1932

Abstract

Micrometer-sized compartments play significant roles in driving heterogeneous transformations within atmospheric and biochemical systems as well as providing vehicles for drug delivery and novel reaction environments for the synthesis of industrial chemicals. Many reports now indicate that reaction kinetics are accelerated under microconfinement, for example, in sprays, thin films, droplets, aerosols, and emulsions. These observations are dramatic, posing a challenge to our understanding of chemical reaction mechanisms with potentially significant practical consequences for predicting the complex chemistry in natural systems. Here we introduce the idea of kinetic confinement, which is intended to provide a conceptual backdrop for understanding when and why microdroplet reaction kinetics differ from their macroscale analogs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052623-120718
2024-06-28
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-052623-120718.html?itemId=/content/journals/10.1146/annurev-physchem-052623-120718&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kolb CE, Cox RA, Abbatt JPD, Ammann M, Davis EJ, et al. 2010.. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. . Atmos. Chem. Phys. 10::10561605
    [Crossref] [Google Scholar]
  2. 2.
    Worsnop DR, Morris JW, Shi Q, Davidovits P, Kolb CE. 2002.. A chemical kinetic model for reactive transformations of aerosol particles. . Geophys. Res. Lett. 29::57
    [Crossref] [Google Scholar]
  3. 3.
    Kolb CE, Worsnop DR. 2012.. Chemistry and composition of atmospheric aerosol particles. . Annu. Rev. Phys. Chem. 63::47191
    [Crossref] [Google Scholar]
  4. 4.
    Wilson KR, Prophet AM, Willis MD. 2022.. A kinetic model for predicting trace gas uptake and reaction. . J. Phys. Chem. A 126::7291308
    [Crossref] [Google Scholar]
  5. 5.
    Shiraiwa M, Pfrang C, Pöschl U. 2010.. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone. . Atmos. Chem. Phys. 10::367391
    [Crossref] [Google Scholar]
  6. 6.
    Zhong J, Kumar M, Anglada JM, Martins-Costa MTC, Ruiz-Lopez MF, et al. 2019.. Atmospheric spectroscopy and photochemistry at environmental water interfaces. . Annu. Rev. Phys. Chem. 70::4569
    [Crossref] [Google Scholar]
  7. 7.
    Wei Z, Li Y, Cooks RG, Yan X. 2020.. Accelerated reaction kinetics in microdroplets: overview and recent developments. . Annu. Rev. Phys. Chem. 71::3151
    [Crossref] [Google Scholar]
  8. 8.
    Yan X. 2021.. Emerging microdroplet chemistry for synthesis and analysis. . Int. J. Mass. Spectrom. 468::116639
    [Crossref] [Google Scholar]
  9. 9.
    Kafeenah H, Jen HH, Chen SH. 2022.. Microdroplet mass spectrometry: accelerating reaction and application. . Electrophoresis 43::7481
    [Crossref] [Google Scholar]
  10. 10.
    Banerjee S, Gnanamani E, Yan X, Zare RN. 2017.. Can all bulk-phase reactions be accelerated in microdroplets?. Analyst 142::1399402
    [Crossref] [Google Scholar]
  11. 11.
    Yan X, Bain RM, Cooks RG. 2016.. Organic reactions in microdroplets: reaction acceleration revealed by mass spectrometry. . Angew. Chem. Int. Ed. 55::1296072
    [Crossref] [Google Scholar]
  12. 12.
    Lee JK, Banerjee S, Nam HG, Zare RN. 2015.. Acceleration of reaction in charged microdroplets. . Q. Rev. Biophys. 48::43744
    [Crossref] [Google Scholar]
  13. 13.
    Grommet AB, Feller M, Klajn R. 2020.. Chemical reactivity under nanoconfinement. . Nat. Nanotechnol. 15::25671
    [Crossref] [Google Scholar]
  14. 14.
    Park HG, Jung Y. 2014.. Carbon nanofluidics of rapid water transport for energy applications. . Chem. Soc. Rev. 43::56576
    [Crossref] [Google Scholar]
  15. 15.
