1932

Abstract

Gas-phase anions present an ideal playground for the exploration of excited-state dynamics. They offer control in terms of the mass, extent of solvation, internal temperature, and conformation. The application of a range of ion sources has opened the field to a vast array of anionic systems whose dynamics are important in areas ranging from biology to star formation. Here, we review recent experimental developments in the field of anion photodynamics, demonstrating the detailed insight into photodynamical and electron-capture processes that can be uncovered. We consider the electronic and nuclear ultrafast dynamics of electronically bound excited states along entire reaction coordinates; electronically unbound states showing that photochemical concepts, such as chromophores and Kasha's rule, are transferable to electron-driven chemistry; and nonvalence states that straddle the interface between bound and unbound states. Finally, we consider likely developments that are sure to keep the field of anion dynamics buoyant and impactful.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090722-125031
2024-06-28
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-090722-125031.html?itemId=/content/journals/10.1146/annurev-physchem-090722-125031&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Simons J. 2008.. Molecular anions. . J. Phys. Chem. A 112:(29):6401511
    [Crossref] [Google Scholar]
  2. 2.
    Millar TJ, Walsh C, Field TA. 2017.. Negative ions in space. . Chem. Rev. 117:(3):176595
    [Crossref] [Google Scholar]
  3. 3.
    Tsien RY. 1998.. The green fluorescent protein. . Annu. Rev. Biochem. 67::50944
    [Crossref] [Google Scholar]
  4. 4.
    Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB. 2002.. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. . Chem. Rev. 102:(1):23182
    [Crossref] [Google Scholar]
  5. 5.
    Lineberger WC. 2013.. Once upon anion: a tale of photodetachment. . Annu. Rev. Phys. Chem. 64::2136
    [Crossref] [Google Scholar]
  6. 6.
    Cyr DR, Hayden CC. 1996.. Femtosecond time-resolved photoionization and photoelectron spectroscopy studies of ultrafast internal conversion in 1,3,5-hexatriene. . J. Chem. Phys. 104:(2):77174
    [Crossref] [Google Scholar]
  7. 7.
    Neumark DM. 2001.. Time-resolved photoelectron spectroscopy of molecules and clusters. . Annu. Rev. Phys. Chem. 52::25577
    [Crossref] [Google Scholar]
  8. 8.
    Stolow A, Bragg AE, Neumark DM. 2004.. Femtosecond time-resolved photoelectron spectroscopy. . Chem. Rev. 104:(4):171958
    [Crossref] [Google Scholar]
  9. 9.
    Wu G, Hockett P, Stolow A. 2011.. Time-resolved photoelectron spectroscopy: from wavepackets to observables. . Phys. Chem. Chem. Phys. 13:(41):1844767
    [Crossref] [Google Scholar]
  10. 10.
    Schuurman MS, Blanchet V. 2022.. Time-resolved photoelectron spectroscopy: the continuing evolution of a mature technique. . Phys. Chem. Chem. Phys. 24:(34):2001224
    [Crossref] [Google Scholar]
  11. 11.
    Wang L-S, Ding C-F, Wang X-B, Nicholas JB. 1998.. Probing the potential barriers and intramolecular electrostatic interactions in free doubly charged anions. . Phys. Rev. Lett. 81:(13):266770
    [Crossref] [Google Scholar]
  12. 12.
    Wang X-B, Wang L-S. 2008.. Development of a low-temperature photoelectron spectroscopy instrument using an electrospray ion source and a cryogenically controlled ion trap. . Rev. Sci. Instrum. 79:(7):073108
    [Crossref] [Google Scholar]
  13. 13.
    Verlet JRR, Anstöter CS, Bull JN, Rogers JP. 2020.. Role of nonvalence states in the ultrafast dynamics of isolated anions. . J. Phys. Chem. A 124:(18):350719
    [Crossref] [Google Scholar]
  14. 14.
    Jortner J. 1992.. Cluster size effects. . Z. Phys. D 24:(3):24775
    [Crossref] [Google Scholar]
  15. 15.
    Coe JV. 2001.. Fundamental properties of bulk water from cluster ion data. . Int. Rev. Phys. Chem. 20:(1):3358
    [Crossref] [Google Scholar]
  16. 16.
    Chatterley AS, West CW, Stavros VG, Verlet JRR. 2014.. Time-resolved photoelectron imaging of the isolated deprotonated nucleotides. . Chem. Sci. 5:(10):396375
    [Crossref] [Google Scholar]
  17. 17.
    Chatterley AS, West CW, Roberts GM, Stavros VG, Verlet JRR. 2014.. Mapping the ultrafast dynamics of adenine onto its nucleotide and oligonucleotides by time-resolved photoelectron imaging. . J. Phys. Chem. Lett. 5:(5):84348
    [Crossref] [Google Scholar]
  18. 18.
    Horke DA, Chatterley AS, Verlet JRR. 2012.. Effect of internal energy on the repulsive Coulomb barrier of polyanions. . Phys. Rev. Lett. 108:(8):083003
    [Crossref] [Google Scholar]
  19. 19.
