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Abstract

Social scientists commonly use computational models to estimate proxies of
unobserved concepts, then incorporate these proxies into subsequent tests
of their theories. The consequences of this practice, which occurs in over
two-thirds of recent computational work in political science, are underap-
preciated. Imperfect proxies can reflect noise and contamination from other
concepts, producing biased point estimates and standard errors.We demon-
strate how analysts can use causal diagrams to articulate theoretical concepts
and their relationships to estimated proxies, then apply straightforward rules
to assess which conclusions are rigorously supportable.We formalize and ex-
tend common heuristics for “signing the bias”—a technique for reasoning
about unobserved confounding—to scenarios with imperfect proxies. Us-
ing these tools, we demonstrate how, in often-encountered research settings,
proxy-based analyses allow for valid tests for the existence and direction of
theorized effects. We conclude with best-practice recommendations for the
rapidly growing literature using learned proxies to test causal theories.
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1. I DON’T KNOW Y (AND OTHER CHALLENGES ARISING
FROM IMPERFECT PROXIES IN SOCIAL SCIENCE)

Social-scientific theories often involve latent concepts that are not directly observed by re-
searchers, such as “democracy” or “ideology.” To empirically evaluate their theories, researchers
must imperfectly measure these unobserved concepts. Classic examples include the use of expert
panels to rate countries’ political systems and factor analysis to construct weighted indices from
survey responses, which respectively produce proxies of democracy and ideology. While various
forms of quantitative measurement emerged with the advent of empirical social science, the recent
growth of machine learning has led to an increase in research that learns proxies using computa-
tional models. Compared to classic approaches—which often require costly in-depth expert read-
ing or derivation of case-specific measurement models—this new body of work increasingly uses
rich, unstructured data and flexible, off-the-shelf statistical tools to measure concepts of theoret-
ical importance. In this article, we review common approaches and key methodological consider-
ations in this rapidly growing literature. We focus specifically on best practices for incorporating
imperfectly learned proxies into subsequent analyses, which poses underappreciated challenges
for analysts seeking to rigorously test social-scientific theories. Excellent references are available
for measurement (Adcock & Collier 2001) and statistical learning (Grimmer et al. 2021) more
broadly. In contrast to these and similar review articles, we focus on the use of learned proxies in
causal tests, particularly where the proxy is estimated from a computational model.

Regardless of how formally they are expressed, social-scientific theories are precisely articu-
lated, falsifiable statements about the causal structure of the world. In political science, the greatest
impact of recent computational advances has been to improve researchers’ ability to test such the-
ories. In a review of papers in the American Political Science Review (APSR), the American Journal of
Political Science (AJPS), and the Journal of Politics ( JOP) from 2018 to 2020, we identified 48 that
employed statistical learning or other computational methods.1 The vast majority of this work—
over two-thirds—seeks to estimate a proxy for a concept in a causal theory that is not directly
observable. Without this proxy, no empirical evaluation of the theory is possible.

While the use of proxies in social science is not new, our literature review highlights how com-
putational methods have drastically increased their accessibility. For decades, the development of
new proxies was a major effort, feasible only for well-funded research teams, that often attempted
to make a new measure available to a broad community of scholars. For example, an enormous
literature theorizes the effects of democratic institutions on a host of outcomes ranging from eco-
nomic development to life expectancy. However, because “democracy” is not observable directly,
any empirical test of these theoretical predictions must rely on a proxy. This necessity drove costly
efforts utilizing large groups of expert coders, which have invited both widespread use and close
scrutiny.2 Similarly, to empirically test numerous theories about the origins and effects of legisla-
tor ideology, researchers commonly rely on a publicly available measure that was built from care-
fully derived statistical models based on application-specific functional-form assumptions about
ideology and voting (i.e., NOMINATE; Poole & Rosenthal 1985). With the exception of multi-
dimensional scaling methods for survey data and votes (Poole 2008), case-specific measurement
models were, until recently, limited.

In a noteworthy paradigm shift, researchers now regularly estimate new proxies for individual
studies, often from high-dimensional data for which traditional methods are inappropriate. At the

1Supplemental Appendix Section A describes our coding scheme, as well as the identified articles.
2For example, see Munck & Verkuilen (2002) for an evaluation of various measures of democracy, including
Polity (Gurr 1974), Freedom House (2014), and others.
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same time, implementing computationally intensive parametric models has become considerably
easier with the advent of languages like Stan (Carpenter et al. 2017) and the vast computational
power now available to researchers. Advances in statistical learning now allow researchers to flex-
ibly estimate proxies without application-specific knowledge, using increasingly rich data sources
and generic statistical models that adapt to the data at hand.

Despite these technological advances, there remain several fundamental research design con-
siderations that receive little attention from researchers conducting analyses with learned proxies.
Throughout this review, we use “proxy,” as opposed to “measure,” to emphasize that many such
variables are substitutes that imperfectly estimate the underlying theoretical concept. At a high
level, this slippage can stem from three sources: (a) measures often fail to fully capture all as-
pects of the underlying concept, (b) they often contain some level of purely random noise, and
(c) they are often systematically contaminated by other factors besides the concept of interest.
While an extensive literature on measurement has focused on improving validity by eliminating
these sources of error, resource-constrained researchers often do not have the luxury of perfecting
their proxy variables, particularly when the construction of these variables constitutes just one of
many stages in the research process. Determining how to proceed in the face of these inevitable
imperfections—the focus of this article—is therefore an important methodological question that
confronts many applied researchers.

In the remainder of this review, we explain how these issues can bias both treatment effect
estimates and standard errors. We then illustrate how scholars can use causal diagrams to reason
about various sources of error and their implications in terms of statistical biases. It is well known
that these diagrams constitute an easy-to-use tool for conveying the essence of social-scientific
theories. What is less appreciated is that causal diagrams are also useful for concisely expressing
the assumed quality of proxies used to approximate an underlying true concept, as well as for
indicating potential sources of contamination. By writing down concrete assumptions in this easily
digestible form, analysts can then apply well-established rules to determine which conclusions
can be rigorously supported, while avoiding implausible parametric assumptions about functional
form and the distribution of random errors. Without such parametric assumptions, which are
generally difficult to defend, analysts generally cannot recover accurate quantitative estimates of
theorized effect sizes. However, we show that in many common research settings, analysts can
reliably evaluate the qualitative existence of these effects and determine their direction. That is,
despite random measurement error and possible systematic error due to contamination by other
factors, analysts can nonetheless rigorously assess whether treatment variables causally lead to the
theorized increase or decrease in outcome variables. We provide numerous examples of research
settings with proxied treatments, outcomes, and confounders in which such conclusions can be
supported, along with straightforward procedures analysts can use when confronted with more
complex scenarios.

2. INTEGRATING MACHINE LEARNING TECHNIQUES WITH SOCIAL
SCIENTIFIC THEORY

Rigorous social scientific theories are statements about the causal structure of the world (Pearl
& Mackenzie 2018). That is, they assert that a dependent variable, Y, would or would not have
unfolded differently if an independent variable, X , had been hypothetically modified. Such the-
ories are distinct from empirical predictions that X will be associated with Y, in that they posit an
explanation for why empirical associations appear: for example, because X has a direct effect on Y,
because it has an indirect effect through some intermediate factors, or because X and Y are both
influenced by some common cause that produces a spurious correlation.
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Figure 1

Theorized causal structure. The figure depicts a causal theory in which treatment X has an effect on
outcome Y, but estimation is complicated by a common causeW that must be adjusted for (indicated with a
rectangle) to recover X → Y . Subsequent figures consider scenarios in which X ,Y, or Z cannot be directly
observed and must instead be noisily measured.

Well-articulated theories are collections of statements about (a) the set of factors that are the-
oretically meaningful and (b) how these factors might influence one another. These statements
can be concisely expressed in the form of a causal diagram depicting each factor, with arrows rep-
resenting influence relationships; a generic example is given in Figure 1. What causal diagrams
do not convey is perhaps as important as what they do. Critically, causal diagrams do not make
implausible claims about precisely how X affectsY . For example, they do not state that “the effect
of increasing X by 1 unit is thatY will increase by an average of 2.5 units” or that “X1 and X2 have
linear effects on Y and do not interact.” In complex social scientific settings, analysts rarely have
enough knowledge to theorize such rigid and specific functional forms. Instead, these relationships
must be flexibly estimated from data.