    Mastalerz M. 2018.. Porous shape-persistent organic cage compounds of different size, geometry, and function. . Acc. Chem. Res. 51::241122
    [Crossref] [Google Scholar]
  16. 16.
    Pestana LR, Hao H, Head-Gordon T. 2020.. Diels–Alder reactions in water are determined by microsolvation. . Nano Lett. 20::60611
    [Crossref] [Google Scholar]
  17. 17.
    Muñoz-Santiburcio D, Marx D. 2017.. Chemistry in nanoconfined water. . Chem. Sci. 8::344452
    [Crossref] [Google Scholar]
  18. 18.
    Goch W, Bal W. 2020.. Stochastic or not? Method to predict and quantify the stochastic effects on the association reaction equilibria in nanoscopic systems. . J. Phys. Chem. A 124::142128
    [Crossref] [Google Scholar]
  19. 19.
    Shon MJ, Cohen AE. 2012.. Mass action at the single-molecule level. . J. Am. Chem. Soc. 134::1461823
    [Crossref] [Google Scholar]
  20. 20.
    Maioli M, Varadi G, Kurdi R, Caglioti L, Pályi G. 2016.. Limits of the classical concept of concentration. . J. Phys. Chem. B 120::743845
    [Crossref] [Google Scholar]
  21. 21.
    Szymanski R, Sosnowski S, Maślanka Ł. 2016.. Statistical effects related to low numbers of reacting molecules analyzed for a reversible association reaction A + B = C in ideally dispersed systems: an apparent violation of the law of mass action. . J. Chem. Phys. 144::124112
    [Crossref] [Google Scholar]
  22. 22.
    Khodorkovsky Y, Rubinovich L, Polak M. 2019.. Stochastic kinetics and equilibrium of nanoconfined reactions. . J. Phys. Chem. C 123::2494956
    [Crossref] [Google Scholar]
  23. 23.
    Vaida V. 2017.. Prebiotic phosphorylation enabled by microdroplets. . PNAS 114::1235961
    [Crossref] [Google Scholar]
  24. 24.
    Nam I, Lee JK, Nam HG, Zare RN. 2017.. Abiotic production of sugar phosphates and uridine ribonucleoside in aqueous microdroplets. . PNAS 114::12396400
    [Crossref] [Google Scholar]
  25. 25.
    Nam I, Nam HG, Zare RN. 2018.. Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. . PNAS 115::3640
    [Crossref] [Google Scholar]
  26. 26.
    Holden DT, Morato NM, Cooks RG. 2022.. Aqueous microdroplets enable abiotic synthesis and chain extension of unique peptide isomers from free amino acids. . PNAS 119::e2212642119
    [Crossref] [Google Scholar]
  27. 27.
    Jacobs MI, Davis RD, Rapf RJ, Wilson KR. 2019.. Studying chemistry in micro-compartments by separating droplet generation from ionization. . J. Am. Soc. Mass Spectrom. 30::33943
    [Crossref] [Google Scholar]
  28. 28.
    Rovelli G, Jacobs MI, Willis MD, Rapf RJ, Prophet AM, Wilson KR. 2020.. A critical analysis of electrospray techniques for the determination of accelerated rates and mechanisms of chemical reactions in droplets. . Chem. Sci. 11::1302643
    [Crossref] [Google Scholar]
  29. 29.
    Chen CJ, Williams ER. 2023.. The role of analyte concentration in accelerated reaction rates in evaporating droplets. . Chem. Sci. 14::470413
    [Crossref] [Google Scholar]
  30. 30.
    Gallo A Jr., Farinha ASF, Dinis M, Emwas A-H, Santana A, et al. 2019.. The chemical reactions in electrosprays of water do not always correspond to those at the pristine air–water interface. . Chem. Sci. 10::256677
    [Crossref] [Google Scholar]
  31. 31.