    Verlet JRR, Horke DA, Chatterley AS. 2014.. Excited states of multiply-charged anions probed by photoelectron imaging: riding the repulsive Coulomb barrier. . Phys. Chem. Chem. Phys. 16:(29):1504352
    [Crossref] [Google Scholar]
  20. 20.
    Winghart M-O, Yang J-P, Vonderach M, Unterreiner A-N, Huang D-L, et al. 2016.. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: tunneling autodetachment from both singlet and triplet excited states of a molecular dianion. . J. Chem. Phys. 144:(5):054305
    [Crossref] [Google Scholar]
  21. 21.
    Veenstra AP, Monzel L, Baksi A, Czekner J, Lebedkin S, et al. 2020.. Ultrafast intersystem crossing in isolated Ag29(BDT)123− probed by time-resolved pump-probe photoelectron spectroscopy. . J. Phys. Chem. Lett. 11:(7):267581
    [Crossref] [Google Scholar]
  22. 22.
    Gibbard JA, Verlet JRR. 2022.. Kasha's rule and Koopmans’ correlations for electron tunnelling through repulsive Coulomb barriers in a polyanion. . J. Phys. Chem. Lett. 13:(33):7797801
    [Crossref] [Google Scholar]
  23. 23.
    Jagau T-C, Bravaya KB, Krylov AI. 2017.. Extending quantum chemistry of bound states to electronic resonances. . Annu. Rev. Phys. Chem. 68::52553
    [Crossref] [Google Scholar]
  24. 24.
    Reid KL. 2003.. Photoelectron angular distributions. . Annu. Rev. Phys. Chem. 54::397424
    [Crossref] [Google Scholar]
  25. 25.
    Mabbs R, Grumbling ER, Pichugin K, Sanov A. 2009.. Photoelectron imaging: an experimental window into electronic structure. . Chem. Soc. Rev. 38:(8):216977
    [Crossref] [Google Scholar]
  26. 26.
    Sanov A. 2014.. Laboratory-frame photoelectron angular distributions in anion photodetachment: insight into electronic structure and intermolecular interactions. . Annu. Rev. Phys. Chem. 65::34163
    [Crossref] [Google Scholar]
  27. 27.
    Cooper J, Zare RN. 1968.. Angular distribution of photoelectrons. . J. Chem. Phys. 48:(2):94243
    [Crossref] [Google Scholar]
  28. 28.
    Simons J. 2020.. Ejecting electrons from molecular anions via shine, shake/rattle, and roll. . J. Phys. Chem. A 124:(42):877897
    [Crossref] [Google Scholar]
  29. 29.
    Osterwalder A, Nee MJ, Zhou J, Neumark DM. 2004.. High resolution photodetachment spectroscopy of negative ions via slow photoelectron imaging. . J. Chem. Phys. 121:(13):631722
    [Crossref] [Google Scholar]
  30. 30.
    Weichman ML, Neumark DM. 2018.. Slow photoelectron velocity-map imaging of cryogenically cooled anions. . Annu. Rev. Phys. Chem. 69::10124
    [Crossref] [Google Scholar]
  31. 31.
    Horke DA, Li Q, Blancafort L, Verlet JRR. 2013.. Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor. . Nat. Chem. 5:(8):71117
    [Crossref] [Google Scholar]
  32. 32.
    Wiley WC, McLaren IH. 1955.. Time-of-flight mass spectrometer with improved resolution. . Rev. Sci. Instrum. 26:(12):115057
    [Crossref] [Google Scholar]
  33. 33.
    Eppink ATJB, Parker DH. 1997.. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. . Rev. Sci. Instrum. 68:(9):347784
    [Crossref] [Google Scholar]
  34. 34.
    Suzuki T, Whitaker BJ. 2001.. Non-adiabatic effects in chemistry revealed by time-resolved charged-particle imaging. . Int. Rev. Phys. Chem. 20:(3):31356
    [Crossref] [Google Scholar]
  35. 35.
    Sanov A, Lineberger WC. 2004.. Cluster anions: structure, interactions, and dynamics in the sub-nanoscale regime. . Phys. Chem. Chem. Phys. 6:(9):201832
    [Crossref] [Google Scholar]
  36. 36.
    Davis AV, Wester R, Bragg AE, Neumark DM. 2003.. Time-resolved photoelectron imaging of the photodissociation of I2. . J. Chem. Phys. 118:(3):9991002
    [Crossref] [Google Scholar]
  37. 37.
    Mabbs R, Pichugin K, Sanov A. 2005.. Dynamic molecular interferometer: probe of inversion symmetry in I2 photodissociation. . J. Chem. Phys. 123:(5):054329
    [Crossref] [Google Scholar]
  38. 38.
    Zanni MT, Davis AV, Frischkorn C, Elhanine M, Neumark DM. 2000.. Femtosecond stimulated emission pumping: characterization of the I2 ground state. . J. Chem. Phys. 112:(20):884754
    [Crossref] [Google Scholar]
  39. 39.