Causal diagrams have proven invaluable to the social sciences, guiding both qualitative process
tracing (Waldner 2015) and quantitative analyses (Keele et al. 2020) in the evaluation of social
scientific theories. Classic references such as Causality (Pearl 2009) offer clear-cut guidelines
for diagrammatically assessing alternative explanations that must be ruled out before analysts
can draw firm conclusions. As a simple example, in the scenario of Figure 1, it can be seen that
analysts must account for the common causes (or confounders,W ) before estimating the theo-
rized effect, X → Y .3 Without adjusting, analysts cannot rule out the possibility that observed
associations between X and Y might be due to confounding, and the theorized causal effect
might be nonexistent. In this review, we consider the complex issues that arise when analysts seek
to evaluate their theories using indirect measures of key theoretical constructs—an increasingly
common practice in social scientific research that uses rich, newly available data to proxy for
concepts that were previously difficult to operationalize.We outline the types of conclusions that
can and cannot be rigorously supported when analysts use learned proxies in common research
settings, as well as a set of rules to help guide analysts confronted with more complex scenarios.

The fundamental problem that proxy-based research seeks to address is that theoretical
concepts in the social sciences are often abstract and lack precision (Weber 2017). Consider the
ideological bias, or slant, of media outlets. A staggering volume of research examines the origins of
media bias, as well as its effects on subsequent social phenomena (Puglisi & Snyder 2015). At the
time of writing, searching for “media bias” on Google Scholar yielded over 26,000 search results.
Yet, media bias is not directly observable under any study design. Rather, this underlying true
concept generates noisy and imperfect observed signals according to some generally unknown
process. These imperfect signals may include (a) which politicians a given newspaper chooses
to endorse (Ansolabehere et al. 2006), (b) the textual similarity between language used by media

3In potential outcomes notation, we have X = X (W ) and Y = Y (W,X ); the causal quantities of interest
are taken to be various aggregations of or contrasts between the conditional average treatment effects,
E[Y (x′, w)−Y (x, w)|W = w].
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Overview of computational measurement. Each observation is associated with a specific value for the true
concept of interest, which may be a confounder, a treatment, or an outcome. This attribute cannot in general
be observed directly, but auxiliary observed features provide some signal about its value. However, these
signals may be contaminated by additional factors; for example, if the attribute being measured is the
treatment, the observed signals may contain not only treatment-related information but also contamination
from the confounder. The attribute of interest may optionally be annotated for a subset of units (indicated
with an orange box) based on observed signals. Annotations may contain errors or perfectly correspond to the
true concept; if they contain errors, these errors may be independent or influenced by contaminating factors.
After annotations are obtained (not obtained), supervised (unsupervised) machine learning models are
trained—either on the observed signals directly or, more commonly, on a reduced representation that may
result in the loss of information. The learned model is applied to observed signals for all units. The resulting
estimates constitute the learned measure, which is then incorporated into a primary analysis.

outlets and members of Congress (Gentzkow & Shapiro 2010), or (c) the way an outlet covers
certain issues (Larcinese et al. 2011). The absence of direct, high-quality data on the underlying
concept greatly complicates the task of evaluating theories of media bias.

How do researchers use computational methods to address these challenges? Figure 2 graph-
ically depicts the typical workflow. As already noted, analysts have access to observed signals that
convey noisy information about the concept via some process that is generally unknown. These
signals potentially capture not only the true concept but also contaminating factors, discussed in
Section 2.2. To map these signals back to the true concept of interest, researchers typically con-
vert them into a reduced format that is amenable to analysis, then apply an assumed measurement
model to obtain a predicted value of the true concept. It is critical to recognize that the model
used for measurement is, at best, a simplified representation of the unknown process by which the
true concept manifests in observed signals. Moreover, contamination of the signals used to proxy
the true concept can lead to systematic errors that must be carefully considered when analysts
draw conclusions. The construction and validation of measurement models, including with ma-
chine learning methods, have been the subject of much work (Adcock & Collier 2001, Grimmer
& Stewart 2013).We briefly review this extensive literature before turning to the question of how
measures should be used in subsequent, theoretically motivated analyses—a key component of the
social-science workflow that has received far less attention.

2.1. Challenges with Computational Measures of Latent Variables

Measurement models are rich and varied, ranging from panels of human experts to keyword-based
binary classification rules and trained neural networks. Here, we illustrate these and other choices
confronting a researcher who is developing a computational proxy, using Martin & McCrain
(2019) as a running example. Martin and McCrain study the effect of a sudden and widespread
shift in television news ownership, which we denote as X , in which the conservative Sinclair
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conglomerate acquired numerous media outlets in the United States. In this case, media consol-
idation was theorized to affect the unobserved concept of media slant, Y . Martin and McCrain
use the measurement model of Gentzkow & Shapiro (2010), proxying media bias based on the
similarity between (a) the text of each media outlet’s news and (b) the text of partisan speeches in
the Congressional Record.4 We refer to the resulting predictions for each unit as the measure,
Ŷ . We emphasize that the observed signal (which is often a rich information source, such as a
television station’s audiovisual stream) is conceptually distinct from the inputs to the measurement
model (which can be lossy reductions, such as counts of various words obtained by an imperfect
transcription).5

How might this proxy—textual similarity with the text of partisan speeches in the Congres-
sional Record—differ from media slant, the unobserved latent concept of interest? For example,
imagine that a researcher hopes to measure the slant of news articles covering local policy, which is
generally not discussed in congressional speeches but still plausibly contains partisan bias. In this
case, the similarity of these articles to the Congressional Record is not necessarily a good mea-
surement model; its use requires researchers to assume that a model based on partisan speeches
extrapolates well to topics not discussed in those speeches (local policy). If this assumption fails,
relying on textual similarity between local news and congressional speech will yield unreliable
results. Martin & McCrain (2019) address this concern by only applying the textual similarity
measure to news segments covering national issues. However, if a researcher were interested in
the ideological slant of local news coverage, they could alternatively rely on human annotators to
inspect the observed signals (in this case, the text of news articles) and label the ideological slant
of each document. This may be a difficult annotation task, because slant is often conceptualized
as a continuous spectrum; in such cases, asking annotators to compare relative slant between doc-
ument pairs, rather than report document-level slant values, can simplify the task substantially
(Carlson & Montgomery 2017).

A benefit of using human annotators is that they often have tremendous contextual knowl-
edge, understand ambiguous instructions, and can learn a large and flexible set of measurement
models. Human annotators can also be given direct access to unstructured signals, such as audio-
visual recordings of a television news broadcast, in their entirety. However, a limitation is that
human annotators are expensive, so it may not be feasible to annotate every observation in the
data. Moreover, even when annotations are available, humans are well known to exhibit preju-
dice and cognitive limits, meaning that annotated labels do not always reflect the underlying true
concept. In some cases, key concepts may be difficult to precisely quantify even for experienced
subject-matter experts, let alone the low-cost annotators that are often used for this task. An-
notation errors, or differences between the truth and human labels, contribute to measurement
error—a broader concept that refers to any difference between the true concept and a proxy (in-
cluding machine predictions that may rely in part on human labels). Importantly, these errors exist
at a conceptual level even when the underlying truth is unknown for all observations. As long as
the true construct exists as theorized, then proxies must either deviate or not deviate from the un-
derlying, unknown value, even though this deviation is not directly calculable. These deviations
may be either purely random (e.g., accidental mislabeling) or systematic (e.g., higher slant scores
for articles that are in ideological disagreement with the annotator). We return to this issue of

4This model can variously be thought of as a weighted, rescaled dictionary or as an instance of a supervised
model trained on the Congressional Record and transferred to the domain of news.
5The practice of manually specifying informative inputs is referred to as feature engineering and can include
stemming/lemmatizing of words, extraction of n-grams, and computation of interactions or other higher-order
terms.
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proxy quality later in this article, as it can introduce confounding and other statistical biases in
subsequent analyses.

