref] [Google Scholar]
  91. 91.
    Scheyer AF, Wolf ME, Tseng KY. 2014.. A protein synthesis-dependent mechanism sustains calcium-permeable AMPA receptor transmission in nucleus accumbens synapses during withdrawal from cocaine self-administration. . J. Neurosci. 34::3095100
    [Crossref] [Google Scholar]
  92. 92.
    Werner CT, Stefanik MT, Milovanovic M, Caccamise A, Wolf ME. 2018.. Protein translation in the nucleus accumbens is dysregulated during cocaine withdrawal and required for expression of incubation of cocaine craving. . J. Neurosci. 38::268397
    [Crossref] [Google Scholar]
  93. 93.
    Stefanik MT, Milovanovic M, Werner CT, Spainhour JCG, Wolf ME. 2018.. Withdrawal from cocaine self-administration alters the regulation of protein translation in the nucleus accumbens. . Biol. Psychiatry 84::22332
    [Crossref] [Google Scholar]
  94. 94.
    Wunsch AM, Hwang E-K, Funke JR, Baker R, Moutier A, et al. 2024.. Retinoic acid-mediated homeostatic plasticity in the nucleus accumbens core contributes to incubation of cocaine craving. . Psychopharmacology 241::19832001
    [Crossref] [Google Scholar]
  95. 95.
    Nicolas C, Tauber C, Lepelletier FX, Chalon S, Belujon P, et al. 2017.. Longitudinal changes in brain metabolic activity after withdrawal from escalation of cocaine self-administration. . Neuropsychopharmacology 42::198190
    [Crossref] [Google Scholar]
  96. 96.
    Ngbokoli ML, Douton JE, Carelli RM. 2023.. Prelimbic cortex and nucleus accumbens core resting state signaling dynamics as a biomarker for cocaine seeking behaviors. . Addict. Neurosci. 7::100097
    [Crossref] [Google Scholar]
  97. 97.
    Loweth JA, Reimers JM, Caccamise A, Stefanik MT, Woo KKY, et al. 2019.. mGlu1 tonically regulates levels of calcium-permeable AMPA receptors in cultured nucleus accumbens neurons through retinoic acid signaling and protein translation. . Eur. J. Neurosci. 50::2590601
    [Crossref] [Google Scholar]
  98. 98.
    Ferrario CR, Goussakov I, Stutzmann GE, Wolf ME. 2012.. Withdrawal from cocaine self-administration alters NMDA receptor-mediated Ca2+ entry in nucleus accumbens dendritic spines. . PLOS ONE 7::e40898
    [Crossref] [Google Scholar]
  99. 99.
    Wright WJ, Dong Y. 2020.. Psychostimulant-induced adaptations in nucleus accumbens glutamatergic transmission. . Cold Spring Harb. Perspect. Med. 10::a039255
    [Crossref] [Google Scholar]
  100. 100.
    Zinsmaier AK, Dong Y, Huang YH. 2022.. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. . Mol. Psychiatry 27::66986
    [Crossref] [Google Scholar]
  101. 101.
    Ma YY, Lee BR, Wang X, Guo C, Liu L, et al. 2014.. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. . Neuron 83::145367
    [Crossref] [Google Scholar]
  102. 102.
    Neumann PA, Wang Y, Yan Y, Wang Y, Ishikawa M, et al. 2016.. Cocaine-induced synaptic alterations in thalamus to nucleus accumbens projection. . Neuropsychopharmacology 41::2399410
    [Crossref] [Google Scholar]
  103. 103.
    Wright WJ, Dong Y. 2021.. Silent synapses in cocaine-associated memory and beyond. . J. Neurosci. 41::927585
    [Crossref] [Google Scholar]
  104. 104.
    Wang J, Ishikawa M, Yang Y, Otaka M, Kim JY, et al. 2018.. Cascades of homeostatic dysregulation promote incubation of cocaine craving. . J. Neurosci. 38::431628
    [Crossref] [Google Scholar]
  105. 105.
    He Y, Wang J, Li KL, Wang YQ, Freyberg Z, Dong Y. 2023.. Membrane excitability of nucleus accumbens neurons gates the incubation of cocaine craving. . Neuropsychopharmacology 48::131827
    [Crossref] [Google Scholar]
  106. 106.