    Zanni MT, Greenblatt BJ, Davis AV, Neumark DM. 1999.. Photodissociation of gas phase I3 using femtosecond photoelectron spectroscopy. . J. Chem. Phys. 111:(7):29913003
    [Crossref] [Google Scholar]
  40. 40.
    Greenblatt BJ, Zanni MT, Neumark DM. 1997.. Photodissociation of I2(Ar)n clusters studied with anion femtosecond photoelectron spectroscopy. . Science 276:(5319):167578
    [Crossref] [Google Scholar]
  41. 41.
    Papanikolas JM, Gord JR, Levinger NE, Ray D, Vorsa V, Lineberger WC. 1991.. Photodissociation and geminate recombination dynamics of I2 in mass-selected I2 (CO2)n cluster ions. . J. Phys. Chem. 95:(21):802840
    [Crossref] [Google Scholar]
  42. 42.
    Dribinski V, Barbera J, Martin JP, Svendsen A, Thompson MA, et al. 2006.. Time-resolved study of solvent-induced recombination in photodissociated IBr(CO2)n clusters. . J. Chem. Phys. 125:(13):133405
    [Crossref] [Google Scholar]
  43. 43.
    Sheps L, Miller EM, Horvath S, Thompson MA, Parson R, et al. 2010.. Solvent-mediated electron hopping: long-range charge transfer in IBr(CO2) photodissociation. . Science 328:(5975):22024
    [Crossref] [Google Scholar]
  44. 44.
    Sheps L, Miller EM, Horvath S, Thompson MA, Parson R, et al. 2011.. Solvent-mediated charge redistribution in photodissociation of IBr and IBr(CO2). . J. Chem. Phys. 134:(18):184311
    [Crossref] [Google Scholar]
  45. 45.
    Pontius N, Bechthold PS, Neeb M, Eberhardt W. 2000.. Ultrafast hot-electron dynamics observed in Pt3 using time-resolved photoelectron spectroscopy. . Phys. Rev. Lett. 84:(6):113235
    [Crossref] [Google Scholar]
  46. 46.
    Frischkorn C, Bragg AE, Davis AV, Wester R, Neumark DM. 2001.. Electronic relaxation dynamics of carbon cluster anions: excitation of the 2Πg2Πu transition in C6. . J. Chem. Phys. 115:(24):1118592
    [Crossref] [Google Scholar]
  47. 47.
    Bragg AE, Wester R, Davis AV, Kammrath A, Neumark DM. 2003.. Excited-state detachment dynamics and rotational coherences of C2 via time-resolved photoelectron imaging. . Chem. Phys. Lett. 376:(5):76775
    [Crossref] [Google Scholar]
  48. 48.
    Niemietz M, Gerhardt P, Ganteför G, Dok Kim Y. 2003.. Relaxation dynamics of the Au3 and Au6 cluster anions. . Chem. Phys. Lett. 380:(1):99104
    [Crossref] [Google Scholar]
  49. 49.
    Young RM, Griffin GB, Ehrler OT, Kammrath A, Bragg AE, et al. 2009.. Charge carrier dynamics in semiconducting mercury cluster anions. . Phys. Scr. 80:(4):048102
    [Crossref] [Google Scholar]
  50. 50.
    Bragg AE, Verlet JRR, Kammrath A, Cheshnovsky O, Neumark DM. 2004.. Hydrated electron dynamics: from clusters to bulk. . Science 306:(5696):66971
    [Crossref] [Google Scholar]
  51. 51.
    Kammrath A, Griffin GB, Verlet JRR, Young RM, Neumark DM. 2007.. Time-resolved photoelectron imaging of large anionic methanol clusters: (methanol)n (n ∼ 145–535). . J. Chem. Phys. 126:(24):244306
    [Crossref] [Google Scholar]
  52. 52.
    Young RM, Neumark DM. 2012.. Dynamics of solvated electrons in clusters. . Chem. Rev. 112:(11):555377
    [Crossref] [Google Scholar]
  53. 53.
    Lee I-R, Lee W, Zewail AH. 2006.. Primary steps of the photoactive yellow protein: isolated chromophore dynamics and protein directed function. . PNAS 103:(2):25862
    [Crossref] [Google Scholar]
  54. 54.
    Anstöter CS, Curchod BFE, Verlet JRR. 2020.. Geometric and electronic structure probed along the isomerisation coordinate of a photoactive yellow protein chromophore. . Nat. Commun. 11:(1):2827
    [Crossref] [Google Scholar]
  55. 55.
    Anstöter CS, Curchod BFE, Verlet JRR. 2022.. Photo-isomerization of the isolated photoactive yellow protein chromophore: What comes before the primary step?. Phys. Chem. Chem. Phys. 24:(3):13059
    [Crossref] [Google Scholar]
  56. 56.