Setting aside challenges inherent in human coding, at a high level, supervised learning refers
to the general approach of obtaining small to moderate amounts of annotation, then training a
model that attempts to reconstruct the resulting labels based on some reduced feature set, such as
word frequencies (Grimmer & Stewart 2013). The resulting learned model can then be cheaply
applied to millions of unlabeled articles to obtain learned measures. Here, annotation errors can
lead the model astray, but they are not the only problem; small training sample sizes or incom-
plete feature sets represent other sources of measurement error. However, annotation is not al-
ways needed, as indicated by the orange coloring of this step in the research workflow depicted
by Figure 2. In contrast, unsupervised learning approaches attempt to identify latent clusters or
dimensions that explain patterns in the observed signal without the need for human review. For
instance, Poole & Rosenthal (1985) scale legislators according to voting patterns. Similarly, Slapin
& Proksch (2008) scale documents according to word frequencies, based solely on co-occurrence
patterns.These measurement models do not use human annotations to guide the process.Numer-
ous variations (e.g., active learning, transfer learning) and hybrid approaches (e.g., semi-supervised
learning, zero-shot learning) exist.

These computational methods represent powerful tools for mapping imperfect, messy, and
high-dimensional signals about an unobserved theoretical concept to low-dimensional measures
that can be used in statistical analyses. The trade-offs are well documented: Among other issues,
such methods typically require moderate to large quantities of data to learn patterns without con-
textual knowledge; can overfit to limited data and memorize noise rather than learning general-
izable patterns; and can learn only from the reduced space of features provided by analysts, which
is typically more limited than the raw feature space available to human annotators. Various ap-
proaches have been developed to help address these obstacles to supervised learning, including
cross-validation, transfer learning, and novel architectures that can ingest complex data. A full ex-
amination of these techniques is beyond the scope of this article. For a thorough review, including
machine learning applications beyond those considered here, see Grimmer et al. (2021).

2.2. Using Computational Measures in Subsequent Analyses Will Bias Causal
Estimates, But All Is Not Lost

Much of the prior literature on measurement focuses on improving the validity of the measure
itself—that is, eliminating measurement error, especially from systematic sources (Adcock &
Collier 2001). Yet, while measuring concepts has intrinsic value, we find that a far larger body
of work is devoted to the next step of the scientific process: analyzing the origins and effects of
the measured concept to improve our understanding of its broader social context. In our review
of APSR, AJPS, and JOP, we found 48 papers that employed machine learning. Within this
set, over two-thirds estimated a proxy for use in an empirical test of a causal theory. We found
that this work on learned proxies fell into two categories. The first type (26 papers) made a
primarily substantive contribution by developing a causal theory, then estimating a proxy variable
in order to empirically test the theory. The second set (7 papers) made a primarily methodological
contribution, focusing directly on the estimation and validation of a novel proxy variable for use
in empirical tests of several causal theories.

These papers all confront a shared obstacle. How do we test theories involving variables
that we cannot directly observe? To do so, analysts employ a measurement model to create the
learned proxy,which is then incorporated into a primary analysis. For example,Martin&McCrain
(2019) conduct a regression of a proxy media bias outcome, Ŷ , on the theorized cause of media
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consolidation, X , as well as confounders,W. More generally, any theory that includes variables
which are not directly observable is untestable without a learned proxy. In every other sense,
proxy-dependent analyses are unremarkable, often employing common research designs intended
to address classic threats to causal inference like unobserved confounding. For example, Martin
& McCrain (2019) leverage a difference-in-differences design that compares acquired stations to
other stations in the same market.

But while proxy-dependent designs often take seriously inferential threats like confounding,
they commonly ignore challenges that are inherent in the use of a proxy variable. For example,
random and systematic measurement error in a proxy can induce additional statistical biases in
this primary analysis, with consequences that vary substantially depending on the quantity prox-
ied and the precise nature of the error. But researchers often do not have the luxury of perfecting
the measurement process due to constraints on time, personnel, and research funds. In many cases,
noisy or contaminated observable signals can make it entirely impossible to obtain ideal measures
of key theorized concepts. How can research proceed in the face of this challenge? We delineate
how to reason about limitations of learned measures and how these limitations relate to the theo-
rized causal structure. In Section 3, we then examine several common research settings and show
that despite the statistical biases induced by imperfectly learned proxies, it nonetheless remains
possible to draw meaningful conclusions about the theorized causal process.

We focus on lesser-known implications of measurement error and discuss what researchers
can credibly conclude in the presence of bias resulting from this error. Specifically, we review
how social scientists can draw conclusions about the existence and direction of a causal effect,
even when the point estimate of that effect is almost certainly biased. Given that social scientists
are generally most interested in demonstrating the existence of theorized effects rather than
precisely quantifying the effect size, this result is encouraging. This goal is a particular form
of causal discovery, a branch of causal inference that attempts to learn causal diagrams; in this
context, researchers focus specifically on discovering a single theorized X → Y relationship,
rather than considering all possible influence relationships. To the extent that a theorized effect
is discovered, researchers may then seek to evaluate whether its direction, or sign, accords with
theoretical expectations. (In Section 3, we formalize terminology for various senses in which
effects can be described as positive or negative.) This research objective is distinct from the goal
of causal estimation, which seeks to make precise quantitative statements about the magnitude of
effects. Causal estimation appears in research on voter turnout and incumbency advantage, where
the presence of an effect is already established with high confidence. As we discuss in this review,
causal estimation is difficult in studies using learned proxies to approximate key unobserved
steps in the theorized causal process.6 In contrast, discovery and signing of an X → Y effect can
be conducted under generally weaker assumptions about the types of contamination affecting
a proxy.7 Figure 3a depicts one possible causal structure, representing not only the theorized
concepts but also a measurement process (in this case for the outcome Y ). The Y → Ŷ arrow
indicates a causal process by which the true outcome Y leads to the proxy Ŷ , compactly summa-
rizing the entirety of the measurement workflow: the generation of observed signals; annotation
of labeled units, if any; training of the model; and prediction of learned measures. It specifies
this relationship without relying on untenable parametric assumptions. For example, the Y → Ŷ
arrow does not state that measures are centered on the true concept, i.e., satisfy E[Ŷ −Y ] = 0. As

6Except in very specific cases that can be sensitive to violations of unverifiable assumptions about, for example,
the functional form of the outcome.
7Causal discovery can be regarded as a precursor to causal estimation. Effects discovered with noisy proxies
can highlight areas where improved measurement is necessary to obtain precise estimates.
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Causal structures of theory and measurement. Data environments correspond to the theory of Figure 1.
Panels a and b illustrate environments in which analysts are unable to directly observe the outcome Y and
thus must resort to a learned measure Ŷ that is either (a) uncontaminated or (b) contaminated by
confounders. The other two panels depict cases in which (c) the treatment X or (d) the confoundersW
cannot be observed, so that analysts can only adjust for learned proxies (X̂ or Ŵ ).

the media slant illustration makes clear, such assumptions are often facially implausible. However,
Figure 3a does encode structural assumptions in the absence of arrows fromW or X to Ŷ , which
state that the learned measure is uncontaminated—that is, free of influence from these factors,
meaning that E[Ŷ −Y |W = w, X = x] is constant across all w and x.

This is a difficult requirement to satisfy; in many settings, analysts will be unable to defend the
assumption that a proxy is uncontaminated. The main way to ensure it holds is to verify that the
observed signal does not convey additional information about factors other than the true concept
of interest. For example, in themedia bias setting, contamination would occur if nonpartisan issues
of rural interest (e.g., farm subsidies) tend to be discussed both in local news and by legislators
representing rural districts. In this case, the confounder of rural-urban status would contaminate
the media bias measure. In other words, rural-urban status (W ) might distort the measure of
media bias (Ŷ ), above and beyond any influence that it might have on the true concept (Y ). If this
were true, Figure 3a would not be an accurate representation of the theory and measurement
structure; Figure 3b, in whichW has a direct arrow to Ŷ , would be the correct representation.
In other contexts, researchers may encounter scenarios where learned proxies must be used for
the treatment of interest (X ) or for key confounders (W ); Figures 3c and 3d depict these in
turn.