    Wilkinson DJ. 2009.. Stochastic modelling for quantitative description of heterogeneous biological systems. . Nat. Rev. Genet. 10::12233
    [Crossref] [Google Scholar]
  32. 32.
    McAdams HH, Arkin A. 1999.. It's a noisy business! Genetic regulation at the nanomolar scale. . Trends Genet. 15::6569
    [Crossref] [Google Scholar]
  33. 33.
    Symes R, Sayer RM, Reid JP. 2004.. Cavity enhanced droplet spectroscopy: principles, perspectives and prospects. . Phys. Chem. Chem. Phys. 6::47487
    [Crossref] [Google Scholar]
  34. 34.
    Corral Arroyo P, David G, Alpert PA, Parmentier EA, Ammann M, Signorell R. 2022.. Amplification of light within aerosol particles accelerates in-particle photochemistry. . Science 376::29396
    [Crossref] [Google Scholar]
  35. 35.
    Li K, Gong K, Liu J, Ohnoutek L, Ao J, et al. 2022.. Significantly accelerated photochemical and photocatalytic reactions in microdroplets. . Cell Rep. Phys. Sci. 3::100917
    [Crossref] [Google Scholar]
  36. 36.
    Signorell R, Goldmann M, Yoder BL, Bodi A, Chasovskikh E, et al. 2016.. Nanofocusing, shadowing, and electron mean free path in the photoemission from aerosol droplets. . Chem. Phys. Lett. 658::16
    [Crossref] [Google Scholar]
  37. 37.
    Cremer JW, Thaler KM, Haisch C, Signorell R. 2016.. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. . Nat. Commun. 7::10941
    [Crossref] [Google Scholar]
  38. 38.
    Chen S, Wan Q, Badu-Tawiah AK. 2016.. Picomole-scale real-time photoreaction screening: discovery of the visible-light-promoted dehydrogenation of tetrahydroquinolines under ambient conditions. . Angew. Chem. Int. Ed. 55::934549
    [Crossref] [Google Scholar]
  39. 39.
    Wilson KR, Zou S, Shu J, Rühl E, Leone SR, et al. 2007.. Size-dependent angular distributions of low-energy photoelectrons emitted from NaCl nanoparticles. . Nano Lett. 7::201419
    [Crossref] [Google Scholar]
  40. 40.
    Berg MJ, Wilson KR, Sorensen CM, Chakrabarti A, Ahmed M. 2012.. Discrete dipole approximation for low-energy photoelectron emission from NaCl nanoparticles. . J. Quant. Spectrosc. Radiat. Transf. 113::25965
    [Crossref] [Google Scholar]
  41. 41.
    Ban L, Yoder BL, Signorell R. 2020.. Photoemission from free particles and droplets. . Annu. Rev. Phys. Chem. 71::31534
    [Crossref] [Google Scholar]
  42. 42.
    Willis MD, Wilson KR. 2022.. Coupled interfacial and bulk kinetics govern the timescales of multiphase ozonolysis reactions. . J. Phys. Chem. A 126::49915010
    [Crossref] [Google Scholar]
  43. 43.
    Houle FA, Miles REH, Pollak CJ, Reid JP. 2021.. A purely kinetic description of the evaporation of water droplets. . J. Chem. Phys. 154::054501
    [Crossref] [Google Scholar]
  44. 44.
    Heine N, Houle FA, Wilson KR. 2017.. Connecting the elementary reaction pathways of Criegee intermediates to the chemical erosion of squalene interfaces during ozonolysis. . Environ. Sci. Technol. 51::1374048
    [Crossref] [Google Scholar]
  45. 45.
    Houle FA, Hinsberg WD, Wilson KR. 2015.. Oxidation of a model alkane aerosol by OH radical: the emergent nature of reactive uptake. . Phys. Chem. Chem. Phys. 17::441223
    [Crossref] [Google Scholar]
  46. 46.
    Liu MJ, Wiegel AA, Wilson KR, Houle FA. 2017.. Aerosol fragmentation driven by coupling of acid-base and free-radical chemistry in the heterogeneous oxidation of aqueous citric acid by OH radicals. . J. Phys. Chem. A 121::585670
    [Crossref] [Google Scholar]
  47. 47.