    Groenhof G, Bouxin-Cademartory M, Hess B, de Visser SP, Berendsen HJC, et al. 2004.. Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis isomerization of the chromophore in the protein. . J. Am. Chem. Soc. 126:(13):422833
    [Crossref] [Google Scholar]
  57. 57.
    Anstöter CS, Dean CR, Verlet JRR. 2017.. Chromophores of chromophores: a bottom-up Hückel picture of the excited states of photoactive proteins. . Phys. Chem. Chem. Phys. 19:(44):2977279
    [Crossref] [Google Scholar]
  58. 58.
    Anstöter CS, Verlet JRR. 2022.. A Hückel model for the excited-state dynamics of a protein chromophore developed using photoelectron imaging. . Acc. Chem. Res. 55:(9):120513
    [Crossref] [Google Scholar]
  59. 59.
    Mooney CRS, Horke DA, Chatterley AS, Simperler A, Fielding HH, Verlet JRR. 2013.. Taking the green fluorescence out of the protein: dynamics of the isolated GFP chromophore anion. . Chem. Sci. 4:(3):92127
    [Crossref] [Google Scholar]
  60. 60.
    Svendsen A, Kiefer HV, Pedersen HB, Bochenkova AV, Andersen LH. 2017.. Origin of the intrinsic fluorescence of the green fluorescent protein. . J. Am. Chem. Soc. 139:(25):876671
    [Crossref] [Google Scholar]
  61. 61.
    Horke DA, Verlet JRR. 2012.. Photoelectron spectroscopy of the model GFP chromophore anion. . Phys. Chem. Chem. Phys. 14:(24):851115
    [Crossref] [Google Scholar]
  62. 62.
    West CW, Hudson AS, Cobb SL, Verlet JRR. 2013.. Communication: autodetachment versus internal conversion from the S1 state of the isolated GFP chromophore anion. . J. Chem. Phys. 139:(7):071104
    [Crossref] [Google Scholar]
  63. 63.
    Deng SHM, Kong X-Y, Zhang G, Yang Y, Zheng W-J, et al. 2014.. Vibrationally resolved photoelectron spectroscopy of the model GFP chromophore anion revealing the photoexcited S1 state being both vertically and adiabatically bound against the photodetached D0 continuum. . J. Phys. Chem. Lett. 5:(12):215559
    [Crossref] [Google Scholar]
  64. 64.
    Zagorec-Marks W, Foreman MM, Verlet JRR, Weber JM. 2019.. Cryogenic ion spectroscopy of the green fluorescent protein chromophore in vacuo. . J. Phys. Chem. Lett. 10:(24):781722
    [Crossref] [Google Scholar]
  65. 65.
    West CW, Bull JN, Hudson AS, Cobb SL, Verlet JRR. 2015.. Excited state dynamics of the isolated green fluorescent protein chromophore anion following UV excitation. . J. Phys. Chem. B 119:(10):398287
    [Crossref] [Google Scholar]
  66. 66.
    Bochenkova AV, Mooney CRS, Parkes MA, Woodhouse JL, Zhang L, et al. 2017.. Mechanism of resonant electron emission from the deprotonated GFP chromophore and its biomimetics. . Chem. Sci. 8:(4):315463
    [Crossref] [Google Scholar]
  67. 67.
    Glover WJ, Paz ASP, Thongyod W, Punwong C. 2019.. Analytical gradients and derivative couplings for dynamically weighted complete active space self-consistent field. . J. Chem. Phys. 151:(20):201101
    [Crossref] [Google Scholar]
  68. 68.
    Schulz GJ. 1973.. Resonances in electron impact on diatomic molecules. . Rev. Mod. Phys. 45:(3):42386
    [Crossref] [Google Scholar]
  69. 69.
    Christophorou LG. 1984.. Electron-Molecule Interactions and Their Applications. New York:: Academic
    [Google Scholar]
  70. 70.
    Jordan KD, Burrow PD. 1987.. Temporary anion states of polyatomic hydrocarbons. . Chem. Rev. 87:(3):55788
    [Crossref] [Google Scholar]
  71. 71.
    Ingólfsson O, ed. 2019.. Low-Energy Electrons: Fundamentals and Applications. Singapore:: Pan Stanford
    [Google Scholar]
  72. 72.
    Anstöter CS, Bull JN, Verlet JRR. 2016.. Ultrafast dynamics of temporary anions probed through the prism of photodetachment. . Int. Rev. Phys. Chem. 35:(4):50938
    [Crossref] [Google Scholar]
  73. 73.
    Collins PM, Christophorou LG, Chaney EL, Carter JG. 1970.. Energy dependence of the electron attachment cross section and the transient negative ion lifetime for p-benzoquinone and 1,4-naphthoquinone. . Chem. Phys. Lett. 4:(10):64650
    [Crossref] [Google Scholar]
  74. 74.
    Cooper CD, Naff WT, Compton RN. 1975.. Negative ion properties of p-benzoquinone: electron affinity and compound states. . J. Chem. Phys. 63:(6):275257
    [Crossref] [Google Scholar]
  75. 75.