    Ortinski PI, Vassoler FM, Carlson GC, Pierce RC. 2012.. Temporally dependent changes in cocaine-induced synaptic plasticity in the nucleus accumbens shell are reversed by D1-like dopamine receptor stimulation. . Neuropsychopharmacology 37::167182
    [Crossref] [Google Scholar]
  107. 107.
    Pascoli V, Terrier J, Espallergues J, Valjent E, O'Connor EC, Luscher C. 2014.. Contrasting forms of cocaine-evoked plasticity control components of relapse. . Nature 509::45964
    [Crossref] [Google Scholar]
  108. 108.
    Terrier J, Luscher C, Pascoli V. 2015.. Cell-type specific insertion of GluA2-lacking AMPARs with cocaine exposure leading to sensitization, cue-induced seeking, and incubation of craving. . Neuropsychopharmacology 41::177989
    [Crossref] [Google Scholar]
  109. 109.
    Wright WJ, Graziane NM, Neumann PA, Hamilton PJ, Cates HM, et al. 2020.. Silent synapses dictate cocaine memory destabilization and reconsolidation. . Nat. Neurosci. 23::3246
    [Crossref] [Google Scholar]
  110. 110.
    Ruan H, Yao WD. 2021.. Loss of mGluR1-LTD following cocaine exposure accumulates Ca2+-permeable AMPA receptors and facilitates synaptic potentiation in the prefrontal cortex. . J. Neurogenet. 35::35869
    [Crossref] [Google Scholar]
  111. 111.
    Hearing MC, Jedynak J, Ebner SR, Ingebretson A, Asp AJ, et al. 2016.. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. . PNAS 113::75762
    [Crossref] [Google Scholar]
  112. 112.
    Zhu Y, Wienecke CF, Nachtrab G, Chen X. 2016.. A thalamic input to the nucleus accumbens mediates opiate dependence. . Nature 530::21922
    [Crossref] [Google Scholar]
  113. 113.
    Paniccia JE, Vollmer KM, Green LM, Grant RI, Winston KT, et al. 2024.. Restoration of a paraventricular thalamo-accumbal behavioral suppression circuit prevents reinstatement of heroin seeking. . Neuron 112::77285
    [Crossref] [Google Scholar]
  114. 114.
    Woodward Hopf F, Mangieri RA. 2018.. Do alcohol-related AMPA-type glutamate receptor adaptations promote intake?. Handb. Exp. Pharmacol. 248::15786
    [Crossref] [Google Scholar]
  115. 115.
    Marty VN, Spigelman I. 2012.. Long-lasting alterations in membrane properties, K+ currents, and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence. . Front. Neurosci. 6::86
    [Crossref] [Google Scholar]
  116. 116.
    Faccidomo S, Cogan ES, Hon OJ, Hoffman JL, Saunders BL, et al. 2021.. Calcium-permeable AMPA receptor activity and GluA1 trafficking in the basolateral amygdala regulate operant alcohol self-administration. . Addict. Biol. 26::e13049
    [Crossref] [Google Scholar]
  117. 117.
    Garcia-Barrantes PM, Cho HP, Niswender CM, Byers FW, Locuson CW, et al. 2015.. Development of novel, CNS penetrant positive allosteric modulators for the metabotropic glutamate receptor subtype 1 (mGlu1), based on an N-(3-chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide scaffold, that potentiate wild type and mutant mGlu1 receptors found in schizophrenics. . J. Med. Chem. 58::795971
    [Crossref] [Google Scholar]
  118. 118.
    Ngomba RT, Santolini I, Biagioni F, Molinaro G, Simonyi A, et al. 2011.. Protective role for type-1 metabotropic glutamate receptors against spike and wave discharges in the WAG/Rij rat model of absence epilepsy. . Neuropharmacology 60::128191
    [Crossref] [Google Scholar]
  119. 119.
    Notartomaso S, Zappulla C, Biagioni F, Cannella M, Bucci D, et al. 2013.. Pharmacological enhancement of mGlu1 metabotropic glutamate receptors causes a prolonged symptomatic benefit in a mouse model of spinocerebellar ataxia type 1. . Mol. Brain 6::48
    [Crossref] [Google Scholar]
  120. 120.