    Wiegel AA, Wilson KR, Hinsberg WD, Houle FA. 2015.. Stochastic methods for aerosol chemistry: a compact molecular description of functionalization and fragmentation in the heterogeneous oxidation of squalane aerosol by OH radicals. . Phys. Chem. Chem. Phys. 17::4398411
    [Crossref] [Google Scholar]
  48. 48.
    Wilson KR, Prophet AM, Rovelli G, Willis MD, Rapf RJ, Jacobs MI. 2020.. A kinetic description of how interfaces accelerate reactions in micro-compartments. . Chem. Sci. 11::853345
    [Crossref] [Google Scholar]
  49. 49.
    Vieceli J, Roeselová M, Potter N, Dang LX, Garrett BC, Tobias DJ. 2005.. Molecular dynamics simulations of atmospheric oxidants at the air–water interface: solvation and accommodation of OH and O3. . J. Phys. Chem. B 109::1587692
    [Crossref] [Google Scholar]
  50. 50.
    Vacha R, Slavicek P, Mucha M, Finlayson-Pitts BJ, Jungwirth P. 2004.. Adsorption of atmospherically relevant gases at the air/water interface: free energy profiles of aqueous solvation of N2, O2, O3, OH, H2O, HO2, and H2O2. . J. Phys. Chem. A 108::1157379
    [Crossref] [Google Scholar]
  51. 51.
    Langmuir I. 1918.. The adsorption of gases on plane surfaces of glass, mica and platinum. . J. Am. Chem. Soc. 40::1361403
    [Crossref] [Google Scholar]
  52. 52.
    Chamberlayne CF, Zare RN. 2020.. Simple model for the electric field and spatial distribution of ions in a microdroplet. . J. Chem. Phys. 152::184702
    [Crossref] [Google Scholar]
  53. 53.
    Chamberlayne CF, Zare RN. 2022.. Microdroplets can act as electrochemical cells. . J. Chem. Phys. 156::054705
    [Crossref] [Google Scholar]
  54. 54.
    Bleys G, Joos P. 1985.. Adsorption kinetics of bolaform surfactants at the air/water interface. . J. Phys. Chem. 89::102732
    [Crossref] [Google Scholar]
  55. 55.
    Jin F, Balasubramaniam R, Stebe KJ. 2004.. Surfactant adsorption to spherical particles: the intrinsic length scale governing the shift from diffusion to kinetic-controlled mass transfer. . J. Adhes. 80::77396
    [Crossref] [Google Scholar]
  56. 56.
    Zhou Z, Yan X, Lai Y-H, Zare RN. 2018.. Fluorescence polarization anisotropy in microdroplets. . J. Phys. Chem. Lett. 9::292832
    [Crossref] [Google Scholar]
  57. 57.
    Bzdek BR, Reid JP, Malila J, Prisle NL. 2020.. The surface tension of surfactant-containing, finite volume droplets. . PNAS 117::833543
    [Crossref] [Google Scholar]
  58. 58.
    Miles REH, Glerum MWJ, Boyer HC, Walker JS, Dutcher CS, Bzdek BR. 2019.. Surface tensions of picoliter droplets with sub-millisecond surface age. . J. Phys. Chem. A 123::302129
    [Crossref] [Google Scholar]
  59. 59.
    Von Szyszkowski B. 1908.. Experimentelle Studien über kapillare Eigenschaften der wässerigen Lösungen von Fettsäuren. . Z. Phys. Chem. 64::385414
    [Crossref] [Google Scholar]
  60. 60.
    Alvarez NJ, Walker LM, Anna SL. 2010.. Diffusion-limited adsorption to a spherical geometry: the impact of curvature and competitive time scales. . Phys. Rev. E 82::011604
    [Crossref] [Google Scholar]
  61. 61.