When the observed signals are rich and unstructured (for example, when they contain text,
audio, or images), it can be challenging to verify that they are free of contamination. It is there-
fore extraordinarily difficult to guarantee that unsupervised machine learning methods applied to
such data sets will produce uncontaminated proxies of the true concept of interest. In the super-
vised setting, it is theoretically possible to obtain uncontaminated measures from contaminated
features. When constructing a training data set, human annotators can be instructed to set aside
their cognitive biases and label each unit according to objective scoring rubrics. For example, in
the media bias case, annotators could be instructed that agriculture-related news should not be
used as a signal of a news outlet’s Republican leanings. But even if annotators perfectly adhere
to these guidelines, a supervised measurement model that is regularized or incorrectly specified
can often learn inappropriate shortcuts that reintroduce contamination, despite training on un-
contaminated labels. We therefore recommend that analysts exercise caution. Measures should
be thoroughly validated and probed for signs of contamination, e.g., by examining the predictive
features used by the measurement model or by assessing whether agricultural keyword propor-
tions continue to correlate with the media bias measure even after adjusting for obvious political
keywords. However, definitive tests for contamination are often infeasible—in the above example,
requiring countless model specifications and extensive keyword lists that range from “soybeans”
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to “pesticide.” We therefore recommend that when writing down assumptions in the form of a
causal diagram, scholars should err on the conservative side by drawing arrows from all possible
contaminating factors to the learned measure.

Having reviewed several challenges that arise when researchers use computational measures
of a latent variable, we now explain precisely how researchers can make credible claims in the
presence of bias resulting from these challenges. In the next section, we cover three cases in which
computational measures are used to proxy the treatment, the outcome, or a confounder in a causal
theory.We formalize and extend the common practice colloquially referred to as signing the bias,
then use similar logic to show how valid inferences can be made about the presence of an effect
even when causal estimates are not point identified.By applying these rules, analysts can determine
how various forms of contamination impact their ability to draw conclusions from available data.

3. ARTICULATING ASSUMPTIONS AND STRUCTURE

As noted in the previous section, researchers often use a measurement model to generate learned
proxies when a true theoretical concept cannot be directly observed, as with media slant. In this
section,we discuss the various research design complications that arise when researchers test causal
theories with computational measures, depending on the theorized role of the proxied variable.
We consider three cases in turn: where the learned measure proxies a treatment (Section 3.1), an
outcome (Section 3.2), and a confounder (Section 3.3). We also consider certain settings where
multiple factors are proxied simultaneously. We discuss prominent examples of each, drawing on
recent research in international relations (Carroll &Kenkel 2019), comparative politics (Motolinia
2021), and American politics (Nyhan et al. 2012).

3.1. Learned Treatments

Wefirst examine the case in which treatment,X , is approximatedwith a noisy learned proxy X̂ (i.e.,
the error,X − X̂ , is nonzero). In this section, while discussing proxied treatments, we assume that
the outcome (Y ) and confounders (W, representing common causes of treatment and outcome) are
perfectly observed. In discussing learned outcomes (Section 3.2) and confounders (Section 3.3),
except where otherwise noted, we will consider cases in which only one variable is proxied and all
other variables in the causal structure are observed without error. Finally, we assume that analysts
use a model that does not make rigid functional form assumptions (or, less plausibly, that analysts
know the exact functional form for the primary regression).

To illustrate the task of estimating causal effects of a treatment for which only a proxy is avail-
able, we point readers to a recent article by Carroll & Kenkel (2019), drawn from our review of
machine learning applications. Carroll and Kenkel reexamine existing findings on the role of state
power in conflict. As background, numerous theories predict that changes in a state’s power will
causally affect the chances of international conflict. In this study, the true treatment of interest,
X , is state power—which is never directly observed. Carroll and Kenkel use machine learning to
build a proxy measure of military power that improves on prior work. Drawing on data about the
capabilities and outcomes of states involved in global military disputes, Carroll and Kenkel train a
measurement model based on the material capabilities of the involved states and the outcomes of
conflict, then demonstrate how their approach improves upon existing measures. Ultimately, the
learned measure is used in the study’s main objective: to revisit the findings of Reed et al. (2008)
with these improved data. In this primary analysis, which uses a selection-on-observables design,
Carroll & Kenkel (2019) find—contrary to the literature—that conflict is most likely when the
state with the smallest benefits of war has a preponderance of power.
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Learned treatments. In the settings shown, the true treatment X is unknown, but the proxy X̂ can be
estimated from auxiliary information. In all cases, both confoundersW and outcome Y are known, and the
analyst adjusts forW . (a) In a simple case where X̂ is an uncontaminated proxy for X , a falsification test for
the existence of an X → Y effect is possible. (b) In a similar setting with the additional (generally plausible)
assumption that X has an on-average monotonic effect on X̂ , the sign of the X → Y effect can also be
identified. (c) Even when X̂ is contaminated byW, these results hold as long asW is adjusted for in a
subsequent regression. (d) However, if the proxy is contaminated by the outcome itself, association between
X̂ and Y cannot be interpreted as evidence for the theorized X → Y effect.

With this example in mind, we now consider the general problem of drawing conclusions from
proxied treatments and review related methodological work. First, it is well established that even
when the measurement error X − X̂ is independent noise, using a proxy X̂ in place of X in a lin-
ear regression will result in attenuation bias (Wooldridge 2015, ch. 9.4). A number of theoretical
results are available for linear and other parametric errors-in-variables models (we refer interested
readers to Cheng&VanNess 1999). And though scholars have known about bias induced by mea-
surement error for decades, we find little mention of it in social science applications employing
proxies. (In general, the use of imperfect proxies results in skewed estimates, with certain excep-
tions that we discuss below.) Moreover, further complications can arise if X̂ is contaminated by
additional factors, or if errors depend on the value of X itself, as commonly occurs.

When the true values of treatment X are available for a subset of the data (e.g., the proxy X̂
is learned with a supervised model), Fong & Tyler (2018) offer a solution in contexts where the
regression is known to follow a linear functional form. Intuitively, their approach uses X̂ as an
instrument for X . Specifically, in the first stage of regression, they relate X to X̂ using the labeled
data. In the second stage, where X̂ is available but X is not, they use the full data to regress Y on
X̂ .We discuss this procedure further in Section 3.3. However, a common concern is that linearity
is unlikely to hold in complex social scientific settings.

We now review how analysts can still draw principled partial conclusions in the face of the
above-mentioned issues, with weaker assumptions than those introduced by Fong & Tyler (2018).
Specifically, after accounting for confounders W, analysts can conduct falsification tests—tests
where the null hypothesis is the absence of an effect—about the causal influence of X on Y in
Figure 4a–c. Such tests are valid even in the presence of measurement error, because under the
null hypothesis (i.e., in the absence of the X → Y arrow in the causal structure), there should be
no association between X̂ and Y (after adjusting forW ).