    D'Amore V, Santolini I, Celli R, Lionetto L, De Fusco A, et al. 2014.. Head-to head comparison of mGlu1 and mGlu5 receptor activation in chronic treatment of absence epilepsy in WAG/Rij rats. . Neuropharmacology 85::91103
    [Crossref] [Google Scholar]
  121. 121.
    Fazio F, Notartomaso S, Aronica E, Storto M, Battaglia G, et al. 2008.. Switch in the expression of mGlu1 and mGlu5 metabotropic glutamate receptors in the cerebellum of mice developing experimental autoimmune encephalomyelitis and in autoptic cerebellar samples from patients with multiple sclerosis. . Neuropharmacology 55::49199
    [Crossref] [Google Scholar]
  122. 122.
    Yohn SE, Foster DJ, Covey DP, Moehle MS, Galbraith J, et al. 2018.. Activation of the mGlu1 metabotropic glutamate receptor has antipsychotic-like effects and is required for efficacy of M4 muscarinic receptor allosteric modulators. . Mol. Psychiatry 25::278699
    [Crossref] [Google Scholar]
  123. 123.
    Yu J, Yan Y, Li KL, Wang Y, Huang YH, et al. 2017.. Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration. . PNAS 114::E875059
    [Google Scholar]
  124. 124.
    Manz KM, Ghose D, Turner BD, Taylor A, Becker J, et al. 2020.. Calcium-permeable AMPA receptors promote endocannabinoid signaling at parvalbumin interneuron synapses in the nucleus accumbens core. . Cell Rep. 32::107971
    [Crossref] [Google Scholar]
  125. 125.
    Szumlinski KK, Shin CB. 2018.. Kinase interest you in treating incubated cocaine-craving? A hypothetical model for treatment intervention during protracted withdrawal from cocaine. . Genes Brain Behav. 17::e12440
    [Crossref] [Google Scholar]
  126. 126.
    Al Noman MA, Cuellar RAD, Kyzer JL, Chung SSW, Cheryala N, et al. 2023.. Strategies for developing retinoic acid receptor alpha-selective antagonists as novel agents for male contraception. . Eur. J. Med. Chem. 261::115821
    [Crossref] [Google Scholar]
  127. 127.
    Zhang Y, Kong F, Crofton EJ, Dragosljvich SN, Sinha M, et al. 2016.. Transcriptomics of environmental enrichment reveals a role for retinoic acid signaling in addiction. . Front. Mol. Neurosci. 9::119
    [Google Scholar]
  128. 128.
    Powell GL, Vannan A, Bastle RM, Wilson MA, Dell'Orco M, et al. 2020.. Environmental enrichment during forced abstinence from cocaine self-administration opposes gene network expression changes associated with the incubation effect. . Sci. Rep. 10::11291
    [Crossref] [Google Scholar]
  129. 129.
    Kreple CJ, Lu Y, Taugher RJ, Schwager-Gutman AL, Du J, et al. 2014.. Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. . Nat. Neurosci. 17::108391
    [Crossref] [Google Scholar]
  130. 130.
    Gupta SC, Taugher-Hebl RJ, Hardie JB, Fan R, LaLumiere RT, Wemmie JA. 2023.. Effects of acid-sensing ion channel-1A (ASIC1A) on cocaine-induced synaptic adaptations. . Front. Physiol. 14::1191275
    [Crossref] [Google Scholar]
  131. 131.
    Gupta SC, Ghobbeh A, Taugher-Hebl RJ, Fan R, Hardie JB, et al. 2022.. Carbonic anhydrase 4 disruption decreases synaptic and behavioral adaptations induced by cocaine withdrawal. . Sci. Adv. 8::eabq5058
    [Crossref] [Google Scholar]
  132. 132.
    Guo R, Vaughan DT, Almeida Rojo AL, Huang YH. 2023.. Sleep-mediated regulation of reward circuits: implications in substance use disorders. . Neuropsychopharmacology 48::6178
    [Crossref] [Google Scholar]
  133. 133.
    Chen B, Wang Y, Liu X, Liu Z, Dong Y, Huang YH. 2015.. Sleep regulates incubation of cocaine craving. . J. Neurosci. 35::1330010
    [Crossref] [Google Scholar]
  134. 134.
    Guo R, Wang Y, Yan R, Chen B, Ding W, et al. 2022.. Rapid eye movement sleep engages melanin-concentrating hormone neurons to reduce cocaine seeking. . Biol. Psychiatry 92::88094
    [Crossref] [Google Scholar]
  135. 135.