    Kuramoto Y. 1974.. Effects of diffusion on the fluctuations in open chemical systems. . Prog. Theor. Phys. 52::71113
    [Crossref] [Google Scholar]
  62. 62.
    Houle FA, Wiegel AA, Wilson KR. 2018.. Predicting aerosol reactivity across scales: from the laboratory to the atmosphere. . Environ. Sci. Technol. 52::1377481
    [Crossref] [Google Scholar]
  63. 63.
    Limmer DT, Götz AW, Bertram TH, Nathanson GM. 2024.. Molecular insights into chemical reactions at aqueous aerosol interfaces. . Annu. Rev. Phys. Chem. 75::11135
    [Crossref] [Google Scholar]
  64. 64.
    Klein G, Born M. 1952.. Mean first-passage times of Brownian motion and related problems. . Proc. R. Soc. A 211::43143
    [Google Scholar]
  65. 65.
    Mondal S, Acharya S, Biswas R, Bagchi B, Zare RN. 2018.. Enhancement of reaction rate in small-sized droplets: a combined analytical and simulation study. . J. Chem. Phys. 148::244704
    [Crossref] [Google Scholar]
  66. 66.
    Hardy DA, Robinson JF, Hilditch TG, Neal E, Lemaitre P, et al. 2023.. Accurate measurements and simulations of the evaporation and trajectories of individual solution droplets. . J. Phys. Chem. B 127::341630
    [Crossref] [Google Scholar]
  67. 67.
    Qiu L, Wei Z, Nie H, Cooks RG. 2021.. Reaction acceleration promoted by partial solvation at the gas/solution interface. . ChemPlusChem 86::136265
    [Crossref] [Google Scholar]
  68. 68.
    Ruiz-López M, Martins-Costa MTC. 2022.. Disentangling reaction rate acceleration in water microdroplets. . Phys. Chem. Chem. Phys. 24::297004
    [Crossref] [Google Scholar]
  69. 69.
    Bain RM, Pulliam CJ, Thery F, Cooks RG. 2016.. Accelerated chemical reactions and organic synthesis in Leidenfrost droplets. . Angew. Chem. Int. Ed. 55::1047882
    [Crossref] [Google Scholar]
  70. 70.
    Hunt OR, Ward AD, King MD. 2015.. Heterogeneous oxidation of nitrite anion by gas-phase ozone in an aqueous droplet levitated by laser tweezers (optical trap): Is there any evidence for enhanced surface reaction?. Phys. Chem. Chem. Phys. 17::273441
    [Crossref] [Google Scholar]
  71. 71.
    Otten DE, Onorato R, Michaels R, Goodknight J, Saykally RJ. 2012.. Strong surface adsorption of aqueous sodium nitrite as an ion pair. . Chem. Phys. Lett. 519–520::4548
    [Crossref] [Google Scholar]
  72. 72.
    Brown MA, Winter B, Faubel M, Hemminger JC. 2009.. Spatial distribution of nitrate and nitrite anions at the liquid/vapor interface of aqueous solutions. . J. Am. Chem. Soc. 131::835455
    [Crossref] [Google Scholar]
  73. 73.
    Sander R. 2015.. Compilation of Henry's law constants (version 4.0) for water as solvent. . Atmos. Chem. Phys. 15::4399981
    [Crossref] [Google Scholar]
  74. 74.
    Damschen DE, Martin LR. 1983.. Aqueous aerosol oxidation of nitrous acid by O2, O3 and H2O2. . Atmos. Environ. 17::200511
    [Crossref] [Google Scholar]
  75. 75.
    Hoigné J, Bader H. 1983.. Rate constants of reactions of ozone with organic and inorganic compounds in water—II: dissociating organic compounds. . Water Res. 17::18594
    [Crossref] [Google Scholar]
  76. 76.
    Garland JA, Elzerman AW, Penkett SA. 1980.. The mechanism for dry deposition of ozone to seawater surfaces. . J. Geophys. Res. Oceans 85::748892
    [Crossref] [Google Scholar]
  77. 77.