    Christophorou LG, Carter JG, Christodoulides AA. 1969.. Long-lived parent negative ions in p-benzoquinone formed by electron capture in the field of the ground and excited states. . Chem. Phys. Lett. 3:(4):23740
    [Crossref] [Google Scholar]
  76. 76.
    Allan M. 1983.. Time-resolved electron-energy-loss spectroscopy study of the long-lifetime p-benzoquinone negative ion. . Chem. Phys. 81:(1):23541
    [Crossref] [Google Scholar]
  77. 77.
    West CW, Bull JN, Antonkov E, Verlet JRR. 2014.. Anion resonances of para-benzoquinone probed by frequency-resolved photoelectron imaging. . J. Phys. Chem. A 118:(48):1134654
    [Crossref] [Google Scholar]
  78. 78.
    Campbell EEB, Levine RD. 2000.. Delayed ionization and fragmentation en route to thermionic emission: statistics and dynamics. . Annu. Rev. Phys. Chem. 51::6598
    [Crossref] [Google Scholar]
  79. 79.
    Andersen JU, Bonderup E, Hansen K. 2002.. Thermionic emission from clusters. . J. Phys. B. 35:(5):R1
    [Google Scholar]
  80. 80.
    Nohl H, Jordan W, Youngman RJ. 1986.. Quinones in biology: functions in electron transfer and oxygen activation. . Adv. Free Rad. Biol. Med. 2:(1):21179
    [Crossref] [Google Scholar]
  81. 81.
    Bull JN, West CW, Verlet JRR. 2015.. Anion resonances and above-threshold dynamics of coenzyme Q0. . Phys. Chem. Chem. Phys. 17:(24):1612535
    [Crossref] [Google Scholar]
  82. 82.
    Bull JN, West CW, Verlet JRR. 2015.. On the formation of anions: frequency-, angle-, and time-resolved photoelectron imaging of the menadione radical anion. . Chem. Sci. 6:(2):157889
    [Crossref] [Google Scholar]
  83. 83.
    Bull JN, West CW, Verlet JRR. 2016.. Ultrafast dynamics of formation and autodetachment of a dipole-bound state in an open-shell π-stacked dimer anion. . Chem. Sci. 7:(8):535261
    [Crossref] [Google Scholar]
  84. 84.
    Bull JN, Verlet JRR. 2017.. Dynamics of π*-resonances in anionic clusters of para-toluquinone. . Phys. Chem. Chem. Phys. 19:(39):2658995
    [Crossref] [Google Scholar]
  85. 85.
    Bull JN, Verlet JRR. 2017.. Observation and ultrafast dynamics of a nonvalence correlation-bound state of an anion. . Sci. Adv. 3:(5):e1603106
    [Crossref] [Google Scholar]
  86. 86.
    Mensa-Bonsu G, Lietard A, Verlet JRR. 2019.. Enhancement of electron accepting ability of para-benzoquinone by a single water molecule. . Phys. Chem. Chem. Phys. 21:(39):2168992
    [Crossref] [Google Scholar]
  87. 87.
    Lietard A, Mensa-Bonsu G, Verlet JRR. 2021.. The effect of solvation on electron capture revealed using anion two-dimensional photoelectron spectroscopy. . Nat. Chem. 13::73742
    [Crossref] [Google Scholar]
  88. 88.
    Lietard A, Verlet JRR. 2022.. Effect of microhydration on the temporary anion states of pyrene. . J. Phys. Chem. Lett. 13:(16):352933
    [Crossref] [Google Scholar]
  89. 89.
    Cooper GA, Clarke CJ, Verlet JRR. 2023.. Low-energy shape resonances of a nucleobase in water. . J. Am. Chem. Soc. 145:(2):131926
    [Crossref] [Google Scholar]
  90. 90.
    Scheller MK, Compton RN, Cederbaum LS. 1995.. Gas-phase multiply charged anions. . Science 270:(5239):116066
    [Crossref] [Google Scholar]
  91. 91.
    Boldyrev AI, Gutowski M, Simons J. 1996.. Small multiply charged anions as building blocks in chemistry. . Acc. Chem. Res. 29:(10):497502
    [Crossref] [Google Scholar]
  92. 92.
    Dreuw A, Cederbaum LS. 2002.. Multiply charged anions in the gas phase. . Chem. Rev. 102:(1):181200
    [Crossref] [Google Scholar]
  93. 93.
    Wang X-B, Wang L-S. 1999.. Observation of negative electron-binding energy in a molecule. . Nature 400:(6741):24548
    [Crossref] [Google Scholar]
  94. 94.
    Castellani ME, Avagliano D, González L, Verlet JRR. 2020.. Site-specific photo-oxidation of the isolated adenosine-5′-triphosphate dianion determined by photoelectron imaging. . J. Phys. Chem. Lett. 11:(19):8195201
    [Crossref] [Google Scholar]
  95. 95.