    Wang Y, Guo R, Chen B, Rahman T, Cai L, et al. 2021.. Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. . Mol. Psychiatry 26::315268
    [Crossref] [Google Scholar]
  136. 136.
    Sikora M, Nicolas C, Istin M, Jaafari N, Thiriet N, Solinas M. 2018.. Generalization of effects of environmental enrichment on seeking for different classes of drugs of abuse. . Behav. Brain Res. 341::10913
    [Crossref] [Google Scholar]
  137. 137.
    Thiel KJ, Painter MR, Pentkowski NS, Mitroi D, Crawford CA, Neisewander JL. 2012.. Environmental enrichment counters cocaine abstinence-induced stress and brain reactivity to cocaine cues but fails to prevent the incubation effect. . Addict. Biol. 17::36577
    [Crossref] [Google Scholar]
  138. 138.
    Chauvet C, Goldberg SR, Jaber M, Solinas M. 2012.. Effects of environmental enrichment on the incubation of cocaine craving. . Neuropharmacology 63::63541
    [Crossref] [Google Scholar]
  139. 139.
    Ma YY, Wang X, Huang Y, Marie H, Nestler EJ, et al. 2016.. Re-silencing of silent synapses unmasks anti-relapse effects of environmental enrichment. . PNAS 113::508994
    [Crossref] [Google Scholar]
  140. 140.
    Holmes SE, Abdallah C, Esterlis I. 2023.. Imaging synaptic density in depression. . Neuropsychopharmacology 48::18690
    [Crossref] [Google Scholar]
  141. 141.
    Appelbaum LG, Shenasa MA, Stolz L, Daskalakis Z. 2023.. Synaptic plasticity and mental health: methods, challenges and opportunities. . Neuropsychopharmacology 48::11320
    [Crossref] [Google Scholar]
  142. 142.
    Creed M, Pascoli VJ, Luscher C. 2015.. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. . Science 347::65964
    [Crossref] [Google Scholar]
  143. 143.
    Swinford-Jackson SE, Pierce RC. 2023.. Deep brain stimulation for psychostimulant use disorders. . J. Neural Transm. 131::46973
    [Crossref] [Google Scholar]
  144. 144.
    Kavalali ET, Monteggia LM. 2023.. Rapid homeostatic plasticity and neuropsychiatric therapeutics. . Neuropsychopharmacology 48::5460
    [Crossref] [Google Scholar]
  145. 145.
    Parvaz MA, Moeller SJ, Goldstein RZ. 2016.. Incubation of cue-induced craving in adults addicted to cocaine measured by electroencephalography. . JAMA Psychiatry 73::112734
    [Crossref] [Google Scholar]
  146. 146.
    Wang G, Shi J, Chen N, Xu L, Li J, et al. 2013.. Effects of length of abstinence on decision-making and craving in methamphetamine abusers. . PLOS ONE 8::e68791
    [Crossref] [Google Scholar]
  147. 147.
    Bedi G, Preston KL, Epstein DH, Heishman SJ, Marrone GF, et al. 2011.. Incubation of cue-induced cigarette craving during abstinence in human smokers. . Biol. Psychiatry 69::70811
    [Crossref] [Google Scholar]
  148. 148.
    Li P, Wu P, Xin X, Fan YL, Wang GB, et al. 2015.. Incubation of alcohol craving during abstinence in patients with alcohol dependence. . Addict. Biol. 20::51322
    [Crossref] [Google Scholar]
  149. 149.
    Bergeria CL, Gipson CD, Smith KE, Stoops WW, Strickland JC. 2024.. Opioid craving does not incubate over time in inpatient or outpatient treatment studies: Is the preclinical incubation of craving model lost in translation?. Neurosci. Biobehav. Rev. 160::105618
    [Crossref] [Google Scholar]
  150. 150.
    McCutcheon JE, Loweth JA, Ford KA, Marinelli M, Wolf ME, Tseng KY. 2011.. Group I mGluR activation reverses cocaine-induced accumulation of calcium-permeable AMPA receptors in nucleus accumbens synapses via a protein kinase C-dependent mechanism. . J. Neurosci. 31::1453641
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-061724-080548
Loading
/content/journals/10.1146/annurev-pharmtox-061724-080548
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error