    Liu Q, Schurter LM, Muller CE, Aloisio S, Francisco JS, Margerum DW. 2001.. Kinetics and mechanisms of aqueous ozone reactions with bromide, sulfite, hydrogen sulfite, iodide, and nitrite ions. . Inorg. Chem. 40::443642
    [Crossref] [Google Scholar]
  78. 78.
    Penkett SA. 1972.. Oxidation of SO2 and other atmospheric gases by ozone in aqueous solution. . Nat. Phys. Sci. 240::1056
    [Crossref] [Google Scholar]
  79. 79.
    Yeh HS, Wills GB. 1970.. Diffusion coefficient of sodium nitrate in aqueous solution at 25°C as a function of concentration from 0.1 to 1.0M. . J. Chem. Eng. Data 15::18789
    [Crossref] [Google Scholar]
  80. 80.
    Kang J, Lhee S, Lee JK, Zare RN, Nam HG. 2020.. Restricted intramolecular rotation of fluorescent molecular rotors at the periphery of aqueous microdroplets in oil. . Sci. Rep. 10::16859
    [Crossref] [Google Scholar]
  81. 81.
    Lifshitz C, Wu RLC, Tiernan TO, Terwilliger DT. 2008.. Negative ion–molecule reactions of ozone and their implications on the thermochemistry of O3. . J. Chem. Phys. 68::24760
    [Crossref] [Google Scholar]
  82. 82.
    Fallah-Araghi A, Meguellati K, Baret JC, El Harrak A, Mangeat T, et al. 2014.. Enhanced chemical synthesis at soft interfaces: a universal reaction-adsorption mechanism in microcompartments. . Phys. Rev. Lett. 112::028301
    [Crossref] [Google Scholar]
  83. 83.
    Karre AV, Valsaraj KT, Vasagar V. 2023.. Review of air-water interface adsorption and reactions between trace gaseous organic and oxidant compounds. . Sci. Total Environ. 873::162367
    [Crossref] [Google Scholar]
  84. 84.
    Meguellati K, Fallah-Araghi A, Baret J-C, El Harrak A, Mangeat T, et al. 2013.. Enhanced imine synthesis in water: from surfactant-mediated catalysis to host–guest mechanisms. . Chem. Commun. 49::1133234
    [Crossref] [Google Scholar]
  85. 85.
    Gong K, Ao J, Li K, Liu L, Liu Y, et al. 2023.. Imaging of pH distribution inside individual microdroplet by stimulated Raman microscopy. . PNAS 120::e2219588120
    [Crossref] [Google Scholar]
  86. 86.
    Wei H, Vejerano EP, Leng W, Huang Q, Willner MR, et al. 2018.. Aerosol microdroplets exhibit a stable pH gradient. . PNAS 115::727277
    [Crossref] [Google Scholar]
  87. 87.
    Malevanets A, Consta S. 2013.. Variation of droplet acidity during evaporation. . J. Chem. Phys. 138::184312
    [Crossref] [Google Scholar]
  88. 88.
    Huang K-H, Wei Z, Cooks RG. 2021.. Accelerated reactions of amines with carbon dioxide driven by superacid at the microdroplet interface. . Chem. Sci. 12::224250
    [Crossref] [Google Scholar]
  89. 89.
    Li M, Kan Y, Su H, Pöschl U, Parekh SH, et al. 2023.. Spatial homogeneity of pH in aerosol microdroplets. . Chemistry 9::103646
    [Crossref] [Google Scholar]
  90. 90.
    Craig RL, Peterson PK, Nandy L, Lei Z, Hossain MA, et al. 2018.. Direct determination of aerosol pH: size-resolved measurements of submicrometer and supermicrometer aqueous particles. . Anal. Chem. 90::1123239
    [Crossref] [Google Scholar]
  91. 91.
    Rindelaub JD, Craig RL, Nandy L, Bondy AL, Dutcher CS, et al. 2016.. Direct measurement of pH in individual particles via Raman microspectroscopy and variation in acidity with relative humidity. . J. Phys. Chem. A 120::91117
    [Crossref] [Google Scholar]
  92. 92.