    Castellani ME, Avagliano D, Verlet JRR. 2021.. Ultrafast dynamics of the isolated adenosine-5′-triphosphate dianion probed by time-resolved photoelectron imaging. . J. Phys. Chem. A 125:(17):364652
    [Crossref] [Google Scholar]
  96. 96.
    Winghart M-O, Yang J-P, Kühn M, Unterreiner A-N, Wolf TJA, et al. 2013.. Electron tunneling from electronically excited states of isolated bisdisulizole-derived trianion chromophores following UV absorption. . Phys. Chem. Chem. Phys. 15:(18):672636
    [Crossref] [Google Scholar]
  97. 97.
    Horke DA, Chatterley AS, Verlet JRR. 2012.. Femtosecond photoelectron imaging of aligned polyanions: probing molecular dynamics through the electron-anion coulomb repulsion. . J. Phys. Chem. Lett. 3:(7):83438
    [Crossref] [Google Scholar]
  98. 98.
    Veenstra AP, Rauthe P, Czekner J, Hauns J, Unterreiner A-N, Kappes MM. 2022.. Intersystem crossing rates in photoexcited rose bengal: solvation versus isolation. . J. Phys. Chem. A 126:(48):893038
    [Crossref] [Google Scholar]
  99. 99.
    Jordan KD, Wang F. 2003.. Theory of dipole-bound anions. . Annu. Rev. Phys. Chem. 54::36796
    [Crossref] [Google Scholar]
  100. 100.
    Klaiman S, Gromov EV, Cederbaum LS. 2013.. Extreme correlation effects in the elusive bound spectrum of C60. . J. Phys. Chem. Lett. 4:(19):331924
    [Crossref] [Google Scholar]
  101. 101.
    Voora VK, Jordan KD. 2015.. Nonvalence correlation-bound anion states of polycyclic aromatic hydrocarbons. . J. Phys. Chem. Lett. 6:(20):399497
    [Crossref] [Google Scholar]
  102. 102.
    Hendricks JH, Lyapustina SA, de Clercq HL, Snodgrass JT, Bowen KH. 1996.. Dipole bound, nucleic acid base anions studied via negative ion photoelectron spectroscopy. . J. Chem. Phys. 104:(19):778891
    [Crossref] [Google Scholar]
  103. 103.
    Schiedt J, Weinkauf R, Neumark DM, Schlag EW. 1998.. Anion spectroscopy of uracil, thymine and the amino-oxo and amino-hydroxy tautomers of cytosine and their water clusters. . Chem. Phys. 239:(1):51124
    [Crossref] [Google Scholar]
  104. 104.
    Aflatooni K, Gallup GA, Burrow PD. 1998.. Electron attachment energies of the DNA bases. . J. Phys. Chem. A 102:(31):62057
    [Crossref] [Google Scholar]
  105. 105.
    Sarre PJ. 2000.. The diffuse interstellar bands: a dipole-bound state hypothesis. . Mon. Not. R. Astron. Soc. 313:(1):L1416
    [Crossref] [Google Scholar]
  106. 106.
    Fortenberry RC. 2015.. Interstellar anions: the role of quantum chemistry. . J. Phys. Chem. A 119:(39):994153
    [Crossref] [Google Scholar]
  107. 107.
    Chen X, Bradforth SE. 2008.. The ultrafast dynamics of photodetachment. . Annu. Rev. Phys. Chem. 59::20331
    [Crossref] [Google Scholar]
  108. 108.
    Bradforth SE, Jungwirth P. 2002.. Excited states of iodide anions in water: a comparison of the electronic structure in clusters and in bulk solution. . J. Phys. Chem. A 106:(7):128698
    [Crossref] [Google Scholar]
  109. 109.
    Carter-Fenk K, Johnson BA, Herbert JM, Schenter GK, Mundy CJ. 2023.. Birth of the hydrated electron via charge-transfer-to-solvent excitation of aqueous iodide. . J. Phys. Chem. Lett. 14:(4):87078
    [Crossref] [Google Scholar]
  110. 110.
    Zhu G-Z, Wang L-S. 2019.. High-resolution photoelectron imaging and resonant photoelectron spectroscopy via noncovalently bound excited states of cryogenically cooled anions. . Chem. Sci. 10:(41):940923
    [Crossref] [Google Scholar]
  111. 111.
    Bull JN, Anstöter CS, Stockett MH, Clarke CJ, Gibbard JA, et al. 2021.. Nonadiabatic dynamics between valence, nonvalence, and continuum electronic states in a heteropolycyclic aromatic hydrocarbon. . J. Phys. Chem. Lett. 12:(49):1181116
    [Crossref] [Google Scholar]
  112. 112.
    Qian C-H, Zhang Y-R, Yuan D-F, Wang L-S. 2021.. Photodetachment spectroscopy and resonant photoelectron imaging of cryogenically cooled 1-pyrenolate. . J. Chem. Phys. 154:(9):094308
    [Crossref] [Google Scholar]
  113. 113.