Social scientists often seek to characterize the direction of causal effects, rather than simply
testing null hypotheses about their nonexistence. By developing a statistical test with this objective
in mind, we show how analysts can draw conclusions that would not otherwise be possible. To do
so, we introduce the notion of signed causal diagrams (VanderWeele & Robins 2010), which build
on the causal diagrams introduced in Section 2. In signed causal diagrams, researchers specify in
their theory not only the presence of effects but also the direction of the effects. This practice is
closely related to the common practice of signing the bias, in which researchers informally reason
through how unobserved confounding might positively or negatively skew their results.
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3.1.1. An introduction to signed causal diagrams. Researchers often informally state that one
variable should have a positive or negative effect on another, but the meaning of these directions
can be ambiguous. In this review, we focus on two possible assumptions about the direction of an
effect, beginning with the assumption of average monotonicity. For two variablesA and B, positive
(negative) average monotonicity simply assumes that on average, as A increases, B either increases
(decreases) or stays the same.Formally, the assumption of positive averagemonotonicity states that
E[B(a′ )− B(a)] ≥ 0 for all a′ > a. In a signed causal structure, we simply modify the arrows that
we introduced in Section 2 to indicate whether the theorized effect is positive or negative. If A and
B have a causal relationship satisfying positive average monotonicity, we label the corresponding
arrow as A −→+ B, indicating that A has a nonnegative effect on the average value of B.8 When
discussing proxied outcomes later in this section, we show how a stronger condition, distributional
monotonicity, is sometimes needed to justify conclusions about the direction of an effect. If positive
distributional monotonicity holds, we write A −→++ B, indicating that increasing A will increase
every quantile of B (including, e.g., the median of B). Formally, this is a statement about first-order
stochastic dominance, requiring that Pr[B(a′ ) ≤ c] ≤ Pr[B(a) ≤ c] for all a′ > a and all c. Some
readers may be familiar with yet another type of signed effect, unit-level monotonicity, an even
stronger assumption that we do not use in this review. This assumption states that if A is increased
for any unit,Bwill also increase or stay the same for that unit.9 These conditions are nested within
one another: Unit-level monotonicity implies distributional monotonicity, which in turn implies
on-average monotonicity. Figure 4 presents several possible causal structures describing theory
and measurement by means of signed diagrams indicating on-average monotonicity, the weakest
andmost plausible of the abovemonotonicity assumptions; we primarily focus on results involving
this assumption.

3.1.2. Using signed causal diagrams for proxied treatments. Usefully,when learning X̂ from
data that are informative about X , analysts can generally assume that X → X̂ satisfies positive
average monotonicity. This assumption requires that when X is larger, the estimated X̂ will also
tend to be larger, on average. In the context of learned proxies, we consider this to be a weak
assumption; it is generally satisfied when well-calibrated machine learning models are used. This
assumption can also be empirically assessed whenever the proxy is learned from labeled data. To
do so, the researcher can simply train the model on a fraction of the labeled data (a training set)
and inspect the accuracy of predictions in the remaining labeled data (a test set) by generating
predicted values for the test set from themodel learned in the training set. If average monotonicity
holds, then predictions should correlate with the labeled values (which are known in the test set).

When average monotonicity between X and X̂ is satisfied and W is correctly adjusted for,
as in Figure 4b, any positive association between X̂ and Y implies a positive X → Y effect
(VanderWeele & Hernán 2012). By the same logic, this is true for negative associations, which
imply negative effects. Perhaps surprisingly, this also holds in the setting of Figure 4c, in which
the learned treatment X̂ is contaminated by confoundersW. At first glance, this contamination
may appear to be problematic, as the measurement error will generally be associated with the out-
come (as both X̂ and Y are affected by confoundersW ). However, because analysts adjust forW,
this concern is in fact unwarranted. Conditioning onW controls for the noncausal relationship

8If other parents of B exist, this must hold conditional on all possible values of these parents.
9Readers may be familiar with strong monotonicity from the “no defiers” assumption of Angrist et al. (1996)
in the instrumental-variables setting. Formally, unit-level monotonicity A −−→+++ B states that Bi (a′ ) ≥ Bi (a) for
all a′ ≥ a and all units i.
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between X̂ and Y that results from contamination fromW . Specifically, controlling forW blocks
two noncausal alternative explanations—termed “backdoor” paths by Pearl (1995)—from X̂ to
Y .10 The first alternative explanation is that X does not have an effect on Y, but X is spuriously
associated with Y due to confounding byW . Because X̂ is influenced by X , this then also mani-
fests in a spurious association between X̂ and Y . This possibility, which is present in Figure 4a–c,
can be concisely expressed as X̂ ← X ←W → Y . The second alternative explanation is that the
measurement X̂ is directly contaminated by the confoundersW (i.e., that X̂ − X is influenced by
W ), denoted X̂ ←W → Y ; this appears only in Figure 4c. Both backdoor paths can be elimi-
nated by adjusting forW, thereby breaking the chain of association (we refer interested readers
to Pearl 2009 for a more comprehensive introduction to these concepts). We caution that if X̂
is contaminated by Y itself, as in Figure 4d, then association between the two clearly cannot be
interpreted as evidence of a causal effect of X on Y .

However, the reverse is not true. Failure to find an association between X̂ and Y does not
necessarily indicate that no X → Y effect exists. In addition to standard issues of power in null
hypothesis testing, there is the added issue that a poorly learned X̂ may have no, or vanishingly
little, association with X ; this problem compounds with any power limitations that would arise
in a non-proxied primary analysis. In other words, a lack of detectable association may be due to
X → X̂ as well as X → Y . We return to additional issues around uncertainty in Section 4.

3.2. Learned Outcomes

We next turn to the case when the true outcome Y is unobserved and analysts seek to draw causal
inferences from a noisy learned proxy Ŷ . There are now countless examples of such applications,
including every application of text analysis using topic proportions—an unsupervised measure
based on observed term frequencies—as an outcome measure.11 Several possible causal structures
depicting theory and measurement are given in Figure 5.

Here, we highlight one prominent example to illustrate the concept. Motolinia (2021) studies
the effect of allowing reelection on legislator provision of particularistic legislation. The theory
states that for a legislator who is seeking votes and deciding where to allocate their effort, pro-
viding particularistic legislation will yield the most votes due to its targeted focus on constituent
services. To identify the effect of reelection incentives, Motolinia uses a difference-in-difference
design leveraging a staggered reform to elections inMexico,which lifted a ban on reelection.Here,
X is the ability of a politician to run for reelection, which is perfectly observed. In this case, con-
foundersW are accounted for with state and month-year fixed effects. However,Y, the amount of
particularistic legislation proposed, is not directly observed. To estimate the effect of the institu-
tional transition,Motolinia must generate a measure Ŷ of the outcome.To do so,Motolinia (2021)
fits a correlated topic model (Blei et al. 2007) to legislative session transcripts, then classifies the
resulting topics according to the legislation type. First, topics are grouped according to whether
the legislation is procedural (e.g., protocol, voting rules), general (benefits all constituents), or
particularistic (benefits a fraction of constituents).Motolinia validates this measure with extensive
qualitative inspection and by confirming that the measure varies predictably in contexts where the

10This adjustment is straightforward whenW is discrete (so that the association can be tested within levels
ofW ) or whenW ’s contribution to Y is additively separable from X ’s contribution [(i.e., when E[Y |W ,X ] =
f (W )+ g(X ))]; it may be difficult whenW is continuous and interacts with X .
11Examples include approaches that explicitly couple themeasurement and inferential processes, like the struc-
tural topic model (Roberts et al. 2013, 2014, 2016a), as well as those that separately learn a topic model with,
for example, latent Dirichlet allocation (Blei et al. 2003).
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Learned outcomes. In the settings shown, the true outcome Y is unknown, but the proxy Ŷ can be estimated
from auxiliary information. In all cases, both confoundersW and treatment X are known, and the analyst
adjusts forW . (a) In a simple case,Y has an on-average monotonic effect on an uncontaminated proxy Ŷ ,
and the X → Y effect is known to exhibit distributional monotonicity of an unknown direction (indicated by
the presence of both positive and negative signs). In this case, positive (negative) distributional monotonicity
in X → Y is guaranteed to produce weakly positive (negative) Cov(X̂ , Ŷ |W ), and the sign of the X → Y
effect can be identified. (b) This result holds even when Ŷ is contaminated byW, so long as these contextual
factors are adjusted for in a subsequent regression. (c) The same result still holds when X is also imperfectly,
but on-average monotonically, learned. (d) However, if the proxy is contaminated by the treatment itself,
association between X and Ŷ cannot be interpreted as evidence for the theorized X → Y effect.

theory suggests it ought to (a test of face validity).The core outcome of interestY is the proportion
of particularistic legislation, and the proxy Ŷ used in the regression is the estimated proportion
according to this procedure.