    Coddens EM, Angle KJ, Grassian VH. 2019.. Titration of aerosol pH through droplet coalescence. . J. Phys. Chem. Lett. 10::447683
    [Crossref] [Google Scholar]
  93. 93.
    Xiong H, Lee JK, Zare RN, Min W. 2020.. Strong electric field observed at the interface of aqueous microdroplets. . J. Phys. Chem. Lett. 11::742328
    [Crossref] [Google Scholar]
  94. 94.
    Lee JK, Walker KL, Han HS, Kang J, Prinz FB, et al. 2019.. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. . PNAS 116::1929498
    [Crossref] [Google Scholar]
  95. 95.
    Lee JK, Han HS, Chaikasetsin S, Marron DP, Waymouth RM, et al. 2020.. Condensing water vapor to droplets generates hydrogen peroxide. . PNAS 117::3093441
    [Crossref] [Google Scholar]
  96. 96.
    Mehrgardi MA, Mofidfar M, Zare RN. 2022.. Sprayed water microdroplets are able to generate hydrogen peroxide spontaneously. . J. Am. Chem. Soc. 144::76069
    [Crossref] [Google Scholar]
  97. 97.
    Li K, Guo Y, Nizkorodov SA, Rudich Y, Angelaki M, et al. 2023.. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets. . PNAS 120::e2220228120
    [Crossref] [Google Scholar]
  98. 98.
    Chen B, Xia Y, He R, Sang H, Zhang W, et al. 2022.. Water–solid contact electrification causes hydrogen peroxide production from hydroxyl radical recombination in sprayed microdroplets. . PNAS 119::e2209056119
    [Crossref] [Google Scholar]
  99. 99.
    Wang M, Gao X-F, Su R, He P, Cheng Y-Y, et al. 2022.. Abundant production of reactive water radical cations under ambient conditions. . CCS Chem. 4::122431
    [Crossref] [Google Scholar]
  100. 100.
    Qiu L, Cooks RG. 2022.. Simultaneous and spontaneous oxidation and reduction in microdroplets by the water radical cation/anion pair. . Angew. Chem. Int. Ed. 61::e202210765
    [Crossref] [Google Scholar]
  101. 101.
    Ben-Amotz D. 2022.. Electric buzz in a glass of pure water. . Science 376::8001
    [Crossref] [Google Scholar]
  102. 102.
    Qiu L, Morato NM, Huang K-H, Cooks RG. 2022.. Spontaneous water radical cation oxidation at double bonds in microdroplets. . Front. Chem. 10::903774
    [Crossref] [Google Scholar]
  103. 103.
    Gallo A Jr., Musskopf NH, Liu X, Yang Z, Petry J, et al. 2022.. On the formation of hydrogen peroxide in water microdroplets. . Chem. Sci. 13::257483
    [Crossref] [Google Scholar]
  104. 104.
    Nguyen D, Lyu P, Nguyen SC. 2023.. Experimental and thermodynamic viewpoints on claims of a spontaneous H2O2 formation at the air–water interface. . J. Phys. Chem. B 127::232330
    [Crossref] [Google Scholar]
  105. 105.
    Nguyen D, Nguyen SC. 2022.. Revisiting the effect of the air–water interface of ultrasonically atomized water microdroplets on H2O2 formation. . J. Phys. Chem. B 126::318085
    [Crossref] [Google Scholar]
  106. 106.
    Musskopf NH, Gallo A Jr., Zhang P, Petry J, Mishra H. 2021.. The air–water interface of water microdroplets formed by ultrasonication or condensation does not produce H2O2. . J. Phys. Chem. Lett. 12::1142229
    [Crossref] [Google Scholar]
  107. 107.
    Cruzeiro VWD, Galib M, Limmer DT, Götz AW. 2022.. Uptake of N2O5 by aqueous aerosol unveiled using chemically accurate many-body potentials. . Nat. Commun. 13::1266
    [Crossref] [Google Scholar]
  108. 108.