    Simons J. 1981.. Propensity rules for vibration-induced electron detachment of anions. . J. Am. Chem. Soc. 103:(14):397176
    [Crossref] [Google Scholar]
  114. 114.
    Bull JN, Anstöter CS, Verlet JRR. 2019.. Ultrafast valence to non-valence excited state dynamics in a common anionic chromophore. . Nat. Commun. 10:(1):5820
    [Crossref] [Google Scholar]
  115. 115.
    Bull JN, Verlet JRR. 2017.. Observation and ultrafast dynamics of a nonvalence correlation-bound state of an anion. . Sci. Adv. 3:(5):e1603106
    [Crossref] [Google Scholar]
  116. 116.
    Kang DH, An S, Kim SK. 2020.. Real-time autodetachment dynamics of vibrational Feshbach resonances in a dipole-bound state. . Phys. Rev. Lett. 125:(9):093001
    [Crossref] [Google Scholar]
  117. 117.
    Kang DH, Kim J, Eun HJ, Kim SK. 2022.. State-specific chemical dynamics of the nonvalence bound state of the molecular anions. . Acc. Chem. Res. 55:(20):303242
    [Crossref] [Google Scholar]
  118. 118.
    Anstöter CS, Mensa-Bonsu G, Nag P, Ranković M, Kumar TPR, et al. 2020.. Mode-specific vibrational autodetachment following excitation of electronic resonances by electrons and photons. . Phys. Rev. Lett. 124:(20):203401
    [Crossref] [Google Scholar]
  119. 119.
    Ranković M, Nag P, Anstöter CS, Mensa-Bonsu G, Kumar TPR, et al. 2022.. Resonances in nitrobenzene probed by the electron attachment to neutral and by the photodetachment from anion. . J. Chem. Phys. 157:(6):064302
    [Crossref] [Google Scholar]
  120. 120.
    Simons J. 2006.. How do low-energy (0.1−2 eV) electrons cause DNA-strand breaks?. Acc. Chem. Res. 39:(10):77279
    [Crossref] [Google Scholar]
  121. 121.
    Yandell MA, King SB, Neumark DM. 2013.. Time-resolved radiation chemistry: photoelectron imaging of transient negative ions of nucleobases. . J. Am. Chem. Soc. 135:(6):212831
    [Crossref] [Google Scholar]
  122. 122.
    Kunin A, Neumark DM. 2019.. Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide-nucleobase clusters. . Phys. Chem. Chem. Phys. 21:(14):723955
    [Crossref] [Google Scholar]
  123. 123.
    King SB, Yandell MA, Stephansen AB, Neumark DM. 2014.. Time-resolved radiation chemistry: dynamics of electron attachment to uracil following UV excitation of iodide-uracil complexes. . J. Chem. Phys. 141:(22):224310
    [Crossref] [Google Scholar]
  124. 124.
    Kunin A, Li W-L, Neumark DM. 2018.. Dynamics of electron attachment and photodissociation in iodide-uracil-water clusters via time-resolved photoelectron imaging. . J. Chem. Phys. 149:(8):084301
    [Crossref] [Google Scholar]
  125. 125.
    Rogers JP, Anstöter CS, Verlet JRR. 2018.. Ultrafast dynamics of low-energy electron attachment via a non-valence correlation-bound state. . Nat. Chem. 10:(3):34146
    [Crossref] [Google Scholar]
  126. 126.
    Rogers JP, Anstöter CS, Bull JN, Curchod BFE, Verlet JRR. 2019.. Photoelectron spectroscopy of the hexafluorobenzene cluster anions: (C6F6)n (n = 1–5) and I(C6F6). . J. Phys. Chem. A 123::160212
    [Crossref] [Google Scholar]
  127. 127.
    Kang DH, Kim J, Cheng M, Kim SK. 2021.. Mode-specific autodetachment dynamics of an excited non-valence quadrupole-bound state. . J. Phys. Chem. Lett. 12:(7):194754
    [Crossref] [Google Scholar]
  128. 128.
    Kang DH, Kim J, Eun HJ, Kim SK. 2022.. Experimental observation of the resonant doorways to anion chemistry: dynamic role of dipole-bound Feshbach resonances in dissociative electron attachment. . J. Am. Chem. Soc. 144:(35):1607785
    [Crossref] [Google Scholar]
  129. 129.
    Anusiewicz I, Skurski P, Simons J. 2020.. Fate of dipole-bound anion states when hydrated. . J. Phys. Chem. A 124:(10):206476
    [Crossref] [Google Scholar]
  130. 130.
    Lehr L, Zanni MT, Frischkorn C, Weinkauf R, Neumark DM. 1999.. Electron solvation in finite systems: femtosecond dynamics of iodide·(water)n anion clusters. . Science 284:(5414):63538
    [Crossref] [Google Scholar]
  131. 131.