We demonstrate more generally how analysts estimating effects with a learned proxy, Ŷ , obtain
the correct sign of the effect on the unobserved Y . It is well known that when the learned proxy
is correct on average (i.e., when the error Ŷ −Y has a conditional mean equal to zero), there is
no bias in the point estimate (Wooldridge 2015, ch. 9.4). That is, using an unbiased Ŷ in place
of Y in a regression onW and X is equivalent to simply adding noise to the outcome. However,
such perfect conditions rarely hold in practice; for example, when the proxied outcome is binary,
the zero conditional mean assumption is generally violated if the learned model is more likely
to misclassify a “true zero” as a “predicted one” than a “true one” as a “predicted zero” (i.e., if
misclassification is asymmetrical). This is commonly the case, especially when one value of the
outcome is more common than the other.12 Moreover, if the measurement error Ŷ −Y depends
on treatment X , standard Gauss-Markov assumptions are violated and estimates will be biased.

We now describe conditions under which analysts can draw partial conclusions about the sign
of X → Y , even when Y is imperfectly observed, beginning with the structure of Figure 5a. As
before, we find the assumption of average monotonicity on Y −→+ Ŷ to be generally plausible and
empirically verifiable. Unfortunately, this assumption alone is not generally sufficient to assess
whether X → Y is on-average positive or on-average negative. Because it is possible to construct
examples where X −→− Y −→+ Ŷ and X −→+ Y −→+ Ŷ both lead to positive correlations between X
and Ŷ , analysts cannot conclude that X has an on-average positive effect on Y simply from ob-
serving that Cov(X , Ŷ ) > 0. [For examples and detailed explanations, we direct interested readers
to VanderWeele et al. (2008) and VanderWeele & Hernán (2012).]

Instead, a stronger condition, distributional monotonicity, is required. It has been shown
that X −→++ Y −→+ Ŷ always leads to a positive correlation between X and Ŷ , and similarly that
X −→−− Y −→+ Ŷ always produces a negative correlation. Therefore, if the X → Y effect is known
to exhibit distributional monotonicity, the sign of that effect can be inferred.We caution that when

12Even more implausibly, this perfect symmetry of misclassification must hold within all levels of X .
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X andY are continuous, distributional monotonicity in X −→++ Y is a strong assumption that must
be justified with domain expertise. However, an important special case is when both treatment
and outcomes are binary, in which case average and distributional monotonicity are equivalent. In
this case, this assumption is considerably simpler, and analysts can safely infer the sign of X → Y
using the proxy Ŷ .

Next, we highlight two more complex cases in which analysts can nonetheless draw par-
tial causal inferences from imperfect proxies. The first case is when W contaminates Ŷ , as in
Figure 5b; as discussed in Section 3.1, this is a minor issue because spurious association due to
W can be adjusted for in the subsequent primary regression.13 The second case is when learned
versions of both X̂ and Ŷ are used in place of the true treatment and outcome, as in Figure 5c. In
this case, results generalize straightforwardly: Due to a technical result from VanderWeele et al.
(2008), ifX → Y is known to exhibit distributional monotonicity, then the conditional effect must
share the sign of Cov(X̂ , Ŷ |W ).14

3.3. Learned Confounders

Finally, we consider the difficult task of estimating causal effects by adjusting for an imperfectly
learned confounder,Ŵ, instead of the true concept,W. Again, illustrations of proxied confounders
are plentiful in the social sciences.An especially prominent example is legislator ideal points (Poole
& Rosenthal 1985), which researchers often wish to control for when explaining legislator behav-
ior. Because ideology cannot be directly observed, political scientists construct proxies for ideal
points with unsupervised scaling methods. There are at least two reasons for this. First, it would
be very difficult to reliably hand-label each legislator on a continuous scale. Second, because all
legislators routinely vote on the same bills, latent trait models are a reasonable way to project
these votes down to one or two dimensions. Much research is devoted to the measurement of this
variable, and we direct interested researchers to Clinton (2012) for further discussion.

Nyhan et al. (2012) demonstrate the importance of adjusting for ideological position when
studying legislative voting.They examine the effect of controversial roll call votes,X—specifically,
high-profile votes against the Republican-led healthcare reform in 2010—on subsequent electoral
performance,Y . To estimate this effect, Nyhan et al. (2012) use a selection-on-observables design
and note clear confounding by legislator ideal pointW, which shapes both legislative positions and
voter evaluation. After conditioning on estimated ideal points Ŵ and other confounders, Nyhan
et al. (2012) estimate that votes against healthcare reform may have cost Democrats the majority
in subsequent midterm elections.

We now consider the problem of drawing conclusions with proxied confounders. Intuitively,
it is generally insufficient to simply treat Ŵ as if it wereW, because the errorW − Ŵ represents
an unaddressed portion of the confounder that is associated with both treatment and outcome.
Strategies nonetheless exist for recovering causal effects in certain settings, though we caution that
available solutions are fragile in various ways described below.We further emphasize that common
practice, which fails to account for the difference between Ŵ andW, deviates substantially from
these solutions for estimating causal effects in the presence of proxied confounding.

13As noted in Section 3.1, the issue is fully resolved whenW is discrete, or alternatively whenW → Y and
X → Y are additively separable.
14This is because the sign of the correlation induced by a path can be inferred by multiplying the signs of
edges along that path when either (a) all edges display distributional monotonicity or (b) intermediate edges
display distributional monotonicity and final edges are on-average monotonic.
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Learned confounders. In the settings shown, the true confounderW is unknown, but the proxy Ŵ can be
estimated from auxiliary information. In all cases, both treatment X and outcome Y are known, but the
analyst is only able to adjust for Ŵ. (a) A simple case in which Ŵ is an uncontaminated proxy for X . (b) A
case in which Ŵ may be contaminated by X . Merely controlling for Ŵ is insufficient to obtain an unbiased
estimate of X → Y in these cases. However, the methods described by Kuroki & Pearl (2014) and Miao et al.
(2018) can in principle recover these effects if certain conditions are satisfied. (c) A case in which a true
confounderW has a positive, on-average monotonic effect on both X and Y . In this case, an observed
negative association between X and Y implies that a negative X → Y effect exists and is sufficiently strong
to overpower the positive association induced by confounding. This remains true whether or not analysts
adjust for Ŵ . The reverse holds for negative confounding and positive association between X and Y . (d) A
case in which the proxy is contaminated by the outcome itself, so causal effects are difficult to recover.

We begin by examining the simple setting of Figure 6a. Greenland & Lash (2008) and Kuroki
& Pearl (2014) establish that whenW and Ŵ are discrete, causal effects are nonparametrically
identified if analysts know the error mechanism, the distribution p(ŵ|W = w)—in other words,
the pattern of correct and incorrect proxy values that arise from each possible true value.The basic
idea is that when this error mechanism is known, it can be used in combination with the observed
distribution of proxy values to back out the unobserved distribution of underlying true values.15

This procedure can then be applied within each level of X and Y .
Approaches that rely on quantifying the error distribution are particularly attractive in super-

vised learning, where analysts following best practices already evaluate models in held-out valida-
tion sets. This validation set enables an unbiased estimate of the required information essentially
for free, allowing analysts to recover the causal effects of interest. Indeed, in binary classification,
widely used evaluationmetrics—true and false positive rates—correspond exactly to p(ŵ|W = w).
Fong &Tyler (2018) build on this intuition in the linear case, developing a general method of mo-
ments estimator that simultaneously estimates the error distribution and the primary regression.

Results on proxied confounding also hold for the case when the learned confounder is contam-
inated by the treatment, as in Figure 6b. However, if Ŵ is contaminated by Y, as in Figure 6d,
then the X → Y effect cannot be recovered. For this reason, Fong & Tyler (2018) recommend
explicitly excluding Y from features used to train machine learning models. Even so, contamina-
tion can creep into the learned measure through numerous channels, including (a) learned models
that inappropriately leverage correlates ofY ; (b) model misspecification, as discussed in Section 2;
or (c) contamination of observed signals that influence human annotations.