    Galib M, Limmer DT. 2021.. Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes. . Science 371::92125
    [Crossref] [Google Scholar]
  109. 109.
    Singh AN, Limmer DT. 2022.. Peptide isomerization is suppressed at the air–water interface. . J. Phys. Chem. Lett. 13::57479
    [Crossref] [Google Scholar]
  110. 110.
    Zühlke M, Koenig J, Prüfert C, Sass S, Beitz T, et al. 2023.. Complex reaction kinetics of a Mannich reaction in droplets under electrospray conditions. . Phys. Chem. Chem. Phys. 25::1173244
    [Crossref] [Google Scholar]
  111. 111.
    Kim P, Continetti RE. 2021.. Accelerated keto–enol tautomerization kinetics of malonic acid in aqueous droplets. . ACS Earth Space Chem. 5::221222
    [Crossref] [Google Scholar]
  112. 112.
    Brown EK, Rovelli G, Wilson KR. 2023.. pH jump kinetics in colliding microdroplets: accelerated synthesis of azamonardine from dopamine and resorcinol. . Chem. Sci. 14::643042
    [Crossref] [Google Scholar]
  113. 113.
    Angle KJ, Neal EE, Grassian VH. 2021.. Enhanced rates of transition-metal-ion-catalyzed oxidation of S(IV) in aqueous aerosols: insights into sulfate aerosol formation in the atmosphere. . Environ. Sci. Technol. 55::1029199
    [Crossref] [Google Scholar]
  114. 114.
    Parmentier EA, Corral Arroyo P, Gruseck R, Ban L, David G, Signorell R. 2022.. Charge effects on the photodegradation of single optically trapped oleic acid aerosol droplets. . J. Phys. Chem. A 126::445664
    [Crossref] [Google Scholar]
  115. 115.
    Heindel JP, Hao H, LaCour RA, Head-Gordon T. 2022.. Spontaneous formation of hydrogen peroxide in water microdroplets. . J. Phys. Chem. Lett. 13::1003541
    [Crossref] [Google Scholar]
  116. 116.
    Hao H, Ruiz Pestana L, Qian J, Liu M, Xu Q, Head-Gordon T. 2023.. Chemical transformations and transport phenomena at interfaces. . WIREs Comput. Mol. Sci. 13::e1639
    [Crossref] [Google Scholar]
  117. 117.
    Hao H, Leven I, Head-Gordon T. 2022.. Can electric fields drive chemistry for an aqueous microdroplet?. Nat. Commun. 13::280
    [Crossref] [Google Scholar]
  118. 118.
    Martins-Costa MTC, Ruiz-López MF. 2023.. Electrostatics and chemical reactivity at the air–water interface. . J. Am. Chem. Soc. 145::14006
    [Crossref] [Google Scholar]
  119. 119.
    Narendra N, Chen X, Wang J, Charles J, Cooks RG, Kubis T. 2020.. Quantum mechanical modeling of reaction rate acceleration in microdroplets. . J. Phys. Chem. A 124::498489
    [Crossref] [Google Scholar]
  120. 120.
    Consta S. 2022.. Atomistic modeling of jet formation in charged droplets. . J. Phys. Chem. B 126::835057
    [Crossref] [Google Scholar]
  121. 121.
    Kwan V, Consta S. 2020.. Bridging electrostatic properties between nanoscopic and microscopic highly charged droplets. . Chem. Phys. Lett. 746::137238
    [Crossref] [Google Scholar]
  122. 122.
    Kwan V, Consta S. 2021.. Molecular characterization of the surface excess charge layer in droplets. . J. Am. Soc. Mass Spectrom. 32::3345
    [Crossref] [Google Scholar]
  123. 123.
    Kwan V, Malevanets A, Consta S. 2019.. Where do the ions reside in a highly charged droplet?. J. Phys. Chem. A 123::9298310
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-052623-120718
Loading
/content/journals/10.1146/annurev-physchem-052623-120718
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error