    Verlet JRR, Kammrath A, Griffin GB, Neumark DM. 2005.. Electron solvation in water clusters following charge transfer from iodide. . J. Chem. Phys. 123:(23):231102
    [Crossref] [Google Scholar]
  132. 132.
    Elkins MH, Williams HL, Shreve AT, Neumark DM. 2013.. Relaxation mechanism of the hydrated electron. . Science 342:(6165):149699
    [Crossref] [Google Scholar]
  133. 133.
    Nowakowski PJ, Woods DA, Verlet JRR. 2016.. Charge transfer to solvent dynamics at the ambient water/air interface. . J. Phys. Chem. Lett. 7:(20):407985
    [Crossref] [Google Scholar]
  134. 134.
    Brabec T, Krausz F. 2000.. Intense few-cycle laser fields: frontiers of nonlinear optics. . Rev. Mod. Phys. 72:(2):54591
    [Crossref] [Google Scholar]
  135. 135.
    Nagy T, Simon P, Veisz L. 2021.. High-energy few-cycle pulses: post-compression techniques. . Adv. Phys. X 6:(1):1845795
    [Google Scholar]
  136. 136.
    Böwering N, Lischke T, Schmidtke B, Müller N, Khalil T, Heinzmann U. 2001.. Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. . Phys. Rev. Lett. 86:(7):118790
    [Crossref] [Google Scholar]
  137. 137.
    Turchini S, Zema N, Contini G, Alberti G, Alagia M, et al. 2004.. Circular dichroism in photoelectron spectroscopy of free chiral molecules: experiment and theory on methyl-oxirane. . Phys. Rev. A 70:(1):014502
    [Crossref] [Google Scholar]
  138. 138.
    Triptow J, Fielicke A, Meijer G, Green M. 2023.. Imaging photoelectron circular dichroism in the detachment of mass-selected chiral anions. . Angew. Chem. Int. Ed. 62:(1):e202212020
    [Crossref] [Google Scholar]
  139. 139.
    Daly S, Rosu F, Gabelica V. 2020.. Mass-resolved electronic circular dichroism ion spectroscopy. . Science 368:(6498):146568
    [Crossref] [Google Scholar]
  140. 140.
    Comby A, Beaulieu S, Boggio-Pasqua M, Descamps D, Légaré F, et al. 2016.. Relaxation dynamics in photoexcited chiral molecules studied by time-resolved photoelectron circular dichroism: toward chiral femtochemistry. . J. Phys. Chem. Lett. 7:(22):451419
    [Crossref] [Google Scholar]
  141. 141.
    Beaulieu S, Comby A, Clergerie A, Caillat J, Descamps D, et al. 2017.. Attosecond-resolved photoionization of chiral molecules. . Science 358:(6368):128894
    [Crossref] [Google Scholar]
  142. 142.
    Beaulieu S, Comby A, Descamps D, Fabre B, Garcia GA, et al. 2018.. Photoexcitation circular dichroism in chiral molecules. . Nat. Phys. 14:(5):48489
    [Crossref] [Google Scholar]
  143. 143.
    Vonderach M, Ehrler OT, Weis P, Kappes MM. 2011.. Combining ion mobility spectrometry, mass spectrometry, and photoelectron spectroscopy in a high-transmission instrument. . Anal. Chem. 83:(3):110815
    [Crossref] [Google Scholar]
  144. 144.
    Kočišek J, Pysanenko A, Fárník M, Fedor J. 2016.. Microhydration prevents fragmentation of uracil and thymine by low-energy electrons. . J. Phys. Chem. Lett. 7:(17):34015
    [Crossref] [Google Scholar]
  145. 145.
    Kočišek J, Sedmidubská B, Indrajith S, Fárník M, Fedor J. 2018.. Electron attachment to microhydrated deoxycytidine monophosphate. . J. Phys. Chem. B 122:(20):521217
    [Crossref] [Google Scholar]
  146. 146.
    Simons J. 2023.. Molecular anions perspective. . J. Phys. Chem. A 127:(18):394057
    [Crossref] [Google Scholar]
  147. 147.
    Jagau T-C. 2022.. Theory of electronic resonances: fundamental aspects and recent advances. . Chem. Commun. 58:(34):520524
    [Crossref] [Google Scholar]
  148. 148.
    Feuerbacher S, Sommerfeld T, Cederbaum LS. 2004.. Intersections of potential energy surfaces of short-lived states: the complex analogue of conical intersections. . J. Chem. Phys. 120:(7):320114
    [Crossref] [Google Scholar]
  149. 149.
    Gyamfi JA, Jagau T-C. 2022.. Ab initio molecular dynamics of temporary anions using complex absorbing potentials. . J. Phys. Chem. Lett. 13:(36):847783
    [Crossref] [Google Scholar]
  150. 150.
    Jordan CJC, Coons MP, Herbert JM, Verlet JRR. 2024.. Spectroscopy and dynamics of the hydrated electron at the water/air interface. . Nat. Commun. 15::182
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-090722-125031
Loading
/content/journals/10.1146/annurev-physchem-090722-125031
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error