Kuroki & Pearl (2014) and Miao et al. (2018) extend these results to the challenging case
when the true confounder is completely unobserved, as in unsupervised learning. A review of
these techniques is beyond the scope of this article; for an overview of causal inference with proxy

15For analysts to do so, Ŵ must be sufficiently informative aboutW. The condition is violated if two con-
founder values,w and w′, produce the same proxy distribution, p(ŵ|W = w) = p(ŵ|W = w′ ). This could oc-
cur if, for example, limited signals are incapable of distinguishing between two classes, or if there is a “ceiling
effect” beyond which increasingW no longer affects Ŵ .
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confounders, see Tchetgen Tchetgen et al. (2020). However, we emphasize that these methods are
substantially more involved than the common two-stage practice of fitting an unsupervised mea-
surement model and then controlling for the result in the primary regression—a procedure that
does not, in general, consistently recover causal estimates. Broadly speaking, consistent estimation
of X → Y in the presence of imperfectly measured confounding is an extremely difficult task.
Kuroki & Pearl (2014) note poor finite sample performance of these methods. Importantly, in
the settings we examine, asymptotics depend critically on the size of the validation set; sampling
errors in p̂(ŵ|W = w) can lead to substantial errors even when the primary analysis is based on
infinite data. Tchetgen Tchetgen et al. (2020) also note issues with numerical instability, though
these can be partially addressed with additional parametric modeling assumptions.

4. ACCURATELY REPORTING UNCERTAINTY

In the preceding section, we describe how imperfect proxies lead to biased point estimates. This
raises an obvious question: Do imperfect proxies also lead to biased statements about uncertainty?
In short, the answer is “yes.”We now explain how analysts can draw principled conclusions despite
these challenges.

In general, the common practice of using learned proxies as if they directly reflect the un-
derlying true concept will bias standard errors downward, leading to overconfident conclusions
that may fail to replicate. This is because standard procedures only account for uncertainty due
to sampling variability in the primary analysis (the second stage of a proxy-based research work-
flow, which occurs after fitting the measurement model and estimating a proxy). What standard
practice fails to account for is the fact that the learned measurement model (the first stage) is also
estimated with a sample of data, introducing variability into the resulting proxy and therefore also
contributing to overall uncertainty.

In other forms of research, such as analyses with missing data, it is well known that ignoring
uncertainty from earlier stages (i.e., multiple imputation) leads to unreliable standard errors in
subsequent regressions (Blackwell et al. 2017). Despite widespread awareness of this issue in re-
lated contexts, our review of published proxy-based work suggests that researchers rarely attempt
to correct their standard errors. Among papers using computational methods in the APSR, AJPS,
and JOP, the vast majority of papers analyzing learned proxies ignore the fact that these proxies are
estimated with uncertainty (for details, see Supplemental Appendix Section A). The only excep-
tions were applications of the Structural TopicModel (STM) (Roberts et al. 2013, 2014, 2016a). In-
terestingly, while substantive papers based on a proxy-dependent empirical test generally ignored
uncertainty in the learnedmeasure,methodological papers proposing a novel proxy often included
a method for measuring uncertainty in the learned measure. For instance, Caughey et al. (2019)
develop a proxy for mass policy ideology in Europe with a Bayesian dynamic group-level Item
Response Theory model, from which uncertainty is easily extracted from the posterior estimates.
But while this and other Bayesian measurement models report uncertainty in the learned proxy,
none of the identified papers incorporated this uncertainty into subsequent empirical analyses.

Before describing solutions to this issue, including the approach used by STM, we first review
in more depth the sources of uncertainty that are often unaccounted for when learned proxies are
used.

4.1. (Mostly) Ignored Sources of Uncertainty When Using Learned Proxies

Why do learned proxies lead to overconfident conclusions? Here, we briefly enumerate sources
of uncertainty that, when ignored, lead to inappropriately small standard errors for the causal
estimate of theoretical interest.
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We begin by considering a supervised analysis in which the learned proxy is estimated from a
training set, which is a sample from a population of possible training units. (Note that the same
logic holds for unsupervised measurement models.) Our first source of uncertainty is the sampling
variability that results from drawing one of many possible training sets. For simplicity of exposi-
tion, we assume that (a) annotators correctly label the underlying ground truth for each unit and
(b) analysts recover a global maximum likelihood estimate for the measurement model, rather than
a “local mode” that depends on randomly selected starting values (Roberts et al. 2016b).However,
we note that in reality, these and other sources of nuisance variation can also undermine replica-
bility of empirical conclusions.

Under these simplifying assumptions, given a particular training sample, applying a measure-
ment model to this training set will lead deterministically to an estimate for the measurement
model parameters. However, if a different training sample had been drawn, then the measure-
ment model would have learned a different mapping from the observed signal to the concept of
interest. This leads to a sampling distribution over learned measurement models.

These model parameters are in turn used to generate learned measures—whether Ŵ, X̂ , or
Ŷ—for each unlabeled unit in the primary analysis. Here, it is important to note that a slight
change in the learned model (including changes due to a slightly different sample of training
observations) will alter the generated proxy values for many units simultaneously. Put another
way, over repeated sampling of the training set, learned measures in the primary analysis set are
correlated across units. In particular, units that have similar observed information will tend to shift
similarly.

Our final source of uncertainty arises when learnedmeasures are used in a primary analysis.The
primary-analysis data set is also a sample from a broader population, producing another source
of random variation. Apart from STM applications, every reviewed paper that reported a direct
proxy-based test neglected training uncertainty; only uncertainty from the primary regression was
reported.

Thus, a widespread methodological issue in existing work is the failure to adequately report
uncertainty from the training process. There are numerous reasons why this issue has persisted.
When analysts obtain pretrained machine learning models from third parties—e.g., commercial
sources or other researchers—they may not know precisely how the sampling was done, and it
may therefore be impossible to adequately account for uncertainty. For example, estimated sam-
pling variances of model parameters might be reported, but not covariances. Similarly, if unit-level
features are supplied to a cloud service, the service might respond with predictions and associated
uncertainty for the unit-level learned measure, but cross-unit covariance is rarely reported by
currently available services.

A simple reductio ad absurdum argument further illustrates the importance of training uncer-
tainty for analyses based on X̂ and Ŵ . If training uncertainty could in fact be safely ignored, in
the limit, it would imply that binary classifiers could be trained on only two randomly sampled
observations—one positive case and one negative case. The resulting model could then be used to
learn measures for an infinite number of units. A primary analysis in this group would contribute
no additional sampling uncertainty, due to its size.As a result, an analyst ignoring the training stage
would claim perfect certainty in the results of their primary regression—an absurd claim, given
that the entire analytic workflow hinges on a miniscule sample of two units. This illustration re-
veals that when properly accounted for, uncertainty vanishes only as both the measurement-model
(first-stage) and primary-analysis (second-stage) data sets grow large. For this reason, we strongly
discourage the widespread practice of ignoring training uncertainty (or, equivalently, reporting
results “conditional on” pretrained models or learned measures based on their predictions). Be-
cause the causal theories being analyzed are ultimately about X ,Y, and Z—not X̂ , Ŷ, and Ẑ, which
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are merely proxies with no intrinsic causal role in the theory—analysts must take the underlying
true concepts seriously.

As a final illustration, consider the use of a learned proxy, Ŷ. Correlation in Ŷ −Y across units
is functionally identical to correlation in the error term of a regression (as can occur in cluster
randomized trials, for example, where units within a cluster may be simultaneously influenced by
unobserved factors). It is easy to see that failure to account for correlated errors in the primary
regression will typically lead to underestimates of uncertainty in the resulting estimates,much like
failure to use clustered standard errors in a clustered design.

Given this challenge, how can researchers correct uncertainty estimates when using learned
proxies? Next, we make a set of broad recommendations intended to aid analysts employing a
range of designs.

4.2. Correcting Errors in Estimated Uncertainty

To represent uncertainty in the initial measurement stage, researchers can employ a range of
common methods. Specifically, this uncertainty may be represented (a) with draws from a mul-
tivariate normal distribution, using point estimates and an estimated covariance matrix for the
measurement-model parameters; (b) with draws from the joint posterior of parameters in a
Bayesian analysis; or (c) with bootstrap draws of learned parameters, obtained by resampling of
the training set and rerunning of the measurement model. Regardless of how it is obtained, each
draw represents one possible measurement model that could have been learned; together, they
approximate the spread of learned models that are plausible, given the finite training sample.

One improved and easy-to-implement method for reporting uncertainty follows the procedure
of Treier & Jackman (2008). Take the first draw, t = 1, corresponding to one of the trained mea-
surement models drawn as described above. Compute the proxy, e.g., X̂ (t=1), under this measure-
ment model.Next, conduct the primary analysis using this proxy and extract the biased estimate of
the quantity of interest, e.g., the X̂ (t=1) coefficient in a regression of Y on X̂ andW . Uncertainty
in this primary analysis can then be accounted for by taking P draws as above—i.e., by drawing
from a multivariate normal approximation, drawing from a Bayesian posterior, or taking boot-
strap draws. These draws approximate only the uncertainty in the primary analysis, taking the
t = 1 proxy as given. The current standard practice stops at this point and, as a result, accounts for
only primary-analysis uncertainty. In contrast, we recommend repeating the process for T draws
of possible training models, producing a total of T × P samples for the quantity of interest. Taking
the 2.5th and 97.5th percentiles of the resulting distribution will produce an interval that reflects
uncertainty from both measurement and primary analysis.

We caution that this procedure lacks many properties that analysts expect in traditional confi-
dence intervals. In particular, due to the bias in point estimates that we discuss extensively above, it
does not generally contain the true causal estimand in 95%of repeated samples.Despite this, it can
be used in conjunction with the null-hypothesis-testing and effect-signing techniques developed
above, while accounting for sampling variability in both stages of the analytic workflow.

The case of STM (Roberts et al. 2013, 2014, 2016a) illustrates an alternative,more complex ap-
proach for obtaining principled uncertainty estimates. Specifically, STM estimates a single model
that encompasses both the initial measurement stage and the subsequent primary-analysis stage.
This allows information to be passed back and forth between stages—e.g., the researcher can use
patterns from the primary analysis to refine proxy predictions from the measurement model, and
vice versa—leading to greater statistical power.

Relative to the sampling-based procedures described above, the trade-off is that the joint
modeling approach requires somewhat more technical familiarity and case-specific coding to
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implement. However, joint modeling is increasingly feasible to implement in languages such
as Stan. A variety of related methods for reporting uncertainty are also possible. For example,
Knox & Lucas (2021) develop a hybrid two-stage approach for speech audio, in which coarse
proxies are obtained from an initial training stage, then refined in an iterative process built into
the subsequent primary analysis.

5. RECOMMENDATIONS AND CONCLUDING THOUGHTS
FOR CREDIBLE ESTIMATES WITH LEARNED PROXIES

As our review demonstrates, it is now commonplace to generate learned proxies with computa-
tional methods as a first step in testing a causal theory. Though this approach has opened the door
to numerous new and innovative studies, the use of imperfect proxies also presents challenges. To
address these challenges, we now outline a series of best-practice recommendations for drawing
principled conclusions from analyses using computational proxies of theorized concepts.

5.1. Explicitly State Your Causal Theory

As this reviewmakes clear, formally specifying the theorized causal diagram has numerous benefits.
Causal diagrams are concise and easy-to-use tools for communicating concepts to readers and
clarifying the assumptions that underlie an analysis. Importantly, a well-specified causal diagram
includes not only the theorized process but also a discussion of possible contamination sources
and measurement-quality assumptions for proxies of unobserved variables. As we discuss above,
clearly specified causal diagrams also help researchers reason about sources of error and assess
what conclusions can be supported with a particular research design. Most notably, they reveal
when null hypotheses and effect signs can be reliably tested.

5.2. Avoid Overclaiming Based on Biased Point Estimates

We show that primary analyses based on imperfectly learned proxies are almost always biased.
Given this, researchers should be conservative in their interpretation by simply characterizing the
sign of an effect, rather than making unsupportable claims about effect magnitude. If a researcher
wishes to draw inferences about precise effect sizes, methods such as Duarte et al.’s (2021) offer a
way to obtain bounds on possible effect sizes that account for the issues discussed here. Incorpo-
rating and expanding on this cautious approach to causal inference—whether by focusing on effect
sign or through effect bounding—is an important avenue for future work by applied researchers
and methodologists.

5.3. Test Your Assumptions

Researchers making assumptions (e.g., about the monotonicity of an effect) ought to assess their
plausibility by drawing on past work, domain expertise, or empirical evaluation where possible.
In particular, assumptions about on-average monotonicity in measurement, such as X −→+ X̂ , are
straightforward to evaluate with procedures described in this review.

5.4. Always Assess and Report Measurement Performance

The performance of the measurement model undergirds any research design employing learned
proxies. Proxies that are noisier or more skewed will tend to exacerbate the issues that we de-
scribe above. Among other issues, they can lead to false negative results: failure to find evidence in
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support of a theory, even when that theory is true. In general, researchers should not trust results
from anymachine learningmodel until the performance of thatmodel is suitably demonstrated.To
demonstrate satisfactory performance, all applications should include a confusion table (i.e., cross-
tabulation of true and predicted values) and other performance metrics obtained from a held-out
validation set that was not used for training or parameter tuning. Finally, researchers should in-
clude measures of intercoder reliability, especially when annotating ambiguous labels. With lim-
ited resources, it may be inefficient to annotate each example in the labeled set repeatedly; instead,
we encourage relabeling a sufficient number of cases to assess reliability. For example, with 2,000
training examples, it may be sufficient to hire a second coder to label only 100 for comparison.

5.5. Correct Your Standard Errors

As we note above, current practices for reporting uncertainty in proxy-based analyses are almost
certainly biased, generally in a downward (anticonservative) direction. This is intuitive, given that
analysts typically report uncertainty only for the second-stage model (the primary analysis, tar-
geting the causal effect of interest) and neglect uncertainty and bias in the first stage (learning
proxies). Unfortunately, without access to the learned model, it can be extraordinarily difficult to
characterize how measurement error covaries between units. In the previous section, we describe
methods for correcting this downward bias. Regardless which approach is used, analysts should
seek to accurately report uncertainty from all stages of the model.

5.6. Compare Estimates in the Full Data to Estimates Using Only
the Labeled Observations

We echo the observation by Fong & Tyler (2018) that, in the supervised case, a simple and con-
sistent estimator exists: fitting a model using only the labeled data. This estimator is desirable for
several reasons. First, and most obviously, it does not use proxies and therefore does not suffer
from any of the sources of bias that we discuss in this article—at least, as long as the researcher
can ensure that human labels reflect true, gold standard values for the underlying concept of in-
terest. Second, substantial differences between the smaller-n unproxied analysis and the larger-n
proxied analysis may indicate deeper issues that warrant further investigation. For instance, these
estimates may diverge if the labeled data are not representative of the full data or if there are
systematic errors in the classifier.

6. CONCLUSION

Our review highlights how advances in computational statistics are transforming research in the
social sciences, primarily by allowing researchers to measure theorized concepts and use the re-
sulting proxies in subsequent causal analyses. Yet despite the increasing prevalence of this re-
search strategy, little methodological guidance is available for applied scholars. This is troubling
because, as we note, the common practice of conflating proxies with the underlying true concept
leads to biased point estimates and standard errors, undermining the conclusions drawn from this
work.

Our analysis reveals that in spite of the recent computational revolution, core statistical ob-
stacles faced by the discipline remain largely unchanged. In fact, our emphasis on precisely ar-
ticulating theory and assumptions highlights that, ultimately, credible causal inference is about
research design—same as it ever was.While new models may improve our ability to approximate
previously unobservable concepts, no amount of computation can evaluate the plausibility of as-
sumptions or prevent researchers from drawing unsupportable conclusions. It is thus unsurprising
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that new research using new computational methods suffers from issues similar to those that ailed
proxy-based studies decades ago.

But more optimistically, our review demonstrates how recent advances in causal inference can
augment concurrent computational developments. By writing down their assessments of proxy
contamination and measurement quality in the form of simple causal diagrams, analysts can now
easily assess if a causal claim—whether about the existence, direction, ormagnitude of an effect—is
defensible. However, methodology in this area is far from complete. As computational social sci-
ence continues to grow, much more work is needed to ensure that this rapidly expanding research
area produces reliable scientific knowledge.
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